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Abstract: Ternary extension fieldSF(3™) have been used in cryptographic applications based orebilimappings in elliptic curve
cryptography. In this paper, we focus on accelerating siverin GF(3™) which is an indispensable operation in such applications.
We propose a fast execution-time inversion algorithm whiebompose$m— 1) of GF(3™) into several factors and a remainder and
restricts the remainder to belong to the shortest additi@incof a suitable factor. Thus, unlike other algorithmg that decompose
(m—1) and search for large near-optimal addition chaingfior- 1) to compute the inverse, our algorithm relies on much smaler
known chains for the suitable factors. In decompogimg- 1) with the use of small and known chains for the suitable fagtas far as
we know, our proposal is the fastest polynomial-time inierslgorithm in comparison with its counterparts.

Keywords: Elliptic curve cryptography, Fermat's theorem, field irsien, normal basis representation, optimal decomposisbart
addition chain, ternary extension field

1 Introduction theorem ¥,8,9]. In particular, inversion algorithms based
on Fermat’s approach using normal basis representation
(NB) for the field elements require computing a number
of field multiplication operations, the second costly
operation in finite fields J0]. Thus, such a number

- - ; . determines the inversion cost (IC) performance of
coefficients belonging to the underlying subfieid-(3). respective inversion algorithm. Therefore, the final geal i

As declared by Galbraithl], such fields were widely to reduce such a number to achieve lower IC and to get

in ryptographi lication n. . . . ) ; .
gﬁi?lcéar-m app():igl;solgilksza?e o? \F;\F/)eif?)a?rir? gs g?sjegxhit?it inversion algorithms associated with fast execution-time

more bandwidth efficiency relative to other extension In the literature, the common way to compute
fields. inversion using Fermat's approach @F(p™), for prime

In GF(3M), the basic arithmetic operations are characteristicp > 2 andm > 1, is based on the method
addition, multiplication, division, inversion, etc. Of Proposed earlier inlfl]. Many authors including]2 13,

particular interest is the multiplicative inverse (inverg _14] re!y on such a mef[hod. such a'methpd §|mpllf|es
.~inversion in extension field>F(p™) to inversion in the

operation which has the highest execution-time in ) ; - . L
comparison with other field operationg][ Inversion is subfleIdGF(p),_ n ad.d'“oﬂ fo computing a logarithmic
number of multiplications ifGF(p™).

required in scalar multiplication algorithm (SMA) that
exists in most cryptographic applications those based on For example, assume a nonzero elentedt GF(3™),
elliptic curve cryptography (ECC). Thus, accelerating theits multiplicative inverse using the method in]] is
execution-time of inversion accelerates the execution ocomputed ag 1 = (a") "1 x (a)"~1:r = pprll and(a")
such applicationsd. is a subfield element. Thus, finding the inverse requires

In general, irrespective of the used representatior¢(m — 1) + w(m — 1)] multiplications in GF(3™), in
basis for the elements in finite fields, inversion can beaddition to a subfield inversion, wheféz) and w(z) are
computed either using Euclidean division algorithm or the binary length and Hamming weight (number of 1s) of
one of its variants 4,5,6], or using Fermat's little binaryz respectively.

In ternary extension fields GF(3™) where the
characteristiqpo = 3 and the extension degree> 1, the
field’s elements are represented by vectors of sizeith
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Alternatively, some authors rely on other inversion Section 5, we provide analysis and the obtained results.
method based on short addition chains (SACs). Such &astly in Section 6 we draw the conclusion.
method attempts to find the SAC fém— 1) of GF(p™)
as the initial step to compute inversion. Unfortunately
enough, the search for SACs fan— 1) values lengthen 2 Mathematical Background
the execution time of the respective inversion algorithm
when dealing with largem values suitable for Odd-characteristic extension field is a Galois field with
cryptographic purposes. Thus, authors rely on heuristi®odd prime-power number of elements (field's order). In
strategies to search for near-optimal addition chainghe literature, such a field is denoted 6¥ (p™), where
(NACs) to search form— 1) values where such a search p > 2 is the field’s characteristic amd > 1 is the field’s
is a NP-hard problem as claimed it§]. extension degree relative to the base field (subfield)
Given that finding a NAC is merely a hard GF(p)l.

optimization problem with Ia_lrge. searc_h space, soMepgfinition 1 Let f(x) be a polynomial in GEp)[x of
authors 16,17] rely on deterministic heuristics, whereas degree m> 0. f(x) is irreducible over GRp) if it has no

others 15,1819 rely on probabilistic heuristics to find proper factor over GFEp), equivalently, if it has at least

the NACs for larggm— 1) values. In the latter heuristics, na root that is not in a proper subfieid of
the initial conditions are not kept fixed and repeated runs Prop ©B").

may produce more optimized results relative to the Letd = GF(p)[x] be a ring of polynomials irx with

deterministic heuristics. After finding the appropriate coefficients in the field5F(p). Let k = % denote the
NAC, the inverse is given by quotient ring. Now if f(x) is irreducible ovelGF(p) of
. degreem > 0 thenk is finite field with p™ elements and it
8o, +a, (0) = [qu(a)]3 ? x ée, (a), is isomorphic to finite fieldsF(p™).

In GF(p™), for every value ofm there exist at least

where thei™ NAC elementc; = c;, + Gi,, and computed  one irreducible polynomiaf (x). Such a polynomial is
recursively with a number of multiplications equal to the hecessary for generating the elements of the field. The

length of the obtained NAC plus 1 extra multiplication in €lements are represented using any suitable basis such as
GF(3M). NB or polynomial basis representation (PB), ei][

In this paper, we propose inversion algorithm using Definition 2 Given a basis elemeit € GF(p™) that is a
normal basis representation for the field elements inroot of f(x), the set of basis elements
GF(3™M). In comparison with 11]-based algorithms, our — 2 omel
algorithm has lower IC w.r.t the number of required IN= (&P, &P ... &P &P )
multiplications and avoids the subfield inversion. Thus,Olefines a normal basis for GB™), where none of its
our algorithm relies c_m.onl_y two field operat|on§Jﬂ$1 subsets adds to zero. Thus,%he )basis elemenis are
powers and NB multiplications) to compute the inverse. . v independent
Algorithms based onl[1] require extra field operations to inearly indep '
compute the subfield inversion, thus, from hardwareUsing NB, a nonzero elementt € GF(p™) can be
perspective our algorithm is regular, modular and suitableexpressed as
for VLSI implementation. me1 _

In comparison with NAC-based algorithms, using our a= Z; af? & € GF(p).
optimal decomposition method fqm— 1) of GF(3™) =
and the reliance on small and known chains for the o
suitable factors further reduce the computational!n Vector forma is given by(aoay ---am-28m-1)p. In NB
complexity in polynomial-time for inversion. By by convention, the least S|gn|f|c§1nt coefﬁuaoi; located
decomposingm— 1) into several factors and a remainder ©n left-hand side, whereag, ; is located on right-hand
h, using the SAC for a suitable facteg (C,,) with h  Side. o
appropriately selected to belong to it, the inverse is From Fermats "tt'em[hlemem, for a nonzero element
computed fast. Note tha}, is an optimal SAC since is @ € GF(p™) we havea® ~= = 1. Thus, diving both sides
quite small compared to(m — 1). In NAC-based by a impliesaP 2= a~'. Therefore, given
algorithms there is a need to store a number of variables me1
during the running time equal to the chain length fqr o= zoaigp' = (a0 - -~ 8m_28m_1)p, 1)
(m—1), however, using our algorithm such a number is i=
reduced to a value that equal to the chain length for

This paper is organized as follows: In Section 2, we
provide a brief mathematical background on finite fields. p_ mt ol
In Section 3, we show the relevant work and preview the ar= Zﬁ ai¢" = (am-120---a8m-38m-2)p.  (2)
available inversion methods. In Section 4, we present our -
proposed work and show the derived algorithms. In ! For detailed review on finite fields refer tag].

hen
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From (1) and @), in using NB the pi-th powers are
simply reduced tg-th right cyclic-shifts. In other words,
raising a field element represented using NB to a
prime-power, wherg is the prime, is a linear operation
and requires a free execution-time. On the contrary, i
general, NB multiplication requires execution-time highe
than that in some other representation ba2&k |

From the properties of finite fields, a positive integer
can be defined by dividing the multiplicative group of the
extension fieldsF(p™) on the multiplicative group of the

subfieldGF(p), i.e.,r = pme’ll, which is given by

pr-1

p—1

Pt p™ 24+ p+l (3)

In general, the unique properties of are useful for
different applications in finite fields, and specificallyis
useful in computing field inversion as we shall see in next
Section.

Definition 3 An addition chain for a positive integerr is a
chain (sequenckof elementsifiteger$ of length |. The last

elementc, = (c3+ ), then, the integer pairs sequence is
given by

P = ((Co, CO)? (C1700)7 (02702)7 (03702))'

"he general steps in computiig”? 1) = (P 1) term

usingC; in (6) are given as follows

apcl_l _ (apco_l)pco x apco_l
aP? 1 = (@P?1)P  gPO-1
aP®-1 = (qP?-1)P2 P2t
qP%-1 _ (aP 371)p°2 « P21

()

From (7), it is apparent that 4 multiplications BF(p™)
are required to compute the term. This exactly equal the
length of C, which is given by the number of commas

chain-element r is obtained by the sum of previous chainseparating its elements.

elements23].

Short addition chain (SAC) is the shortest of such addition
chain denoted &5;. MathematicallyC; is given by

(4)

with co = 1, ¢ = r and theit" chain-element is given by
G = Ci, +Ci, for (0 <i,iy,ip <I) and (i > iy,iz). G is

Cr = (007(:17"' 7C|—17C|)7

Note that the required number of multiplications is also
given by [¢(r) + w(r) — 2]. Assumep = 3,r = 13 andCy3
as givenin §). Using similar steps to that i), (aprfl) =
(a3"-1) is computed with 5 multiplications iGF (3™).
This is becaus§/(13) + w(13) — 2] = 5 which is equal to
C13 length.

associated with another short sequence of integer pair8 Relevant Work

with each pair representing the"
chain-element; in C;, and is given by

subsequent

R = ((ciy;Ci,) | 0<lig,iz <1-1).
For example, given the positive integet 13, then

Cl3 = (17 27 37 67 77 13) (5)

that is associated with
P13 = ((17 1)7 (27 1)7 (37 3)7 (67 1)7 (77 6))7

which follows the governingrule; =¢_1+¢_1=2¢_1
forie{1,3},ci=ci_1+¢_2forie{2,5},andci=ci_1+
Ci_4fori=4.C;, given thatr = 13, can also be expressed
asCi3=(1,2,4,8,12 13) using a different governing rule.

Given a nonzerax € GF(p™), C; can be used to
compute (aP ~1) term. Such a term is necessary for
computing inversion. To make discussion general, assum
C; is given by

(6)

wherecg = 1 andcs = r. Given that the chain-elements
€1 = (Co+Cp), C2 = (C1+Cp), C3 = (C2+ C2), and last

Cr = (C0,C1,C2,C3,Ca),

The method in 11] is commonly used in the literature to
solve inversion inGF(p™), including the extension field
GF(3™). Many authors followed this method with further
attempts to improve it. It works as follows: consid8, (
then

(r=1)=p" 4+ p" 24 p?+ph,
which is thep-dicrepresentation dir — 1) = (11...110).
Given a nonzerar € GF(p™), its inverse based or1]] is
given by

a_l - (ar)_l X a(r_1> = (ar)_l X apmfl+~“+p2+p1. (8)

The inverse in§) is computed using the following steps:

Step 1. GF(p™)-Exponentiation to get ("

term

e Step 2. GF(p™)-Multiplication to get a" =
a.alb
Step 3.GF(p)-Inversion to ge = (a")~* term

p
Step 4. GF(p™)-Multiplication to geta™! =
B.a(rfl)
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Note thata' is a subfield element, i.eq" € GF(p). This inversion, using SACs approach for computing inversion,
evident from Step 3 above for subfield inversion. the IC is given by

Although in GF(3™) the subfield inversion is not costly,

however, some extra overhead still necessary to perform [g(m_ 1)+ w(m— 1)} GF(p™)-Multiplications,

such operation in the main inversion algorithm.

Whenr (3) is used as the exponent of an extension
field elementa, we basically compute itmorm. The
norm is a map from an extension field to a subfield
element. Note also that the computationadf 2 term {é(m—lﬂ-w(m—l) _1} Frobenius-Maps.  (11)
requires the computation of theth powers using PB, or
the j-th right cyclic-shifts using NB, by following similar  In [12], SACs approach was used again for inversion, but
steps as in3). the authors have focused on accelerating Frobenius map

To computea™b term in Step 1 above using the operation for use with PB. Referring t@)( the authors
straightforward approach(m — 2) multiplications in  focused on the affected terms by the action of jk
GF(p™) are required as directly evident fror8)( Thus, iterate of Frobenius map which are not kept fixed, such as
with extra two multiplications inGF(p™) and a subfield xP' terms for(1<i<m-—1).
inversion the multiplicative inverse is computed. Thus, By utilizing field polynomial of special type, namely
using m multiplications in GF(p™) plus a subfield the irreducible binomialf(x) = x™ — w, the authors
inversiona~! is computed, which is the inversion cost expressed the affected terms as
(IC) of such approach.

In [14] the algorithm was proposed mainly for use x®=wix* mod f(x),
with PB and, GF(p™) is generated using irreducible o
polynomial of the formf(x) = X"+ 50 . fix defined ~Wheres=e mod m, q= 5 ande = ip!. The authors
over GF(p). In using PB, the Frobenius map is an in[12 and based on Corollary 2, they further reduced the
indispensable operation in inversion algorithms necgssar€Xpression to
for generatingp!-th powers. Thej-th iterate of Frobenius
map for a nonzera € GF(p™) is given by

SubfieldGF(p)-Inversion,

X =wix' mod f(x).

. p . From above discussion, theth iterate of Frobenius map

) m— m— ) ; : :

Pl i _ ipl is computed faster than inl{], however, the required

at () = <|Z> a.x) - i; axt mod f(x).  (9) number of multiplications inGF(p™) has not changed.
B B Thus, the IC is identical to that given iaJ).

In [14], the j-th iterate of Frobenius map is computed __The advantage of using NB for field inversion in
using M x M matrix with complexity of m?  GF(p™), more specifically irGF(3"™), is utilized in [13].
multiplications in the subfield. The algorithm was slightly From Section 2, thg-th iterate of the Frobenius map in
modified to perform as many subsequerth powers as ~ USing NB is simply reduced to eithej-th right
possible betweerGF(p™)-multiplications, in order to cyclic-shifts in software, oi-th permutations in hardware
reduce the required number of thpth iterates of (no need for dedicated hardware). Thus, jki iterates
Frobenius map to a logarithmic value. Other auth@ [  ©f Frobenius map are operations associated with free
proposed fast implementation of Frobenius map operatioffXecution-time when using NB for the field elements.
using different approach. In [13], the IC.|s exactly identical to that inl(),

It is mentioned in the literature that using SACs is the however,  Frobenius maps are reduced to free
best alternative for computingr"~V term with a execution-time cycllc—sh_lft operations as a re;ult of gsin
logarithmic value ofGF(p™)-multiplications. Although NB. Currently, acceleya}mg NB muItlpllcathn s an active
there is no dedicated algorithm to compute the term inf€S€arch topic4s. This is because NB multiplication has

GF(p™), however, most authors assumed the use of thé higher execution-time than multiplication using PB or
ingenious method that proposed earlier @ for binary any other basis. Th.us', a minor reductlo.n in the requw.ed
extension field$SF(2™). Such a method is not optimal in  NUMPer of NB multiplications has a noticeable effect in
most cases except wheris a power of 2 and the method improving the performance in inversion algonthms.
requires some modification for suitability witBF(3™). Given the fact that the problem of finding a SAC for a
Using such a methody " term, wherer — 21 is large r value is merely an optimization problem, the

; e . authors in 18] proposed a probabilistic heuristic strategy
computed with polynomial-time and requires which produce NACs for values up to 512-bit. In their

approach they divided the search problem into two
[Z(m— 1)+ w(m-1) _2} (10)  phases. Firstly, in phase 1, the computation of the SAC
for larger is reduced to the computation of an addition
multiplications inGF(2™). Thus in [L4] for any p, with sequence that consists of a set of windows, or integers
extra two multiplications inGF(p™) and a subfield much smaller tham. Secondly, in phase 2, four different
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search criteria were used, although not clearly defined, tdactors and a remainddr, i.e., (m—1) = r]‘j;lrj +h.
reduce the length of the obtained addition sequence, imhus, in using our algorithm we need the SAC for a
attempt to find the desired NAC for suitable factorri, which includeh as an element. Such a
In [19], the authors proposed other probabilistic SAC is much smaller than that fon which has optimal
heuristic strategy for such optimization problem. By length and easy to find a priori.
using their artificial immune system (AIS), they found Based on above discussion, in applications wineig
moderate length NACs for the desiredvalues. Such unknown a priori and change frequently, rather than
NACs are then used to compute inversionGf(2™) in searching for NACs for largen values, which requires
applications other than cryptography. Similar to otherextra execution time, in using our algorithm the suitable
NAC-based algorithms, their proposed AIS search engindactor that is much smaller tham has its SAC a priori
requires execution-time that falls within the domain of known and available in memory. Thus, fetching such a
NP-hard problems. SAC during run-time costs nothing and the only thing that
By again utilizing AlS, the authors inlp] proposed matter is the required NB multiplications (which
an improved probabilistic heuristic strategy to find NACs represent IC) but not the extra search time needed for the
for a broad range of values in GF(2™). They first  sough NAC.
considered smalt values up to 12-bit for comparisons Our proposed inversion algorithm can be described as
against other deterministic heuristic strategies. Sihee t follows: Assume a nonzerar € GF(3™) in which its
SACs for such smalt values are exactly known through inversea—1 = a2 is required, the extension degree
exhaustive search, the performed comparisons confirmegm — 1) = |-|‘J.<=1rj +h, i.e., decomposed into several
the quality of the search strategy of their proposedfactors and a remaindér and since the expression
solution as claimed by the authors. Subsequently, using
two processing phases, as ibg], they firstly combined m_o_ ( (m-1) _ )
sliding window strategy together with AIS to utilize the 37-2=3x(3 +L (12)
efficient partitioning for large values into smaller values, L )
or windows. Then, they utilized AIS to group the PY Substitutingm—1)in (12)we have
obtained windows into a single addition sequence.

k .
Finally, their obtained NACs for values applicable in 3M-2=3x (3”1:1””‘ — 1) +1 (13)
cryptography were again compared against the chains of
some known deterministic strategies. Expanding the exponentin®) gives us

m__ — h [ X XTI h_ 1 14
4 Proposed Work 3M-2=3x[3x(3 D+ @ -1]+1 14)

On the one hand,1fl]-based inversion algorithms are Finally, rearranging terms irig) gives us

polynomial-time, however, they still have relatively high
IC which is amenable to further reduction. On the other 3™—2=3x [ex Ix @ -1+ 3" 1)} +1, (15)
hand, although NACs-based algorithms initially seem to
have a comparable IC with our previously proposedwhereby the expression for variabéeis given in the
inversion algorithm 26] and the one herein, however, the following. Therefore, based onl®) a! = a3"2 is
search for such NACs requires additional execution timegiven by
especially for largem values as in cryptographic
applications. In addition, such algorithms require sterag a-legd2_ (a:a(m*lul)?’ g —
for intermediate computations during run-time equal to
the length of the sought NACs. . 3 s

In this paper, we intend to fill the gap by proposing a (0,3”12“““71 o — ((0,3’1X"'X'k71)3“ % (0,3“71)> < a
modular low IC inversion algorithm inGF(3™) in
comparison with 11]-based algorithms. Also, a reduction } . .
in execution time compared to NACs-based algorithms is = (((03171)6) x (a® 71)) x o
achieved as our inversion algorithm relies on small and
known addition chains for a suitable factor af. In ot
addition, the storage requirements in most cases and the _ <(asf171)e)
IC in some cases are reduced using our inversion
algorithm compared to NACs-based algorithms.

Our algorithm is based on Fermat's approach forgiven that
inversion and proposed f@F(3™) using NB for the field
elements. The algorithm implements our proposed ¢— <(3r1)rrl+...+1)...((3’1X"'”kfl)rkfl+...+1)>, (16)
optimal decomposition method (ODM) fon of GF(3™).
Using such a methofm— 1) is decomposed into several

f— term
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Theorem 1 Given that (m— 1) = [1*_;rj +h, with h
appropriately selected to belong tq,Cthe SAC for {,
then, in computing(a®'~1) term the availability of

(a®-1) term as an intermediate value is guaranteed, andg,, .

the IC using our algorithm is given by

k
(Z [ rj)+aw(rj) 2}+1> GF(3™)-Multiplications

17)
Proof. From (16), the inverse is given by
ahtl f— term
al— (a3'171)e % (aa'tl)s < a (18)
——
k—term

For now, forget the computational cost(@f®* ~1) term by
itself. The cost of computingar3*~1)° by expandinge in
(16) is given by

k

Jzz[e(r,-)w(rj)—z, (19)

and its computational details are given as follows: The cost

of
q31-1)E )2 e (31)° term is

[¢(r2) + w(r2) — 2] multiplications. Then, the cost of
a3r1><r2_1 (3r1xr2)r3—1+m+(3r1xr2)0 a3r1xr2><r3_1) iS

[6(r3) + w(rs) —

(a3r1><---><rk,171)(3r1><~~~xrk,l)rk—1+,_,+(3r1><---><rk,1>0

a3r1><r271)

2] multiplications. Finally, the cost of

_ (03rlx”'xrkfl) 3r171)e

:(a

)

is [¢(rk) + w(rk) — 2] multiplications. Thus, the sum of all
costs is exactly as given il9) above.

Now, returning to(a®* 1) term, its cost can be given
as follows: Let the SAC for; given by

Cr, = {co,C1,C2,C3},

wherecy = 1 andcz = r1. In addition, let the sequence of
integer pairs oC;, given by

P, = {(Co,C0),(C1,C1), (C2,C2) },

following the rulecy = ¢y + ¢y, C; = €1 + €1, andcg =
o>+ Co. Assumep = a? is available, then it follows that

(a¥1-1) = (B3%-1) is given by
(B30 (BFOh = (BFO Y = (B Y
(BT (B = (B = (%)

(B2 x (B = (B2 — (B3 71Y20)

om @0), 3 multiplications are necessary to compute
(a3r1 1) term usingC;,, which represent the length of
Thus, for any positive integery, (a3'~1) term
requires number of multiplications given by the length of
C:,. Mathematically, this number is given by

[Z(rl) +w(ry) — 2},

multiplications. Givenc; = h for i € [0,1,2,3], then
(a®-1) = (B¥ 1) is one of the intermediate results as
evident from 20) above. Thus, the computational cost of
f-term in (L8) which is equal to(a%"~1) is saved as a
result of computing it in parallel witk-term. With 1 extra
multiplication necessary to join the terms b8, the IC

of our proposed inversion algorithm is exactly as given in
Theoreml above. O

(21)

From Theoreml above, we computed-term in
parallel with k-term to improve IC, however, this incurs
slight increase in space complexity of our algorithm.
Since the IC is independent of the remaindéhat is not
restricted in value, in using our decomposition method
compared to other methods a wide rangeGé7(3™) are
associated with minimal IC.

In the following we introduce, through a running
example, our proposed main inversion algorithm along
with other proposed auxiliary algorithms necessary for its
functioning. We consideGF (3'¢7) that is of particular
interest for use in cryptographic applications in ECC.
Assumea € GF*(3!¢7) in which its inverse is required,
passinga andm = 167 as inputs to our main inversion
algorithm  @lgorithm 1), then we have
ms= (m— 1) = 166= (10100110 in binary.

Algorithm 1 InvMain Inversion Algorithm

Input: a € GF*(3™), extension degrem
Output:¢y = a~1 € GF*(3™)
Initial: ms:= (m—1);
if (ms== 2 or w(mg == 2) then
return ¢ := Chnlnya,Cms, Pms, 0)
else
[(r1,n,h),Cy,, P, ] := OpDeconims);
[0,p] :=Chnina,C,,R,,h);
1:=FsCaldo,n);
if (h==0) then
return ;=
else
return == ((r)3h+1 X p)
end if
end if

(Txp)

Given thatmsis neither a power of 2 nor a value with
Hamming weight equal to 2, then it should be passed as
input to our proposed auxiliary optimal decomposition
algorithm @Algorithm 2).
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Algorithm 2 OpDeconDecomposition Algorithm

Algorithm 3 ChniInvAlgorithm

Input: ms

OUtpUt:[(rl7n7 h)7Cr17Pr1]

Initial: t := ms st:= /4, cnt:=0;

if tisodd:A« A, =1{1,3,--- ,u:= [st]}. If stis odd,u:

Ist];
if tis eveniA« Ae={2,4,---,u:= [st|}. If stis odd,u:=
[st];
for all Ali] in the selected\ do
ry:=t—Ali;

while (r1 # 2K and 2|r; and [r1/2] > Ali]) do
rii= (%), cnti=cnt+1;
end while
save resulted 3-tuple1,cnt, Ali]) in array;
cnt:=0;
nexti,
end for
find suitable(rq,cnt, Aji]) and fetchC;,, P, ];
return [(ry,n:= 2" h:= A[i]),Cr,,P,]

Using our example, the output of Algorithis given by
[(r17 n, h)7CI'17 Prl] -

where the 3-tupl€10,16,6) = 10 x 16+ 6 = msand the
SAC forrq is given by

[(10,16,6),Cy0, P1o],

Cl’l = ClO = {17 27 47 67 10}7 (22)

and
P, =Pio=1{(11),(2,2),(4,2),(6,4)}, (23)

which follows the rulec; = ¢;_1 +¢j_1 fori € {1,2}, and
Ci=C_1+¢C_oforie {3,4}, whereco = 1 andcy = 10.

By passinga,Cio, Pio and h as inputs to our proposed
auxiliary algorithm Algorithm 3), the computation then

proceeds as follows:

(@ ) x (@) = (@) = (@)

(032—1)32 % (032—1) = (a®) = (034—1)

(0134’1)32 % (a3271) — (a7 = (as‘tl)
(03671)34 % (0{3471) = (a®9048) — ( 31071) (24)

The output of AlgorithnB based on our example is given computing the outpu usinga = &g = (

by [EC| Pl f] The fII’St Valuicl = (a3r171) ( 310 1) The

second valuef = (a¥"1)3 x a = (a®1)3 x a, or the
f-termthat given in (8). Given thath = 6 is an element
in the chainC;; = Cyo, and the computation of-term is

parallel with k-term, then, the cost of both values, i.e.,

(&, f], is only 4 multiplications irGF (3'67).

To compute the portion that represents other factors in

(m—1), other thanrs;, which is given by the value =

16, bothé, andn are passed as inputs to our proposed

auxiliary algorithm Algorithm 4).

Input: a, Cy, R, K
Output:¢ = a1 if msnot decomposed: els{éq f]
Given: &, (a) = a%¥ ", &, g, (a) = &, (0))** x &, ()
Initial: k := 0 if msnot decomposed: else:= h,
| :=lengtlC,),&, == a?;

fori:=1tol do .

& (a) = [£ci, (@)% x &, (a);

if K ==cj_1 then

= [(&)3 x a]; <= (f-term)

end if
end for
if kK £ 0then

return [&, f]
end if

retun @:=[£3 x a]

Algorithm 4 FsCalcAlgorithm

Input:A = &g, re, n=15_prj 1) = (1mg:)72...mg'))2
Output:0 = A& = (a3*-1)e
Initial: r :=1;
for j:=2tokdo
0:=A;
Fi=rxrj_g;
for i :=qj—2to0do
6:=0x6%;
if n}m —=1then
0:=Ax6%;
end if
end for
A=0;
end for
return 6

Sincen = 16 is a power of 2, then we use it as if it a
single factor. Thus, the outdor loop which depend on
the number of factors ifim— 1) is executed only once. In
addition, the loop counterin the innerfor loop which
depends on the binary length of each factor will loop from
3 to 0, simply 4 loops. This because= 16 = (100005,

thus, the maximum value for the loop counter is given by

i =(g—2) = (6—2) =3, whereq s the binary length of
n. Since theif statement is not going to be satisfied, and
variabler = r xrj_y =r xrp = 1x 10 = 10, then

359048
on our example proceeds as follows: ! ) based
(8) x (a)*** = 2@ _p
(b) x (b)*** = b1 _ ¢
(©) x (% =@+ _g
(d) x ()T =g T _ g 25)
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Algorithm 4 output® = (a3*~1)¢ is given by ability of an inversion algorithm to compute the inverse
with the minimal number of multiplications. Therefore,
any algorithm that require less number of multiplications
) o 10 , , is associated with less IC, and thus has a faster
With the availability of(a® ) term, 6 is computed with  eyecution-time relative to its counterparts. Althougtsthi
4 multiplications inGF (3'") that represented by the ‘+' js absolutely valid when comparing our algorithm with
signs in the expression given i26) and as evident from [11]-based algorithms, the scenario is completely
(25) above. different when comparing it with NAC-based algorithms,

Given the availability ofd with h 7 0, by considering  anq this is because the search time for the sought NAC
Algorithm 1, we need to perform(h + 1) right st be taken into account.

%33 %32 3l <30
6 _ (0310*1)(310 3 +l>(310 3 +1)(310 3 +1)(310 3 Jrl). (26)

cyclic-shifts ont = 6 and multiply it withp = f-term to Recall that our algorithm is proposed mainly for
get ¢ = a~1, the final answer, as evident also ih8) GF(3™ using NB (Algorithm 1), as well as, it
above. Thus, the IC for computing= a~2 = (a3°2),  implements our ODM method fon of GF(3™) and relies
in terms of the number of required multiplications, is on known SACs to compute the inverse, Tablghow its
given by 9 multiplications irGF (3%67). IC performance compared tolf]-based inversion

Referring to Algorithml, in the other case wheras  algorithms. The comparison is performed over a set of
is either a power of 2 or a value with Hamming weight selectedm values, or over a selected set GF(3™) of
equal to 2, finding its SAC is very quick and particular interestin cryptographic applications in ECC.
straightforward. Althoughms= (m— 1) is a large value, Referring to Tablel, eachm value that preceded by
the search space for such a SAC is not a NP-hardhe Section symbol, §, hass= (m— 1) equal to either a
problem. In other words, the SAC in such a case is simplypower of 2 or a value with Hamming weight of 2. In
the power of 2 SAC, i.e{1,2,4,8,16,---} or the power computing the inverse, such values are not decomposed
of 2 SAC with the addition of one of its elements to the and their SACs are directly used to solve inversion
last chain-element. Thus, in cases whers is not  problem. The SACs for such values are easily obtained in
decomposed the cost of computing a field inverse was straightforward manner and known a priori as explained
further reduced using our inversion algorithm. in previous Section.

Fig. 1 illustrates the relation between our main From Tablel, in addition to the avoidance of subfield
inversion algorithm (Algorithm1) with the auxiliary inversion(lsy,) operation using our inversion algorithm,
algorithms (its main building blocks) in the form of block the reduction in IC relative tol[l]-based algorithms is up
diagram. to 4 multiplications inGF(3™). This is a remarkable

reduction in IC and in the execution-time of our
algorithm. This because NB multiplications are

associated with high execution-time when implemented
m in both software and hardwa_re. Thus a minor reduction in
Outputy = o € GF(3") the number of NB multiplications has a great effect on the
overall performance.
It ms=(m-1) Given that the search for NACs for large values
/,*\ using heuristic methods is a NP-hard large search-space
No  memtn ves problem, in using our algorithm, the problem is reduced
ﬁ'\ w(mc’jzz/\—* to the reliance on known SACs for the suitable factors,
e, Cr, Pri=opDecom(e) | =GNIN(@.Cre Prs0) especially whemm is optimally decomposed into several
v factors and a remaindér Table2 shows IC performance
| arcminvaCrprn comparison of our algorithm against AIS algorithd],
| Fmtm) | whichis the best known NAC-based algorithm so far.
v From Table 2, although the IC of our inversion
w N ve algorithm initially seems equal to that of AIS algorithm,
NZ ¥ however, our algorithm is associated with much lower
w0 el | ‘ vl execution-time where the search-time for large chalns is
saved. In additionm values that preceded by the Section

symbol, §, are associated with less number of
multiplications inGF(3™), or less IC compared to AIS
inversion algorithm.

Considerm = 320. The inverse ofx € GF*(33%0)
using our inversion algorithm requires 11 multiplications
5 Analysis and Results in GF(3%29). This becausens= (m—1) =ry xn+h

which is equal to 319= 19x 16+ 15. Detailed steps are
In using Fermat's inversion approach with NB, the IC is given as followsC;, = Cy9 = {1,2,4,5,10,15,19} which
defined as the performance measure that measures ttash = 15 as one of its elements. Also~= 16, the other

Fig. 1: Main Inversion Algorithm Block Diagram
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Table 1: inversion Cost: Algorithni vs[11] Based Algorithms requires 16 muItipIications ilGF(3320) in addition to a
mof Inversion Cost (IC) subfield(Isyp) inversion.
m
GF(ST) | Opbecomms) | Algm. 1 | [11]-Based Algms. The above discussion confirm the practicality of our
§7997 gxcz:a 3 gllsuib proposal to accelerate field inversion BF(3M) in '
108 3873 3 0% comparison with .otlher inversion algorlthms. Thus, in
150 9-1615 9 T4 executing the built-in curve-point operations of scalar
163 5x32+2 9 TIHsup multiplication algorithm that require field inversion, our
167 10x 16+6 9 12Hgyp proposal can be used to accelerate such algorithm and
173 20x8+12 9 12Hsup thus the concerned cryptographic application in ECC. To
180 11x16+3 10 13Hsup mention a few of such applications: elliptic curve
§21§83 24&3&3 - 180 ﬂjsub diffie-hellman algorithm (ECDH) for key-exchange,
o1E 13X 1656 0 ISHZEE elliptic curve el-gamal algorithm (ECEI-Gamal) for
239 14 16+ 14 10 T encryption.
284 17x 16+ 11 11 T4Hgyp
312 19%x 16+ 7 11 15Hsup
324 5x6413 10 T3Hsup 6 Closing Remarks
In this paper, an inversion algorithm is proposed in
ternary extension fieldsGF(3™) based on Fermat's
Table 2: inversion Cost: Algorithm vsAIS Algorithm [15] theorem using normal basis representation for the field
mof. Inversion Cost (IC) elements. Using our proposal, the extension degree
GF(3™) | OpDecomms) | Algm. 1 | AIS Algm. [19] (m—1) of GF(3™) is decomposed into several factors
96 11x8+7 9 9 and a remainder to reduce the number of multiplications
123 igi gi; 18 18 necessary for inversion, or the inversipn cost. .
197 23877 1 T Our proposal was compared against other algorithms
94 26x8115 11 11 that rely on different inversion methods. In comparison
756 15% 16+15 10 10 with the commonly used inversion algorithms (i.e,
288 17x 16+ 15 11 11 [11]-based algorithms), our algorithm has less inversion
§320 19x16+15 1 12 cost and avoids the subfield inversion. Thus, from
352 21x16+15 11 11 hardware perspective our algorithm is regular, modular
384 | 23x16+15 12 12 and suitable for VLSI implementation. Unlike the
;114% ggiigﬁg ﬂ E algorithms that search for near-optimal addition chains
780 59x 16+ 15 P R (NACs) for large (m— 1) values of GF(3M) to solve:
576 35% 16+ 15 15 W inversion, our proposal relied on known short addition
§640 39x 16+ 15 12 13 chains for suitable factors much smaller tHam— 1) that

include the remainddr as an element to solve inversion.

Thus, combined with the decomposition fon— 1), the

inversion cost (IC) was further reduced in comparison

. with such algorithms.

I:%C;\Opgatilr?én:]_ré()q,uihrizcz :mcilllii;ic{alt’igfs’ 8i’ nlgl}z'(;gg)s' The conducted comparisons confirmed the practicality
. ) 311 a10 1 g of our inversion algorithm in comparison with its

From Section 2, usin€io, (a%"77) = (a” ") termis  counterparts available in the literature. Our proposal, as

computed with 6 multiplications iGF (3°%°) (the length  far as we know, is the fastest polynomial-time inversion

of C10). Given thath = 15 € Cyg, then(a¥'~1) = (@3°-1)  algorithm. It is suitable for accelerating cryptographic

term is available in intermediate computations, and thusapplications in elliptic curve cryptography (ECC).

all we need is 1 extr&F (3%2%) multiplication to get the

final result. Thus, using our inversion algorithm the IC =

6+ 4+ 1= 11 multiplications inGF (3%29). Acknowledgment
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