
Appl. Math. Inf. Sci.10, No. 5, 1663-1672 (2016) 1663

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100504

A New Numerical Approach for the Solutions of Partial
Differential Equations in Three-Dimensional Space

Brajesh Kumar Singh1 and Carlo Bianca2,∗

1 Department of Applied Mathematics, School of Allied Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UttarPradesh
226025, India

2 Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University; Université Paris DiderotSorbonne Paris-
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Abstract: This paper deals with the numerical computation of the solutions of nonlinear partial differential equations in three-
dimensional space subjected to boundary and initial conditions. Specifically, the modified cubic B-spline differential quadrature method
is proposed where the cubic B-splines are employed as a set ofbasis functions in the differential quadrature method. Themethod
transforms the three-dimensional nonlinear partial differential equation into a system of ordinary differential equations which is solved
by considering an optimal five stage and fourth-order strongstability preserving Runge-Kutta scheme. The stability region of the
numerical method is investigated and the accuracy and efficiency of the method are shown by means of three test problems: the three-
dimensional space telegraph equation, the Van der Pol nonlinear wave equation and the dissipative wave equation. The results show
that the numerical solution is in good agreement with the exact solution. Finally the comparison with the numerical solution obtained
with some numerical methods proposed in the pertinent literature is performed.
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1 Introduction

The development of numerical methods for the simulation
of mathematical models has gained much attention
considering that recently the power of the computers
sciences has been increased. Various numerical methods
have been proposed for obtaining numerical solutions of
partial differential equations, see, among others, [1,2,3,4,
5,6]. A highly accurate non-polynomial tension spline
scheme for one-dimensional wave equation has been
developed in [7] and applied to the one-dimensional wave
equation. The numerical solution of the one-dimensional
hyperbolic telegraph equation by using cubic B-spline
collocation method has been obtained in [8]; numerical
solutions of the multi-dimensional telegraphic has been
investigated in [4]. Singh and Lin [9] have proposed a
high order variable mesh off-step discretization scheme
for the one-dimensional nonlinear hyperbolic equation;
the reader interested to numerical methods for linear and
nonlinear hyperbolic partial differential equations in

three-dimensional space is referred to papers [4,10,11,
12,13,14,15] and references cited therein. Recently in [5]
an element-free Galerkin scheme has been proposed for
the solution of the three-dimensional wave equation, and
in [16] a element-free Galerkin method and a meshless
local Petrov-Galerkin method have been proposed for the
three-space-dimensional nonlinear wave equation.

The differential quadrature method (DQM) dates back
to Bellman et al. [17,18]. In DQM the derivative of a
function is approximated by introducing the weighted
sum of the function values at certain discrete points. After
the seminal paper of Bellman, various test functions have
been proposed, among others, spline functions, sinc
function, Lagrange interpolation polynomials, radial basis
functions, see [19,20,21,22,23,24] and the references
cited therein. In particular Shu and Richards [25] have
developed one of the most generalized approach to solve
the incompressible Navier-Stokes equation.

Recently, Arora and Singh [26] have proposed a
modified cubic B-spline differential quadrature method
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(MCB-DQM) for the numerical computation of the
solution of the one-dimensional Burger equation. The
MCB-DQM has been further generalized for the
computational modeling of partial differential equations
in two-dimensional space [27] (the reader is referred also
to papers [28,29]).

This paper is devoted to the development of a new
MCB-DQM for the numerical simulation of the following
partial differential equation in three-dimensional space:

∂ 2u
∂ t2 +α

∂u
∂ t

+βu= ▽
2u+ δg(u)

∂u
∂ t

+ f (x,y,z, t), (1)

subject to the following initial condition (ICs):







u(x,y,z,0) = ψ1(x,y,z), (x,y,z) ∈ Ω

∂u
∂ t (x,y,z,0) = ψ2(x,y,z), (x,y,z) ∈ Ω

(2)

and to the Dirichlet boundary condition (BCs):

u(x,y,z, t) = ξ (x,y,z), (x,y,z) ∈ ∂Ω , t > 0, (3)

where▽2 ≡ ∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂z2 , Ω = {(x,y,z) : 0≤ x,y,z≤ 1}

is the computational domain and∂Ω is the boundary ofΩ .
The functionu(x,y,z, t) is the unknown function whereas
f ,ψ1,ψ2 andξ are known functions.

The MCB-DQM is used for computing the spatial
derivatives. Accordingly the partial differential equation
is transformed into a system of first-order ordinary
differential equations which is then solved by using the
SSP-RK54 scheme [28,29]. The stability region of the
numerical method is investigated within the paper and the
accuracy and efficiency of the method are studied by
means of three test problems: the three-dimensional space
telegraph equation, the Van der Pol nonlinear wave
equation and the dissipative wave equation. The results
show that the numerical solution is in good agreement
with the exact solution. Finally the comparison with the
numerical solution obtained with some numerical
methods proposed in the pertinent literature is performed.
Specifically the Root Mean Square (RMS) error norm in
the MCB-DQM solutions is compared with the error
obtained with the MLPG [16] and the EFP [16].

The paper is organized into five more sections, which
follow this introduction. Specifically Section2 deals with
the description of the modified cubic B-spline differential
quadrature method. Section3 is devoted to the procedure
for the implementation of method for the problem (1)
with the initial conditions (2) and boundary conditions
(3). The stability analysis of the MCB-DQM is discussed
in Section 4. Section 5 is concerned with three test
problems with the main aim to establish the accuracy of
the proposed method in terms of the RMS error norm.
Finally Section6 concludes the paper with reference to
critical analysis and research perspectives.

2 The modified cubic B-spline differential
quadrature method

This section deals with the description of the MCB-DQM
[26,27,30,31] for the partial differential equation in three-
dimensional space (1). LetD be the following domain:

D= {(x,y,z) ∈R
3 : a≤ x≤ b, c≤ y≤ d, ℓ≤ z≤ m}

which is uniformly partitioned in each direction with the
following knots:

a= x1 < x2 < .. . < xi < .. . < xNx−1 < xNx = b,

c= y1 < y2 < .. . < y j < .. . < yNy−1 < yNy = d,

ℓ= z1 < z2 < .. . < zk < .. . < zNz−1 < zNz = m,

where

hx =
b−a
Nx−1

, hy =
d− c
Ny−1

, hz =
m− ℓ

Nz−1
,

is the discretization step in thex, y and z directions,
respectively. Let(xi ,y j ,zk) be the generic grid point and

ui jk ≡ ui jk(t)≡ u(xi,y j ,zk, t),

for i ∈ ∆x = {1,2, . . . ,Nx}, j ∈ ∆y = {1,2, . . . ,Ny} andk∈
∆z = {1,2, . . . ,Nz}.
The rth-order partial derivatives ofu(x,y,z, t), for
r ∈ {1,2}, with respect tox, y, z and evaluated in the grid
point(xi ,y j ,zk) are approximated as follows:

∂ ru
∂xr (xi ,y j ,zk) =

Nx

∑
p=1

a(r)ip up jk, i ∈ ∆x,

∂ ru
∂yr (xi ,y j ,zk) =

Ny

∑
p=1

b(r)jp uipk, j ∈ ∆y,

∂ ru
∂zr (xi ,y j ,zk) =

Nz

∑
p=1

c(r)kpui jp, k∈ ∆z,

(4)

wherea(r)ip , b(r)jp andc(r)kp, called the weighting functions of
the rth-order partial derivative, are the unknown time
dependent quantities to be determined.
The cubic B-splines functionϕi = ϕi(x), in thex direction
and at the knots, reads:

ϕi =
1
h3

x























(x− xi−2)
3 x∈ [xi−2,xi−1)

(x− xi−2)
3−4(x− xi−1)

3 x∈ [xi−1,xi)
(xi+2− x)3−4(xi+1− x)3 x∈ [xi ,xi+1)
(xi+2− x)3 x∈ [xi+1,xi+2)
0 otherwise

(5)

The set{ϕ0,ϕ1,ϕ2, . . . ,ϕNx,ϕNx+1} is a basis over the set
[a,b]. The values ofϕi and its first and second derivatives
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in the grid pointx j , denoted byϕi j := ϕi(x j), ϕ ′
i j := ϕ ′

i (x j)

andϕ ′′
i j := ϕ ′′

i (x j), respectively, read:

ϕi j =







4, if i − j = 0
1, if i − j =±1
0, otherwise

(6)

ϕ ′
i j =







3/hx, if i − j = 1
−3/hx, if i − j =−1
0, otherwise

(7)

ϕ ′′
i j =







−12/h2
x, if i − j = 0

6/h2
x, if i − j =±1

0 otherwise
(8)

The modified cubic B-splines basis functions are
obtained by modifying the cubic B-spline basis functions
(5) as follows [26]:























































φ1(x) = ϕ1(x)+2ϕ0(x)

φ2(x) = ϕ2(x)−ϕ0(x)

...

φ j(x) = ϕ j(x), for j = 3,4, . . . ,Nx−2

...

φNx−1(x) = ϕNx−1(x)−ϕNx+1(x)

φNx(x) = ϕNx(x)+2ϕNx+1(x)

(9)

The set{φ1,φ2, . . . ,φNx} is a basis over the set[a,b].
Analogously procedure is followed for they and z
directions.

2.1 Computation of the weighting coefficients

In order to compute the weighting coefficientsa(1)ip of Eq.
(4), we use the modified cubic B-splineφp(x), p∈ ∆x. Let
φ ′

pi := φ ′
p(xi) and φpℓ := φp(xℓ). Accordingly the

approximation of the first-order derivative is obtained as
follows:

φ ′
pi =

Nx

∑
ℓ=1

a(1)iℓ φpℓ, p, i ∈ ∆x. (10)

Setting Φ = [φpℓ], A = [a(1)iℓ ] (the unknown weighting
coefficient matrix), andΦ ′ = [φ ′

pi], then Eq. (10) can be
re-written as the following system of linear equations:

ΦAT = Φ ′. (11)

The coefficient matrixΦ of orderNx can be obtained from
(6) and (9):

Φ =





















6 1
0 4 1

1 4 1
...

...
.. .

1 4 1
1 4 0

1 6





















and in particular the columns of the matrixΦ ′ read:

Φ ′[1] =





















−6/hx
6/hx

0
...

0
0





















,Φ ′[2] =





















−3/hx
0

3/hx
0
...

0





















, . . . ,

Φ ′[Nx−1] =





















0
...

0
−3/hx

0
3/hx





















, andΦ ′[Nx] =





















0

...

0
−6/hx
6/hx





















.

It is worth stressing that the cubic B-splines are modified in
order to have a diagonally dominant coefficient matrixΦ,
see Eq. (11). The system (11) is thus solved by employing
the Thomas Algorithm [32].

Similarly, the weighting coefficientsb(1)ip andc(1)ip can
be computed considering the grid in they andzdirections.

The weighting coefficientsa(r)ip , b(r)ip andc(r)ip , for r ≥ 2,
can be computed by using the following Shu’s recursive
formulae [21]:































































































































a(r)i j = r



a(1)i j a(r−1)
ii −

a(r−1)
i j

xi − x j



 , i 6= j : i, j ∈ ∆x,

a(r)ii =−
Nx

∑
i=1,i 6= j

a(r)i j , i = j : i, j ∈ ∆x.

b(r)i j = r



b(1)i j b(r−1)
ii −

b(r−1)
i j

yi − y j



 , i 6= j : i, j ∈ ∆y

b(r)ii =−
Ny

∑
i=1,i 6= j

b(r)i j , i = j : i, j ∈ ∆y.

c(r)i j = r



c(1)i j c(r−1)
ii −

c(r−1)
i j

zi − zj



 , i 6= j : i, j ∈ ∆z

c(r)ii =−
Nz

∑
i=1,i 6= j

c(r)i j , i = j : i, j ∈ ∆z.

(12)

3 The numerical scheme of MCB-DQM

Setting ∂u
∂ t = v and thus ∂ 2u

∂ t2
= ∂v

∂ t , and
f (xi ,y j ,zk, t) = fi jk , the numerical scheme transforms

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1666 B. K. Singh, C. Bianca: A new numerical approach for the solutions of...

Eqs. (1)-(2) into the following problem:







































dui jk

dt
= vi jk

dvi jk

dt
=

Nx

∑
p=1

a(2)ip up jk+
Ny

∑
p=1

b(2)jp uipk+
Nz

∑
p=1

c(2)kp ui jp +Ki jk

ui jk(t = 0) = ψ1(xi ,y j ,zk),

vi jk(t = 0) = ψ2(xi ,y j ,zk),
(13)

wherei ∈ ∆x, j ∈ ∆y,k∈ ∆z and

Ki jk = (δg(ui jk)−α)vi jk −βui jk + fi jk .

Bearing the boundary condition (3) in mind, Eq. (13) is
rewritten as follows:







































dui jk

dt
= vi jk

dvi jk

dt
=

Nx−1

∑
p=2

a(2)ip up jk+
Ny−1

∑
p=2

b(2)jp uipk+
Nz−1

∑
p=2

c(2)kp ui jp +Fi jk

ui jk(t = 0) = ψ1(xi ,y j ,zk),

vi jk(t = 0) = ψ2(xi ,y j ,zk),
(14)

where 2≤ i ≤ Nx−1,2≤ j ≤ Ny−1,2≤ k≤ Nz−1 and

Fi jk = Ki jk +a(2)i1 u1 jk +a(2)iNx
uNx jk +b(2)j1 ui1k

+b(2)jNy
uiNyk+ c(2)k1 ui j 1+ c(2)k,Nz

ui jNz.
(15)

Various numerical schemes have been proposed to solve
initial value problems, among others, the SSP-RK scheme
allows low storage and large region of absolute property
[29,28]. In particular in what follows we consider the
following SSP-RK54 scheme which is strongly stable for
nonlinear hyperbolic differential equations:

u(1) = um+0.391752226571890△tL(um)

u(2) = 0.444370493651235vm+0.555629506348765u(1)

+0.368410593050371△tL(u(1))

u(3) = 0.620101851488403um+0.379898148511597u(2)

+0.251891774271694△tL(u(2))

u(4) = 0.178079954393132um+0.821920045606868u(3)

+0.544974750228521△tL(u(3))

um+1 = 0.517231671970585u(2)+0.096059710526147u(3)

+0.063692468666290△tL(u(3))+0.386708617503269u(4)

+0.226007483236906△tL(u(4))

4 Stability Analysis

In what follows, we assumeα > δg. The system (14) can
be rewritten in compact form as follows:

dU
dt

= AU+G,

or

d
dt

[

u
v

]

=

[

O I
B (δg−α)I

][

u
v

]

+

[

O1
F

]

(16)

where
a)O andO1 are null matrices;
b)I is the identity matrix of order(Nx−2)(Ny−2)(Nz−

2);
c)U = (u,v)T the vector solution at the grid points:

u= (u222,u223, . . . ,u22(Nz−1),u232,u233, . . . ,u23(Nz−1),

. . . ,u(Nx−1)(Ny−1)3, . . . ,uNx−1)(Ny−1)(Nz−1)).
v= (v222,v223, . . . ,v22(Nz−1),v232,v233, . . . ,v23(Nz−1),
. . . ,v(Nx−1)(Ny−1)3, . . . ,vNx−1)(Ny−1)(Nz−1)).

d)F = (F222,F223, . . . ,F22(Nz−1),F232,F233, . . . ,F23(Nz−1),
. . . ,F(Nx−1)(Ny−1)3, . . . , FNx−1)(Ny−1)(Nz−1)), whereFi jk

is defined in Eq. (15).
e)B= −β I +Bx+By+Bz, whereBx, By andBz are the

following matrices (of order(Nx−2), (Ny−2), (Nz−

2), respectively) of the weighting coefficientsa(2)i j , b(2)i j

andc(2)i j :

Bx =















a(2)22 Ix a(2)23 Ix . . . a(2)2(Nx−1)Ix

a(2)32 Ix a(2)33 Ix . . . a(2)3(Nx−1)Ix
...

...
. . .

...

a(2)
(Nx−1)2Ix a(2)

(Nx−2)3Ix . . . a(2)
(Nx−1)(Nx−1)Ix















(17)

By =









My Oy . . . Oy
Oy My . . . Oy
...

...
. . .

...
Oy Oy . . . My









Bz =









Mz Oz . . . Oz
Oz Mz . . . Oz
...

...
. . .

...
Oz Oz . . . Mz









(18)
where

My =















b(2)22 Iz b(2)23 Iz . . . b(2)2(Ny−1)Iz

b(2)32 Iz b(2)33 Iz . . . b(2)3(M−1)Iz
...

...
. . .

...

b(2)
(Ny−1)2Iz b(2)

(Ny−1)3Iz . . . b(2)
(Ny−1)(Ny−1)Iz















and

Mz =















c(2)22 c(2)23 . . . c(2)2(Nz−1)

c(2)32 c(2)33 . . . c(2)3(Nz−1)
...

...
. . .

...

c(2)
(Nz−1)2 c(2)

(Nz−1)3 . . . c(2)
(Nz−1)(Nz−1)
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Fig. 1: Eigenvalues ofBx (first row),By (second row) andBz (third row) for different values of the grid points.

where Oy and Oz are null matrices of order
(Ny −2)(Nz−2) and(Nz−2), respectively;Ix and Iz
are the identity matrices of order(Ny−2)(Nz−2) and
(Nz−2), respectively.

The stability of the numerical scheme proposed for (1)
depends on the stability of the system of ODEs defined in
(16). If the system of ODEs (16) is unstable, then the
numerical scheme for temporal discretization may not
converge. Since the exact solution can be directly
obtained by means of the eigenvalues method, the
stability of (16) depends on the eigenvalues of the
coefficient matrixA. Accordingly the system (16) is stable
if the real part of each eigenvalue ofA is zero or negative.

Let λA be an eigenvalue ofA associated with the
eigenvector(X1,X2)

T , where each component is a vector
of order(Nx−2)(Ny−2)(Nz−2). Then from Eq. (16) we
have

A

[

X1
X2

]

=

[

O I
B (δg−α)I

][

X1
X2

]

= λA

[

X1
X2

]

, (19)

which implies that

IX2 = λAX1, (20)

and
BX1+(δg−α)X2 = λAX2. (21)

Simplifying Eq. (20) and Eq. (21), we get

BX1 = λA(λA+α − δg)X1. (22)

This shows that the eigenvalueλB of B is λB = λA(λA+
α − δg). We now consider the matrix

B=−β I +Bx+By+Bz, (23)

and we compute the eigenvalues ofBx,By and Bz for
different grid points: 6× 6 × 6, 11× 11 × 11 and
16× 16× 16. As Fig1 shows, for different values of the
grid points the computed eigenvalues ofBx,By andBz are
real negative numbers. Sinceβ > 0, from Eq.(23) we
have

Re(λB)≤ 0 and Im(λB) = 0, (24)

whereRe(z) andIm(z) denote the real and the imaginary
part ofz, respectively. LetλA = x+ ιy, then

λB = λA(λA+α − δg)

= x2− y2+(α − δg)x+ ι(2x+(α− δg))y.
(25)

According to Eq. (24) and Eq. (25), we have

{

x2− y2+(α − δg)x< 0

(2x+(α − δg))y= 0
(26)

The possible solutions of Eq.(26) are

1)If y 6= 0, thenx=−α−δg
2 ,

2)If y= 0, then
(

x+ (α−δg)
2

)2
<
(

(α−δg)
2

)2
.

The proposed scheme is thus stable ifα > δg.

5 Numerical experiments

This section is devoted to the accuracy analysis of the
proposed numerical method. Specifically three test cases
of (1) are taken into account. The accuracy and
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Fig. 2: The contour plot (left panel) and surface plot (right panel)of the absolute error in the three-dimensional telegraph equation of
the Problem1 for z= 0.5, t = 1, h= 0.044,△t = 0.01.
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Fig. 3: The contour plot (left panel) and surface plot (right panel)of the numerical solution of the three-dimensional telegraph equation
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consistency of the method is performed by considering
the following RMS error norm:

RMS=
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whereui jk andu∗i jk denote the numerical solution and the
exact solution at(xi ,y j ,zk), respectively.

Problem 1.The first test case deals with the
three-dimensionallinear telegraph hyperbolicequation
[4,16], which corresponds toδ = 0, α = β = 2. We
consider as exact solution of the equation (1)-(3) the
following function:

u(x,y,z, t)= sinh(x)sinh(y)sinh(z)e−2t ,(x,y,z)∈Ω , t ≥ 0,

with ψ1(x,y,z),ψ2(x,y,z), ξ (x,y,z, t), and f (x,y,z, t)
obtained accordingly.

The numerical solution for the problem1 is obtained
for △t = 0.01 and grid size 11× 11× 11. Table 1
summarizes the RMS error obtained with the

MCB-DQM, the MLPG [16] and the EFP [16]. The Fig.2
shows the RMS for the MCB-DQM solution forz= 0.5,
grid size 26× 26× 26 and at timet = 1.0; the Fig. 3
shows the MCB-DQM solution forz = 0.5, grid size
25×25×25 and at timet = 1.0. The numerical solution
is in good agreement with the exact solution.

Problem 2.The second test case deals with theVan der Pol
nonlinear wave equation [16,4], which corresponds toα =
δ = κ ,β = 0 andg(u) = u2. We consider as exact solution
of the equation (1)-(3) the following function:

u(x,y,z, t) = sin(x)sin(y)sin(z)e−κt ,(x,y,z) ∈ Ω , t ≥ 0.
(27)

with ψ1(x,y,z), ψ2(x,y,z), ξ (x,y,z, t) and f (x,y,z, t)
defined accordingly.

The numerical solution of the Problem2 is obtained
for κ = 3, △t = 0.01 and grid size 11× 11× 11. Table
2 summarizes the RMS error norm for the MCB-DQM,
the MLPG [16] and the EFP [16]. The Fig.4 shows the
absolute error for the MCB-DQM solution forz= 1.0, grid
size 25×25×25 and at timet = 1.0. The contour plot and
the surface plots of the MCB-DQM solution are depicted
in Fig.5 and in Fig.6, respectively. The numerical solution
is in good agreement with the exact solution.
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Fig. 4: The contour plot (left panel) and surface plot (right panel)of the absolute error in the three-dimensional nonlinear Van der Pol
equation of the Problem2 for z= 1.0, t = 1, h= 0.04, and△t = 0.01.
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Fig. 6: The surface plot of the exact solution (left panel) and numerical solution (right panel) of the three-dimensional nonlinear Van
der Pol equation of the Problem2 for z= 1, t = 1, h= 0.04,△t = 0.01.

Problem 3.The third test case is devoted to the
three-dimensional nonlinear wave equation inthe
dissipative form, which corresponds toα = β = 0,
δ = −2 andg(u) = u. We consider as exact solution of
the equation (1)-(3) the following function:

u(x,y,z, t) = sin(t)∏
x,y,z

sin(πx),(x,y,z) ∈ Ω , t ≥ 0, (28)

with ψ1(x,y,z), ψ2(x,y,z), ξ (x,y,z, t) and f (x,y,z, t)
defined accordingly.

The numerical solution of the Problem3 is obtained
for △t = 0.01 and grid size 11× 11× 11. Table 3
summarizes the RMS error norm obtained with the
MCB-DQM, the MLPG[16] and the EFP[16]. The Fig.7
depicts the absolute error for the MCB-DQM solution for
z= 0.5, grid size 25× 25× 25 and at timet = 1.0. The

contour plot and the surface plot of the MCB-DQM
solution are shown in Fig.8 and 9, respectively. The
numerical solution is in good agreement with the exact
solution.

6 Conclusions

The present paper is concerned with the definition of a
new numerical method based on the MCB-DQM for the
derivation of numerical solutions for partial differential
equations in three-dimensional space. The main aim is to
improve the accuracy of the numerical solutions, which
relies on the strong and efficient implementation of the
method. The large computational cost is the main
drawback of almost all methods available in the literature
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Table 1: The RMS error norm for the MCB-DQM, the MLPG [16] and the EFP [16] (△t = 0.01 and grid size 11×11×11) for the
Problem1.

t MCB-DQM MLPG[16] EFP[16] CPU time (seconds)

0.1 1.01409e-006 6.389040e-004 1.361376e-001 0.077
0.2 1.66777e-006 1.621007e-003 1.108673e-001 0.140
0.3 1.72678e-006 2.069397e-003 9.031794e-002 0.207
0.4 1.49946e-006 1.851491e-003 7.555177e-002 0.266
0.5 1.19699e-006 1.406413e-003 6.113317e-002 0.326
0.6 9.06725e-007 1.120239e-003 5.076050e-002 0.385
0.7 7.06686e-007 8.762877e-004 4.276296e-002 0.444
0.8 5.57041e-007 5.762842e-004 3.416178e-002 0.505
0.9 4.76172e-007 7.778958e-004 3.072394e-002 0.565
1.0 4.42082e-007 8.638225e-004 2.562088e-002 0.624

Table 2: The RMS error norm for the MCB-DQM, the MLPG [16] and the EFP [16] (△t = 0.01 and grid size 11×11×11) for the
Problem2

t MCB-DQM MLPG[16] EFP[16] CPU time
(seconds)

0.1 5.67101e-006 2.777931e-003 1.653265e+000 0.140
0.2 9.70224e-006 8.477482e-003 1.005632e+000 0.250
0.3 1.23148e-005 1.352534e-002 9.786343e-001 0.370
0.4 1.51181e-005 1.583307e-002 7.456237e-001 0.490
0.5 1.82388e-005 1.550351e-002 6.213675e-001 0.610
0.6 2.22188e-005 1.367202e-002 4.354421e-001 0.730
0.7 2.57046e-005 1.052578e-002 1.345213e-001 0.851
0.8 2.86607e-005 6.216680e-003 9.973233e-002 0.971
0.9 3.11707e-005 5.280951e-003 7.132423e-002 1.091
1.0 3.32916e-005 2.276681e-003 6.124572e-002 1.211

Table 3: The RMS error norm for the MCB-DQM, the MLPG [16] and the EFP [16] (△t = 0.01 and grid size 11×11×11) for the
Problem3.

t MCB-DQM MLPG[16] EFP[16] CPU time
(seconds)

0.1 2.90131e-007 8.903029e-005 1.435666e-003 0.140
0.2 1.25781e-006 9.910264e-005 3.867576e-003 0.240
0.3 2.94185e-006 1.590358e-004 5.033494e-003 0.360
0.4 5.34148e-006 3.776687e-004 7.655177e-003 0.480
0.5 8.77107e-006 4.781290e-004 9.119769e-003 0.612
0.6 1.35793e-005 6.416380e-004 1.034540e-002 0.732
0.7 2.02462e-005 8.809498e-004 3.279875e-002 0.852
0.8 2.91101e-005 9.279331e-004 5.233178e-002 0.972
0.9 4.03845e-005 1.059260e-004 6.072234e-002 1.082
1.0 5.41878e-005 1.529316e-003 7.545088e-002 1.202

for the solution of three-dimensional partial differential
equations.

The analysis of the accuracy and effectiveness of the
method is performed by considering three test cases: the
three-dimensionallinear telegraphic equation, the Van
der Pol type nonlinear wave equation and the dissipative
nonlinear wave equation. The analysis of the root mean

square error shows that the MCB-DQM solutions are
more accurate of the numerical solutions obtained with
the existing methods of the pertinent literature [16].

Research perspectives include the possibility to
develop further refinements of the method proposed in the
present paper for the derivation of numerical solutions for
kinetic equations [33] and specifically for thermostatted
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Fig. 7: The contour plot (left panel) and surface plot (right panel)of the absolute error in the three-dimensional nonlinear wave equation
in dissipative form of the Problem3 for z= 0.5, t = 1, h= 0.04, and△t = 0.01.
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Fig. 8: The contour plot of the exact solution (left panel) and of theMCB-DQM solution (right panel) for the three-dimensional
nonlinear wave equation in dissipative form of the Problem3 for z= 0.5, t = 1, h= 0.04,△t = 0.01.
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kinetic equations [34] that have been recently proposed
for the modeling of complex systems.
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