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Abstract: Ternary extension fieldsGF(3m) have been used in cryptographic applications based on bilinear-mappings in elliptic curve
cryptography. In this paper, we focus on accelerating inversion inGF(3m) which is an indispensable operation in such applications.
We propose a fast execution-time inversion algorithm whichdecomposes(m−1) of GF(3m) into several factors and a remainder and
restricts the remainder to belong to the shortest addition chain of a suitable factor. Thus, unlike other algorithms that not decompose
(m−1) and search for large near-optimal addition chains for(m−1) to compute the inverse, our algorithm relies on much smallerand
known chains for the suitable factors. In decomposing(m−1) with the use of small and known chains for the suitable factors, as far as
we know, our proposal is the fastest polynomial-time inversion algorithm in comparison with its counterparts.
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1 Introduction

In ternary extension fields GF(3m) where the
characteristicp = 3 and the extension degreem> 1, the
field’s elements are represented by vectors of sizem with
coefficients belonging to the underlying subfieldGF(3).
As declared by Galbraith [1], such fields were widely
used in cryptographic applications based on
bilinear-mappings, like Tate or Weil pairings, and exhibit
more bandwidth efficiency relative to other extension
fields.

In GF(3m), the basic arithmetic operations are
addition, multiplication, division, inversion, etc. Of
particular interest is the multiplicative inverse (inversion)
operation which has the highest execution-time in
comparison with other field operations [2]. Inversion is
required in scalar multiplication algorithm (SMA) that
exists in most cryptographic applications those based on
elliptic curve cryptography (ECC). Thus, accelerating the
execution-time of inversion accelerates the execution of
such applications [3].

In general, irrespective of the used representation
basis for the elements in finite fields, inversion can be
computed either using Euclidean division algorithm or
one of its variants [4,5,6], or using Fermat’s little

theorem [7,8,9]. In particular, inversion algorithms based
on Fermat’s approach using normal basis representation
(NB) for the field elements require computing a number
of field multiplication operations, the second costly
operation in finite fields [10]. Thus, such a number
determines the inversion cost (IC) performance of
respective inversion algorithm. Therefore, the final goal is
to reduce such a number to achieve lower IC and to get
inversion algorithms associated with fast execution-time.

In the literature, the common way to compute
inversion using Fermat’s approach inGF(pm), for prime
characteristicp > 2 andm> 1, is based on the method
proposed earlier in [11]. Many authors including [12,13,
14] rely on such a method. Such a method simplifies
inversion in extension fieldGF(pm) to inversion in the
subfieldGF(p), in addition to computing a logarithmic
number of multiplications inGF(pm).

For example, assume a nonzero elementα ∈ GF(3m),
its multiplicative inverse using the method in [11] is
computed asα−1 = (α r)−1× (α)r−1 : r = pm−1

p−1 and(α r)

is a subfield element. Thus, finding the inverse requires
[ℓ(m− 1) + ω(m− 1)] multiplications in GF(3m), in
addition to a subfield inversion, whereℓ(z) andω(z) are
the binary length and Hamming weight (number of 1s) of
binaryz, respectively.
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Alternatively, some authors rely on other inversion
method based on short addition chains (SACs). Such a
method attempts to find the SAC for(m− 1) of GF(pm)
as the initial step to compute inversion. Unfortunately
enough, the search for SACs for(m− 1) values lengthen
the execution time of the respective inversion algorithm
when dealing with large m values suitable for
cryptographic purposes. Thus, authors rely on heuristic
strategies to search for near-optimal addition chains
(NACs) to search for(m−1) values where such a search
is a NP-hard problem as claimed in [15].

Given that finding a NAC is merely a hard
optimization problem with large search space, some
authors [16,17] rely on deterministic heuristics, whereas
others [15,18,19] rely on probabilistic heuristics to find
the NACs for large(m−1) values. In the latter heuristics,
the initial conditions are not kept fixed and repeated runs
may produce more optimized results relative to the
deterministic heuristics. After finding the appropriate
NAC, the inverse is given by

ξci1
+ci2

(α) = [ξci1
(α)]3

ci2 × ξci2
(α),

where theith NAC elementci = ci1 + ci2, and computed
recursively with a number of multiplications equal to the
length of the obtained NAC plus 1 extra multiplication in
GF(3m).

In this paper, we propose inversion algorithm using
normal basis representation for the field elements in
GF(3m). In comparison with [11]-based algorithms, our
algorithm has lower IC w.r.t the number of required
multiplications and avoids the subfield inversion. Thus,
our algorithm relies on only two field operations (3j -th
powers and NB multiplications) to compute the inverse.
Algorithms based on [11] require extra field operations to
compute the subfield inversion, thus, from hardware
perspective our algorithm is regular, modular and suitable
for VLSI implementation.

In comparison with NAC-based algorithms, using our
optimal decomposition method for(m− 1) of GF(3m)
and the reliance on small and known chains for the
suitable factors further reduce the computational
complexity in polynomial-time for inversion. By
decomposing(m−1) into several factors and a remainder
h, using the SAC for a suitable factorr1 (Cr1) with h
appropriately selected to belong to it, the inverse is
computed fast. Note thatCr1 is an optimal SAC sincer1 is
quite small compared to(m − 1). In NAC-based
algorithms there is a need to store a number of variables
during the running time equal to the chain length for
(m− 1), however, using our algorithm such a number is
reduced to a value that equal to the chain length forr1.

This paper is organized as follows: In Section 2, we
provide a brief mathematical background on finite fields.
In Section 3, we show the relevant work and preview the
available inversion methods. In Section 4, we present our
proposed work and show the derived algorithms. In

Section 5, we provide analysis and the obtained results.
Lastly in Section 6 we draw the conclusion.

2 Mathematical Background

Odd-characteristic extension field is a Galois field with
odd prime-power number of elements (field’s order). In
the literature, such a field is denoted byGF(pm), where
p > 2 is the field’s characteristic andm> 1 is the field’s
extension degree relative to the base field (subfield)
GF(p)1.

Definition 1 Let f(x) be a polynomial in GF(p)[x] of
degree m> 0. f(x) is irreducible over GF(p) if it has no
proper factor over GF(p), equivalently, if it has at least
one root that is not in a proper subfield of GF(pm).

Let ℜ = GF(p)[x] be a ring of polynomials inx with
coefficients in the fieldGF(p). Let κ = ℜ

f (x) denote the

quotient ring. Now if f (x) is irreducible overGF(p) of
degreem> 0 thenκ is finite field with pm elements and it
is isomorphic to finite fieldGF(pm).

In GF(pm), for every value ofm there exist at least
one irreducible polynomialf (x). Such a polynomial is
necessary for generating the elements of the field. The
elements are represented using any suitable basis such as
NB or polynomial basis representation (PB), etc [21].

Definition 2 Given a basis elementξ ∈ GF(pm) that is a
root of f(x), the set of basis elements

IN = (ξ p0
,ξ p1

, · · · ,ξ pm−2
,ξ pm−1

)

defines a normal basis for GF(pm), where none of its
subsets adds to zero. Thus, the basis elements inIN are
linearly independent.

Using NB, a nonzero elementα ∈ GF(pm) can be
expressed as

α =
m−1

∑
i=0

aiξ pi
: ai ∈ GF(p).

In vector formα is given by(a0a1 · · ·am−2am−1)p. In NB
by convention, the least significant coefficienta0 is located
on left-hand side, whereasam−1 is located on right-hand
side.

From Fermat’s little theorem, for a nonzero element
α ∈GF(pm) we haveα pm−1 = 1. Thus, diving both sides
by α impliesα pm−2 = α−1. Therefore, given

α =
m−1

∑
i=0

aiξ pi
= (a0a1 · · ·am−2am−1)p, (1)

then

α p =
m−1

∑
i=0

aiξ pi+1
= (am−1a0 · · ·am−3am−2)p. (2)

1 For detailed review on finite fields refer to [20].
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From (1) and (2), in using NB the p j -th powers are
simply reduced toj-th right cyclic-shifts. In other words,
raising a field element represented using NB to a
prime-power, wherep is the prime, is a linear operation
and requires a free execution-time. On the contrary, in
general, NB multiplication requires execution-time higher
than that in some other representation bases [22].

From the properties of finite fields, a positive integerr
can be defined by dividing the multiplicative group of the
extension fieldGF(pm) on the multiplicative group of the
subfieldGF(p), i.e.,r = pm−1

p−1 , which is given by

r =
pm−1
p−1

= pm−1+ pm−2+ · · ·+ p+1 (3)

In general, the unique properties ofr are useful for
different applications in finite fields, and specifically,r is
useful in computing field inversion as we shall see in next
Section.

Definition 3 An addition chain for a positive integer r is a
chain (sequence) of elements (integers) of length l. The last
chain-element r is obtained by the sum of previous chain-
elements [23].

Short addition chain (SAC) is the shortest of such addition
chain denoted asCr . Mathematically,Cr is given by

Cr = (c0,c1, · · · ,cl−1,cl ), (4)

with c0 = 1, cl = r and theith chain-element is given by
ci = ci1 + ci2 for (0 ≤ i, i1, i2 ≤ l) and (i > i1, i2). Cr is
associated with another short sequence of integer pairs,
with each pair representing theith subsequent
chain-elementci in Cr , and is given by

Pr =
(
(ci1,ci2) | 0≤ i1, i2 ≤ l −1

)
.

For example, given the positive integerr = 13, then

C13 = (1,2,3,6,7,13) (5)

that is associated with

P13 =
(
(1,1),(2,1),(3,3),(6,1),(7,6)

)
,

which follows the governing ruleci = ci−1+ ci−1 = 2ci−1
for i ∈{1,3}, ci = ci−1+ci−2 for i ∈{2,5}, andci = ci−1+
ci−4 for i = 4.Cr , given thatr = 13, can also be expressed
asC13= (1,2,4,8,12,13) using a different governing rule.

Given a nonzeroα ∈ GF(pm), Cr can be used to
compute (α pr−1) term. Such a term is necessary for
computing inversion. To make discussion general, assume
Cr is given by

Cr = (c0,c1,c2,c3,c4), (6)

wherec0 = 1 andc4 = r. Given that the chain-elements
c1 = (c0 + c0), c2 = (c1 + c0), c3 = (c2 + c2), and last

elementc4 = (c3+ c2), then, the integer pairs sequence is
given by

Pr =
(
(c0,c0),(c1,c0),(c2,c2),(c3,c2)

)
.

The general steps in computing(α pr−1) = (α pc4−1) term
usingCr in (6) are given as follows

α pc1−1 = (α pc0−1)pc0 ×α pc0−1

α pc2−1 = (α pc1−1)pc0 ×α pc0−1

α pc3−1 = (α pc2−1)pc2 ×α pc2−1

α pc4−1 = (α pc3−1)pc2 ×α pc2−1

(7)

From (7), it is apparent that 4 multiplications inGF(pm)
are required to compute the term. This exactly equal the
length of Cr which is given by the number of commas
separating its elements.

Note that the required number of multiplications is also
given by[ℓ(r)+ω(r)−2]. Assumep= 3, r = 13 andC13

as given in (5). Using similar steps to that in (7), (α pr−1) =

(α313−1) is computed with 5 multiplications inGF(3m).
This is because[ℓ(13)+ω(13)−2] = 5 which is equal to
C13 length.

3 Relevant Work

The method in [11] is commonly used in the literature to
solve inversion inGF(pm), including the extension field
GF(3m). Many authors followed this method with further
attempts to improve it. It works as follows: consider (3),
then

(r−1) = pm−1+ pm−2+ · · ·+ p2+ p1,

which is thep-dic representation of(r−1) = (11. . .110)p.
Given a nonzeroα ∈GF(pm), its inverse based on [11] is
given by

α−1 = (α r)−1×α(r−1) = (α r)−1×α pm−1+···+p2+p1
. (8)

The inverse in (8) is computed using the following steps:

Step 1. GF(pm)-Exponentiation to getα(r−1)

term
Step 2. GF(pm)-Multiplication to get α r =

α.α(r−1)

Step 3.GF(p)-Inversion to getβ = (α r)−1 term
Step 4. GF(pm)-Multiplication to get α−1 =

β .α(r−1)
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Note thatα r is a subfield element, i.e.,α r ∈ GF(p). This
evident from Step 3 above for subfield inversion.
Although in GF(3m) the subfield inversion is not costly,
however, some extra overhead still necessary to perform
such operation in the main inversion algorithm.

When r (3) is used as the exponent of an extension
field elementα, we basically compute itsnorm. The
norm is a map from an extension field to a subfield
element. Note also that the computation ofα(r−1) term
requires the computation of thej-th powers using PB, or
the j-th right cyclic-shifts using NB, by following similar
steps as in (2).

To computeα(r−1) term in Step 1 above using the
straightforward approach,(m− 2) multiplications in
GF(pm) are required as directly evident from (8). Thus,
with extra two multiplications inGF(pm) and a subfield
inversion the multiplicative inverse is computed. Thus,
using m multiplications in GF(pm) plus a subfield
inversionα−1 is computed, which is the inversion cost
(IC) of such approach.

In [14] the algorithm was proposed mainly for use
with PB and, GF(pm) is generated using irreducible
polynomial of the formf (x) = xm+∑0

i=m−1 fixi defined
over GF(p). In using PB, the Frobenius map is an
indispensable operation in inversion algorithms necessary
for generatingp j -th powers. Thej-th iterate of Frobenius
map for a nonzeroα ∈GF(pm) is given by

α p j
(x) =

(
m−1

∑
i=0

aix
i

)p j

=
m−1

∑
i=0

aix
ip j

mod f (x). (9)

In [14], the j-th iterate of Frobenius map is computed
using M × M matrix with complexity of m2

multiplications in the subfield. The algorithm was slightly
modified to perform as many subsequentp-th powers as
possible betweenGF(pm)-multiplications, in order to
reduce the required number of thej-th iterates of
Frobenius map to a logarithmic value. Other authors [24]
proposed fast implementation of Frobenius map operation
using different approach.

It is mentioned in the literature that using SACs is the
best alternative for computingα(r−1) term with a
logarithmic value ofGF(pm)-multiplications. Although
there is no dedicated algorithm to compute the term in
GF(pm), however, most authors assumed the use of the
ingenious method that proposed earlier in [9] for binary
extension fieldsGF(2m). Such a method is not optimal in
most cases except whenr is a power of 2 and the method
requires some modification for suitability withGF(3m).
Using such a method,α(r−1) term, wherer = 2(m−1), is
computed with polynomial-time and requires

[

ℓ(m−1)+ω(m−1)−2
]

(10)

multiplications inGF(2m). Thus in [14] for any p, with
extra two multiplications inGF(pm) and a subfield

inversion, using SACs approach for computing inversion,
the IC is given by
[

ℓ(m−1)+ω(m−1)
]

GF(pm)-Multiplications,

SubfieldGF(p)-Inversion,

[

ℓ(m−1)+ω(m−1)−1
]

Frobenius-Maps. (11)

In [12], SACs approach was used again for inversion, but
the authors have focused on accelerating Frobenius map
operation for use with PB. Referring to (9), the authors
focused on the affected terms by the action of thej-th
iterate of Frobenius map which are not kept fixed, such as
xip j

terms for(1≤ i ≤m−1).
By utilizing field polynomial of special type, namely

the irreducible binomial f (x) = xm − w, the authors
expressed the affected terms as

xe≡ wqxs mod f (x),

wheres≡ e mod m, q = e−s
m ande= ip j . The authors

in [12] and based on Corollary 2, they further reduced the
expression to

xe≡ wqxi mod f (x).

From above discussion, thej-th iterate of Frobenius map
is computed faster than in [14], however, the required
number of multiplications inGF(pm) has not changed.
Thus, the IC is identical to that given in (11).

The advantage of using NB for field inversion in
GF(pm), more specifically inGF(3m), is utilized in [13].
From Section 2, thej-th iterate of the Frobenius map in
using NB is simply reduced to eitherj-th right
cyclic-shifts in software, orj-th permutations in hardware
(no need for dedicated hardware). Thus, thej-th iterates
of Frobenius map are operations associated with free
execution-time when using NB for the field elements.

In [13], the IC is exactly identical to that in (11),
however, Frobenius maps are reduced to free
execution-time cyclic-shift operations as a result of using
NB. Currently, accelerating NB multiplication is an active
research topic [25]. This is because NB multiplication has
a higher execution-time than multiplication using PB or
any other basis. Thus, a minor reduction in the required
number of NB multiplications has a noticeable effect in
improving the performance in inversion algorithms.

Given the fact that the problem of finding a SAC for a
large r value is merely an optimization problem, the
authors in [18] proposed a probabilistic heuristic strategy
which produce NACs forr values up to 512-bit. In their
approach they divided the search problem into two
phases. Firstly, in phase 1, the computation of the SAC
for large r is reduced to the computation of an addition
sequence that consists of a set of windows, or integers
much smaller thanr. Secondly, in phase 2, four different

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 5, 1645-1655 (2016) /www.naturalspublishing.com/Journals.asp 1649

search criteria were used, although not clearly defined, to
reduce the length of the obtained addition sequence, in
attempt to find the desired NAC forr.

In [19], the authors proposed other probabilistic
heuristic strategy for such optimization problem. By
using their artificial immune system (AIS), they found
moderate length NACs for the desiredr values. Such
NACs are then used to compute inversion inGF(2m) in
applications other than cryptography. Similar to other
NAC-based algorithms, their proposed AIS search engine
requires execution-time that falls within the domain of
NP-hard problems.

By again utilizing AIS, the authors in [15] proposed
an improved probabilistic heuristic strategy to find NACs
for a broad range ofr values in GF(2m). They first
considered smallr values up to 12-bit for comparisons
against other deterministic heuristic strategies. Since the
SACs for such smallr values are exactly known through
exhaustive search, the performed comparisons confirmed
the quality of the search strategy of their proposed
solution as claimed by the authors. Subsequently, using
two processing phases, as in [18], they firstly combined
sliding window strategy together with AIS to utilize the
efficient partitioning for larger values into smaller values,
or windows. Then, they utilized AIS to group the
obtained windows into a single addition sequence.
Finally, their obtained NACs forr values applicable in
cryptography were again compared against the chains of
some known deterministic strategies.

4 Proposed Work

On the one hand, [11]-based inversion algorithms are
polynomial-time, however, they still have relatively high
IC which is amenable to further reduction. On the other
hand, although NACs-based algorithms initially seem to
have a comparable IC with our previously proposed
inversion algorithm [26] and the one herein, however, the
search for such NACs requires additional execution time
especially for large m values as in cryptographic
applications. In addition, such algorithms require storage
for intermediate computations during run-time equal to
the length of the sought NACs.

In this paper, we intend to fill the gap by proposing a
modular low IC inversion algorithm inGF(3m) in
comparison with [11]-based algorithms. Also, a reduction
in execution time compared to NACs-based algorithms is
achieved as our inversion algorithm relies on small and
known addition chains for a suitable factor ofm. In
addition, the storage requirements in most cases and the
IC in some cases are reduced using our inversion
algorithm compared to NACs-based algorithms.

Our algorithm is based on Fermat’s approach for
inversion and proposed forGF(3m) using NB for the field
elements. The algorithm implements our proposed
optimal decomposition method (ODM) form of GF(3m).
Using such a method(m−1) is decomposed into several

factors and a remainderh, i.e., (m− 1) = ∏k
j=1 r j + h.

Thus, in using our algorithm we need the SAC for a
suitable factor,r1, which includeh as an element. Such a
SAC is much smaller than that form which has optimal
length and easy to find a priori.

Based on above discussion, in applications wherem is
unknown a priori and change frequently, rather than
searching for NACs for largem values, which requires
extra execution time, in using our algorithm the suitable
factor that is much smaller thanm has its SAC a priori
known and available in memory. Thus, fetching such a
SAC during run-time costs nothing and the only thing that
matter is the required NB multiplications (which
represent IC) but not the extra search time needed for the
sough NAC.

Our proposed inversion algorithm can be described as
follows: Assume a nonzeroα ∈ GF(3m) in which its
inverseα−1 = α3m−2 is required, the extension degree
(m− 1) = ∏k

j=1 r j + h, i.e., decomposed into several
factors and a remainderh, and since the expression

3m−2= 3×
(

3(m−1)−1
)

+1, (12)

by substituting(m−1) in (12) we have

3m−2= 3×
(

3∏k
j=1 r j+h−1

)

+1. (13)

Expanding the exponent in (13) gives us

3m−2= 3×
[

3h× (3r1×···×rk−1)+ (3h−1)
]

+1. (14)

Finally, rearranging terms in (14) gives us

3m−2= 3×
[

e×3h× (3r1−1)+ (3h−1)
]

+1, (15)

whereby the expression for variablee is given in the
following. Therefore, based on (15) α−1 = α3m−2 is
given by

α−1 = α3m−2 =
(

α3(m−1)−1
)3
×α =

(

α3∏k
j=1 r j+h−1

)3

×α =
(

(α3r1×...×rk−1)3
h× (α3h−1)

)3
×α

=

(

((α3r1−1)e)
3h

× (α3h−1)

)3

×α

=
(

(α3r1−1)e
)3h+1

×







f− term
︷ ︸︸ ︷

(α3h−1)3×α






,

given that

e=
(

(3r1)r2−1+ · · ·+1) · · · ((3r1×···×rk−1
)rk−1+ · · ·+1)

)

. (16)
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Theorem 1 Given that (m− 1) = ∏k
j=1 r j + h, with h

appropriately selected to belong to Cr1, the SAC for r1,
then, in computing(α3r1−1) term the availability of

(α3h−1) term as an intermediate value is guaranteed, and
the IC using our algorithm is given by
(

k

∑
j=1

[

ℓ(r j)+ω(r j)−2
]

+1

)

GF(3m)-Multiplications.

(17)

Proof.From (16), the inverse is given by

α−1 =




(α3r1−1)e

︸ ︷︷ ︸

k−term






3h+1

×







f− term
︷ ︸︸ ︷

(α3h−1)3×α







(18)

For now, forget the computational cost of(α3r1−1) term by
itself. The cost of computing(α3r1−1)

e
by expandinge in

(16) is given by

k

∑
j=2

[

ℓ(r j)+ω(r j)−2
]

, (19)

and its computational details are given as follows: The cost
of

(α3r1−1)(3
r1)r2−1+···+(3r1)0 = (α3r1×r2−1) term is

[ℓ(r2) + ω(r2) − 2] multiplications. Then, the cost of

(α3r1×r2−1)(3
r1×r2)r3−1+···+(3r1×r2)0 = (α3r1×r2×r3−1) is

[ℓ(r3)+ω(r3)−2] multiplications. Finally, the cost of

(α3r1×···×rk−1−1)(3
r1×···×rk−1)rk−1+···+(3r1×···×rk−1)0

= (α3r1×···×rk−1) = (α3r1−1)
e
,

is [ℓ(rk)+ω(rk)−2] multiplications. Thus, the sum of all
costs is exactly as given in (19) above.

Now, returning to(α3r1−1) term, its cost can be given
as follows: Let the SAC forr1 given by

Cr1 = {c0,c1,c2,c3},

wherec0 = 1 andc3 = r1. In addition, let the sequence of
integer pairs ofCr1 given by

Pr1 = {(c0,c0),(c1,c1),(c2,c2)},

following the rulec1 = c0 + c0, c2 = c1 + c1, and c3 =
c2+ c2. Assumeβ = α2 is available, then it follows that
(α3r1−1) = (β 3c3−1) is given by

(β 3c0−1)3c0 × (β 3c0−1) = (β 3c0+c0−1) = (β 3c1−1)

(β 3c1−1)3c1 × (β 3c1−1) = (β 3c1+c1−1) = (β 3c2−1)

(β 3c2−1)3c2 × (β 3c2−1) = (β 3c2+c2−1) = (β 3c3−1)(20)

From (20), 3 multiplications are necessary to compute
(α3r1−1) term usingCr1, which represent the length of
Cr1. Thus, for any positive integerr1, (α3r1−1) term
requires number of multiplications given by the length of
Cr1. Mathematically, this number is given by

[

ℓ(r1)+ω(r1)−2
]

, (21)

multiplications. Givenci = h for i ∈ [0,1,2,3], then

(α3h−1) = (β 3ci−1) is one of the intermediate results as
evident from (20) above. Thus, the computational cost of
f -term in (18) which is equal to(α3h−1) is saved as a
result of computing it in parallel withk-term. With 1 extra
multiplication necessary to join the terms in (18), the IC
of our proposed inversion algorithm is exactly as given in
Theorem1 above. ⊓⊔

From Theorem1 above, we computedf -term in
parallel with k-term to improve IC, however, this incurs
slight increase in space complexity of our algorithm.
Since the IC is independent of the remainderh that is not
restricted in value, in using our decomposition method
compared to other methods a wide range ofGF(3m) are
associated with minimal IC.

In the following we introduce, through a running
example, our proposed main inversion algorithm along
with other proposed auxiliary algorithms necessary for its
functioning. We considerGF(3167) that is of particular
interest for use in cryptographic applications in ECC.
Assumeα ∈ GF∗(3167) in which its inverse is required,
passingα and m= 167 as inputs to our main inversion
algorithm (Algorithm 1), then we have
ms= (m−1) = 166= (10100110)2 in binary.

Algorithm 1 InvMain Inversion Algorithm
Input: α ∈GF∗(3m), extension degreem
Output:ψ = α−1 ∈GF∗(3m)
Initial: ms:= (m−1);
if (ms== 2k or ω(ms) == 2) then

return ψ :=ChnInv(α,Cms,Pms,0)
else

[(r1,n,h),Cr1,Pr1] := OpDecom(ms);
[σ ,ρ] :=ChnInv(α,Cr1 ,Pr1,h);
τ := FsCalc(σ ,n);
if (h== 0) then

return ψ := (τ×ρ)
else

return ψ :=
(

(τ)3h+1×ρ
)

end if
end if

Given thatmsis neither a power of 2 nor a value with
Hamming weight equal to 2, then it should be passed as
input to our proposed auxiliary optimal decomposition
algorithm (Algorithm 2).
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Algorithm 2 OpDecomDecomposition Algorithm
Input: ms
Output:[(r1,n,h),Cr1,Pr1]
Initial: t := ms, st :=

√
t, cnt := 0;

if t is odd:A← Ao = {1,3, · · · ,u := ⌈st⌉}. If st is odd,u :=
⌊st⌋;
if t is even:A← Ae = {2,4, · · · ,u := ⌊st⌋}. If st is odd,u :=
⌈st⌉;
for all A[i] in the selectedA do

r1 := t−A[i];
while (r1 6= 2k and 2|r1 and ⌈r1/2⌉ ≥ A[i]) do

r1 :=
( r1

2

)
, cnt := cnt+1;

end while
save resulted 3-tuple(r1,cnt,A[i]) in array;
cnt := 0;
next i;

end for
find suitable(r1,cnt,A[i]) and fetch[Cr1,Pr1];
return [(r1,n := 2cnt,h := A[i]),Cr1,Pr1]

Using our example, the output of Algorithm2 is given by

[(r1,n,h),Cr1,Pr1] = [(10,16,6),C10,P10],

where the 3-tuple(10,16,6) = 10× 16+ 6= msand the
SAC for r1 is given by

Cr1 =C10 = {1,2,4,6,10}, (22)

and
Pr1 = P10= {(1,1),(2,2),(4,2),(6,4)}, (23)

which follows the ruleci = ci−1+ ci−1 for i ∈ {1,2}, and
ci = ci−1+ ci−2 for i ∈ {3,4}, wherec0 = 1 andc4 = 10.
By passingα,C10,P10 and h as inputs to our proposed
auxiliary algorithm (Algorithm 3), the computation then
proceeds as follows:

(α31−1)31× (α31−1) = (α8) = (α32−1)

(α32−1)32× (α32−1) = (α80) = (α34−1)

(α34−1)32× (α32−1) = (α728) = (α36−1)

(α36−1)34× (α34−1) = (α59048) = (α310−1) (24)

The output of Algorithm3 based on our example is given
by [ξcl , f ]. The first valueξcl = (α3r1−1) = (α310−1). The

second valuef = (α3h−1)3× α = (α36−1)3× α, or the
f -term that given in (18). Given thath = 6 is an element
in the chainCr1 = C10, and the computation off -term is
parallel with k-term, then, the cost of both values, i.e.,
[ξcl , f ], is only 4 multiplications inGF(3167).

To compute the portion that represents other factors in
(m− 1), other thanr1, which is given by the valuen =
16, bothξcl and n are passed as inputs to our proposed
auxiliary algorithm (Algorithm 4).

Algorithm 3 ChnInvAlgorithm
Input: α, Cv, Pv, κ
Output:φ = α−1 if msnot decomposed: else[ξcl , f ]

Given:ξci (α) = α3ci−1, ξci1+ci2
(α) = [ξci1

(α)]3
ci2 ×ξci2

(α)
Initial: κ := 0 if msnot decomposed: elseκ := h,

l := length(Cv),ξc0 := α2;
for i := 1 to l do

ξci (α) := [ξci1(α)]3
ci2 ×ξci2

(α);
if κ == ci−1 then

f :=
[
(ξci )

3×α
]
;⇐= ( f -term)

end if
end for
if κ 6= 0 then

return [ξcl , f ]
end if
return φ := [ξ 3

cl
×α]

Algorithm 4 FsCalcAlgorithm

Input: λ = ξcl , r1, n= ∏k
j=2 r j : r j = (1m( j)

qj−2 . . .m
( j)
0 )2

Output:θ = λ e = (α3r1−1)e

Initial: r := 1;
for j := 2 tok do

θ := λ ;
r := r× r j−1;
for i := q j −2 to 0do

θ := θ ×θ 3r3i

;
if m( j)

i == 1 then

θ := λ ×θ 3r3i

;
end if

end for
λ := θ ;

end for
return θ

Sincen = 16 is a power of 2, then we use it as if it a
single factor. Thus, the outerfor loop which depend on
the number of factors in(m−1) is executed only once. In
addition, the loop counteri in the innerfor loop which
depends on the binary length of each factor will loop from
3 to 0, simply 4 loops. This becausen = 16= (10000)2,
thus, the maximum value for the loop counter is given by
i = (q−2) = (6−2) = 3, whereq is the binary length of
n. Since theif statement is not going to be satisfied, and
variable r = r × r j−1 = r × r1 = 1× 10 = 10, then

computing the outputθ using a = ξcl = (α359048
) based

on our example proceeds as follows:

(a)× (a)310×33

= a(3
10×33

+1) = b

(b)× (b)310×32

= b(3
10×32

+1) = c

(c)× (c)310×31

= c(3
10×31

+1) = d

(d)× (d)310×30

= d(310×30
+1) = θ (25)
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Algorithm 4 outputθ = (α3r1−1)e is given by

θ = (α310−1)(3
10×33

+1)(310×32
+1)(310×31

+1)(310×30
+1). (26)

With the availability of(α310−1) term,θ is computed with
4 multiplications inGF(3167) that represented by the ‘+’
signs in the expression given in (26) and as evident from
(25) above.

Given the availability ofθ with h 6= 0, by considering
Algorithm 1, we need to perform(h + 1) right
cyclic-shifts onτ = θ and multiply it withρ = f -term to
get ψ = α−1, the final answer, as evident also in (18)
above. Thus, the IC for computingψ = α−1 = (α3167−2),
in terms of the number of required multiplications, is
given by 9 multiplications inGF(3167).

Referring to Algorithm1, in the other case wherems
is either a power of 2 or a value with Hamming weight
equal to 2, finding its SAC is very quick and
straightforward. Althoughms= (m− 1) is a large value,
the search space for such a SAC is not a NP-hard
problem. In other words, the SAC in such a case is simply
the power of 2 SAC, i.e.,{1,2,4,8,16, · · ·} or the power
of 2 SAC with the addition of one of its elements to the
last chain-element. Thus, in cases wherems is not
decomposed the cost of computing a field inverse was
further reduced using our inversion algorithm.

Fig. 1 illustrates the relation between our main
inversion algorithm (Algorithm1) with the auxiliary
algorithms (its main building blocks) in the form of block
diagram.

Fig. 1: Main Inversion Algorithm Block Diagram

5 Analysis and Results

In using Fermat’s inversion approach with NB, the IC is
defined as the performance measure that measures the

ability of an inversion algorithm to compute the inverse
with the minimal number of multiplications. Therefore,
any algorithm that require less number of multiplications
is associated with less IC, and thus has a faster
execution-time relative to its counterparts. Although this
is absolutely valid when comparing our algorithm with
[11]-based algorithms, the scenario is completely
different when comparing it with NAC-based algorithms,
and this is because the search time for the sought NAC
must be taken into account.

Recall that our algorithm is proposed mainly for
GF(3m) using NB (Algorithm 1), as well as, it
implements our ODM method form of GF(3m) and relies
on known SACs to compute the inverse, Table1 show its
IC performance compared to [11]-based inversion
algorithms. The comparison is performed over a set of
selectedm values, or over a selected set ofGF(3m) of
particular interest in cryptographic applications in ECC.

Referring to Table1, eachm value that preceded by
the Section symbol, §, hasms= (m−1) equal to either a
power of 2 or a value with Hamming weight of 2. In
computing the inverse, such values are not decomposed
and their SACs are directly used to solve inversion
problem. The SACs for such values are easily obtained in
a straightforward manner and known a priori as explained
in previous Section.

From Table1, in addition to the avoidance of subfield
inversion(Isub) operation using our inversion algorithm,
the reduction in IC relative to [11]-based algorithms is up
to 4 multiplications in GF(3m). This is a remarkable
reduction in IC and in the execution-time of our
algorithm. This because NB multiplications are
associated with high execution-time when implemented
in both software and hardware. Thus a minor reduction in
the number of NB multiplications has a great effect on the
overall performance.

Given that the search for NACs for largem values
using heuristic methods is a NP-hard large search-space
problem, in using our algorithm, the problem is reduced
to the reliance on known SACs for the suitable factors,
especially whenm is optimally decomposed into several
factors and a remainderh. Table2 shows IC performance
comparison of our algorithm against AIS algorithm [15],
which is the best known NAC-based algorithm so far.

From Table 2, although the IC of our inversion
algorithm initially seems equal to that of AIS algorithm,
however, our algorithm is associated with much lower
execution-time where the search-time for large chains is
saved. In addition,m values that preceded by the Section
symbol, §, are associated with less number of
multiplications inGF(3m), or less IC compared to AIS
inversion algorithm.

Considerm = 320. The inverse ofα ∈ GF∗(3320)
using our inversion algorithm requires 11 multiplications
in GF(3320). This becausems= (m− 1) = r1 × n+ h
which is equal to 319= 19× 16+15. Detailed steps are
given as follows:Cr1 =C19 = {1,2,4,5,10,15,19}which
hash= 15 as one of its elements. Also,n= 16, the other
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Table 1: Inversion Cost: Algorithm1 vs[11] Based Algorithms

mof Inversion Cost (IC)
GF(3m) OpDecom(ms) Algm. 1 [11]-Based Algms.

79 9×8+6 8 11+Isub
§97 C96 7 9+Isub
108 13×8+3 9 12+Isub
150 9×16+5 9 12+Isub
163 5×32+2 9 11+Isub
167 10×16+6 9 12+Isub
173 20×8+12 9 12+Isub
180 11×16+3 10 13+Isub
§193 C192 8 10+Isub
208 24×8+15 10 14+Isub
215 13×16+6 10 13+Isub
239 14×16+14 10 14+Isub
284 17×16+11 11 14+Isub
312 19×16+7 11 15+Isub
324 5×64+3 10 13+Isub

Table 2: Inversion Cost: Algorithm1 vsAIS Algorithm [15]

m of Inversion Cost (IC)
GF(3m) OpDecom(ms) Algm. 1 AIS Algm. [15]

96 11×8+7 9 9
128 15×8+7 10 10
160 19×8+7 10 10
192 23×8+7 11 11
224 26×8+15 11 11
256 15×16+15 10 10
288 17×16+15 11 11
§320 19×16+15 11 12
352 21×16+15 11 11
384 23×16+15 12 12
416 25×16+15 11 11
§448 27×16+15 11 12
480 29×16+15 12 12
576 35×16+15 12 12
§640 39×16+15 12 13

factors in(m− 1), hasCn = C16 = {1,2,4,8,16}. Thus,
computing n requires 4 multiplications inGF(3320).
From Section 2, usingC19, (α3r1−1) = (α319−1) term is
computed with 6 multiplications inGF(3320) (the length

of C19). Given thath= 15∈C19, then(α3h−1) = (α315−1)
term is available in intermediate computations, and thus,
all we need is 1 extraGF(3320) multiplication to get the
final result. Thus, using our inversion algorithm the IC =
6+4+1= 11 multiplications inGF(3320).

Alternatively, using AIS algorithm [15]

C319= {1,2,3,6,12,18,36,72,144,288,306,318,319},
thus the IC= 12 multiplications inGF(3320) necessary to
compute the inverse. In addition to the higher number of
multiplications necessary to compute inversion, in using
AIS algorithm, extra search-time forC319 and storage for
intermediate results are needed.

Eventually, in using [11]-based inversion algorithms,
the IC is calculated by the direct application of (11), which

requires 16 multiplications inGF(3320) in addition to a
subfield(Isub) inversion.

The above discussion confirm the practicality of our
proposal to accelerate field inversion inGF(3m) in
comparison with other inversion algorithms. Thus, in
executing the built-in curve-point operations of scalar
multiplication algorithm that require field inversion, our
proposal can be used to accelerate such algorithm and
thus the concerned cryptographic application in ECC. To
mention a few of such applications: elliptic curve
diffie-hellman algorithm (ECDH) for key-exchange,
elliptic curve el-gamal algorithm (ECEl-Gamal) for
encryption.

6 Closing Remarks

In this paper, an inversion algorithm is proposed in
ternary extension fieldsGF(3m) based on Fermat’s
theorem using normal basis representation for the field
elements. Using our proposal, the extension degree
(m− 1) of GF(3m) is decomposed into several factors
and a remainderh to reduce the number of multiplications
necessary for inversion, or the inversion cost.

Our proposal was compared against other algorithms
that rely on different inversion methods. In comparison
with the commonly used inversion algorithms (i.e,
[11]-based algorithms), our algorithm has less inversion
cost and avoids the subfield inversion. Thus, from
hardware perspective our algorithm is regular, modular
and suitable for VLSI implementation. Unlike the
algorithms that search for near-optimal addition chains
(NACs) for large (m− 1) values of GF(3m) to solve
inversion, our proposal relied on known short addition
chains for suitable factors much smaller than(m−1) that
include the remainderh as an element to solve inversion.
Thus, combined with the decomposition for(m− 1), the
inversion cost (IC) was further reduced in comparison
with such algorithms.

The conducted comparisons confirmed the practicality
of our inversion algorithm in comparison with its
counterparts available in the literature. Our proposal, as
far as we know, is the fastest polynomial-time inversion
algorithm. It is suitable for accelerating cryptographic
applications in elliptic curve cryptography (ECC).
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