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In this paper, an analytical solution is developed for the rotation problem of an inho-
mogeneous orthotropic cylinder with variable-thickness and density under plane strain
assumption. The thickness of the cylinder and the elastic constants are taken as ex-
ponential functions in the radial direction but the density in a power law form. The
cylinder may be solid or hollow with traction-free surface or clamped. On applica-
tion of the boundary conditions, the stress and displacement for rotating homogeneous
isotropic solid and hollow cylinders with uniform-thickness and density are obtained
as special cases of the studied problem. Numerical results for stresses and displace-
ment are presented in graphical forms. The effects of many parameters on stresses and
displacement are investigated.

Keywords: Rotating, orthotropic cylinders, inhomogeneous, variable thickness and
density.

1 Introduction

The rotation problem of elastic cylinder with variable-thickness and density is very
important for numerous applications such as mechanical engineering, aircrafts, spacecrafts,
satellites and biomechanics and the like. The plane strain problem of a rotating elastic
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cylinder is solved in several investigations [13, 14, 16]. Chen [3] has formulated the stress
distribution in an isotropic, inhomogeneous, thick cylinder under uniform pressure in terms
of the stress function for both the plane-stress and plane-strain conditions. Wang and Lin
[19] have analyzed the stresses in rotating homogeneous orthotropic cylindrical shells with
uniform thickness under surface loading. The stress response of a rotating orthotropic
hollow cylinder with the help of uniform internal pressure or a constant potential difference
between its inner and outer surfaces or both is investigated by Horgan and Galic [7]. Also,
they have studied the same problem of a solid cylinder with traction-free surface and zero
applied electric charge.

Mukhopadhyay [11] has established the effects of inhomogeneity on the stresses in a
rotation for an inhomogeneous aeolotropic cylindrical shell. Vasilenko and Klimenko [17]
have analyzed the stress state of a rotating cylinder, inhomogeneous in the radial direction,
having one plane of elastic symmetry and loaded with centrifugal forces. Klimenko [8]
has obtained the solution of some problems concerning with the stress state of rotat-
ing anisotropic hollow cylinders that are inhomogeneous in the circumferential direction.
Tarn [15] determined the thermoelastic deformation and stress for inhomogeneous hollow
and solid cylinders subjected to an axial force, a torque at the ends and the surface loads that
may vary circumferentially but not axially. In such study, exact solutions for thermoelastic
response of rotating cylinders with variable density are obtained. The effect of inhomo-
geneity of elastic properties and density in the circumferential direction on the distribution
of stress and displacement in orthotropic cylindrical panels using load in the axial direc-
tion is investigated by Grigorenko and Vasilenko [6]. Zenkour and Fares [23] have studied
the bending, buckling and free vibration problems of inhomogeneous anisotropic compos-
ite laminated cylindrical shells with uniform thickness. Ding et al. [4] have developed a
solution of an inhomogeneous orthotropic elastic cylindrical shell for axisymmetric plane
strain dynamic thermoelastic problems. In their paper, a special function is introduced to
transform the inhomogeneous boundary conditions to the homogeneous ones. Oral and An-
las [12] have analyzed the effect of continuous inhomogeneity functionally graded material
on the stress distribution for anisotropic cylindrical bodies. Klimenko [9] has presented a
numerical-analytic solution of stress-strain problems for rotating inhomogeneous hollow
cylinders under centrifugal loading. in their paper, elastic characteristics vary in both ra-
dial and circumferential directions. Liew et al. [10] have presented the thermomechanical
behavior of hollow circular cylinders of functionally graded material.

The importance of the present problem arises from the wide application of variable
thickness structures in aerospace industry, underwater vehicles, machines and devices. The
analytical solution of rotating cylinders becomes very complex when the thickness along
the radius of the cylinder is variable, even for simple cases. Vasilenko and Sudavtsova [18]
have used an approach to obtain stress-strain state of an inhomogeneous orthotropic hollow
cylinder with variable-thickness and density in the circumferential direction. The stress
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problem for non-circular hollow cylinder with variable thickness under uniform and local
loads is solved by Grigorenko and Rozhok [5]. Zenkour [20] has used the small parameter
method and Le’vy-type approach to obtain an exact solution for the bending of rectangular
plates with uniform, linear and quadratic thickness variations. Also, Zenkour [21] has es-
tablished the effect of thickness variability on the stresses in a rotating orthotropic cylinder
containing an isotropic core and a rigid core. In addition, Zenkour [22] has analytically
investigated the behavior of composite circular cylinders subjected to internal and external
surface loading. The cylinder consists of a number of homogeneous ply groups of axially
variable thickness. Recently, Allam et al. [2] have determined the stress concentrations
around a triangular hole in a fiber-reinforced viscoelastic composite plate under uniform
tension or pure bending.

In the present paper, exact elastic solutions for rotating solid and hollow cylinders with
variable-thickness and density subjected to different boundary conditions are obtained. The
material of the cylinders is assumed to be orthotropic and inhomogeneous . The thickness
of the cylinder, the elastic constants and the material density are functions in the radial coor-
dinate. Special cases of the studied problem for uniform thickness homogeneous cylinders
are established. The effects due to many parameters on the displacement and stresses of
rotating solid and hollow cylinders are investigated.

2 Formulation of the Problem

Consider an elastic cylinder made of an inhomogeneous orthotropic material and ro-
tating about its axis. The cylindrical coordinates (r, θ, z) are chosen such that the axial
coordinate z coinciding with the axis of rotation, r is the radial coordinate. Assuming the
cylinder is symmetric with respect to the z−axis, we have only the radial displacement
u which is independent of the circumferential coordinate θ. Furthermore, in the planes
perpendicular to the z−axis in plane strain, u is a function of r alone.

Consequently, the Cauchy’s relations under considerations can be written as follows
form:

εrr =
du

dr
, εθθ =

u

r
, (2.1a)

εzz = εrθ = εrz = εθz = 0, (2.1b)

where εij are the strain components.
From the generalized Hooke’s law and using the geometric relations (2.1), we can ob-

tain the stress components for an orthotropic cylinder in the following form:

σrr = c11
du

dr
+ c12

u

r
, (2.2a)

σθθ = c12
du

dr
+ c22

u

r
, (2.2b)
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� zz = c13
du
dr

+ c23
u
r

; (2:2c)

� r� = � rz = � �z = 0 ; (2:2d)

wherecij are the elastic constants.

Let us assume now that the thicknessh of the cylinder vary in the radial direction in an
exponential form given by:

h(r ) = h0 e� n ( r=b ) k
; (2:3)

whereh0 is the thickness at the axis of the cylinder,n andk are geometric parameters
andb is the radius of the cylinder. The parameterk determines the shape of the thickness
pro�le while n determines the thickness at the surface of the cylinder relative toh0. For
three different sets of geometric parametersn andk, the dimensionless thicknessh=h0 as a
function of the dimensionless radiusr=b is described by the pro�les shown in Fig. 2.1-2.3.

Figure 2.1: Exponential cylinder pro�les:k = 0 :7; n = 2 :3:

In Fig. 2.1 the thickness pro�le is concave for largen and smallk (n = 2 :3; k = 0 :7)
while the convex pro�le shown in Fig. 2.3 corresponds to smalln and largek (n =
0:7; k = 2 :3). In addition, Fig. 2.2 represents equal value ofn andk (n = k = 2 :3).

As the effect of thickness variation of rotating cylinders can be taken into account in
their equation of equilibrium, the theory of the cylinders of variable thickness can give ex-
cellent results as that of the uniform thickness cylinders as long as they meet the assumption
of plane strain. After considering this effect, the equation of equilibrium of rotating cylin-
der with variable thickness can be written as:

d
dr

(hr� rr ) � h� �� + h� 
 2r 2 = 0 ; (2:4)

where
 is the constant angular velocity and� is the density of the cylinder material.
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+
(

α11
dR(r̄)

dr̄
+ α12

R(r̄)
r̄

)]
, (3.6a)

σθθ(r̄) =
e−nr̄k

b

[
C1

(
α12

dP (r̄)
dr̄

+ α22
P (r̄)

r̄

)
+ C2

(
α12

dQ(r̄)
dr̄

+ α22
Q(r̄)

r̄

)
+
(

α12
dR(r̄)

dr̄
+ α22

R(r̄)
r̄

)]
, (3.6b)

σzz(r̄) =
e−nr̄k

b

[
C1

(
α13

dP (r̄)
dr̄

+ α23
P (r̄)

r̄

)
+ C2

(
α13

dQ(r̄)
dr̄

+ α23
Q(r̄)

r̄

)
+
(

α13
dR(r̄)

dr̄
+ α23

R(r̄)
r̄

)]
, (3.6c)

where the derivatives of P,Q and R are evaluated using the differentiation rule

d

dr̄
M(ξ, η, z) =

ξ dz

η dr̄
M(ξ + 1, η + 1, z). (3.7)

Note that, if n = m = 0 then h(r) = h0, cij = αij , ρ = ρ0 and the radial displace-
ment given in (3.2) for the rotating uniform-thickness and density homogeneous orthotropic
cylinder is reduced to

u(r̄) = C1r̄
(
√

α22/α11) + C2r̄
(−
√

α22/α11) +
ρ0Ω2b3r̄3

α22 − 9α11
, (3.8a)

also, the corresponding stresses in this case are given by

σrr(r̄) =
1
b

[
C1

(
α11

√
α22

α11
+ α12

)
r̄(
√

α22/α11−1) − C2

(
α11

√
α22

α11
− α12

)
× r̄(−

√
α22/α11−1)

]
+
(

3α11 + α12

α22 − 9α11

)
ρ0Ω2b2r̄2, (3.8b)

σθθ(r̄) =
1
b

[
C1

(
α12

√
α22

α11
+ α22

)
r̄(
√

α22/α11−1) − C2

(
α12

√
α22

α11
− α22

)
× r̄(−

√
α22/α11−1)

]
+
(

3α12 + α22

α22 − 9α11

)
ρ0Ω2b2r̄2, (3.8c)

σzz(r̄) =
1
b

[
C1

(
α13

√
α22

α11
+ α23

)
r̄(
√

α22/α11−1) − C2

(
α13

√
α22

α11
− α23

)
× r̄(−

√
α22/α11−1)

]
+
(

3α13 + α23

α22 − 9α11

)
ρ0Ω2b2r̄2. (3.8d)

In addition, for isotropic cylinder we have

α11 = α22 =
E(1− ν)

(1 + ν)(1− 2ν)
, α12 = α13 = α23 =

Eν

(1 + ν)(1− 2ν)
, (3.9)

where E and ν are Young’s modulus and Poisson’s ratio of the cylinder material.
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Using the formulas (3.9) we find that the solution (3.8) for the rotating uniform-
thickness and density homogeneous isotropic cylinder takes the form:

u(r̄) = C1r̄ +
C2

r̄
− (1 + ν)(1− 2ν)

8E(1− ν)
ρ0Ω2b3r̄3, (3.10a)

σrr(r̄) =
E

b(1 + ν)(1− 2ν)

[
C1 − C2

(1− 2ν)
r̄2

]
− (3− 2ν)

8(1− ν)
ρ0Ω2b2r̄2, (3.10b)

σθθ(r̄) =
E

b(1 + ν)(1− 2ν)

[
C1 + C2

(1− 2ν)
r̄2

]
− (1 + 2ν)

8(1− ν)
ρ0Ω2b2r̄2, (3.10c)

σzz(r̄) =
2Eν

b(1 + ν)(1− 2ν)

[
C1 −

(1 + ν)(1− 2ν)
4E(1− ν)

ρ0Ω2b3r̄2

]
. (3.10d)

The previous elastic solutions will be completed by calculating the integration constants Ci

using the boundary conditions on the surface of the cylinder which may be free or clamped.

4 The Rotating Solid Cylinder

Here, we will obtain the elastic solutions for the rotating solid cylinder by the applica-
tion of the boundary conditions. When the outer surface of the cylinder (r = b) is free of
any traction, hence the boundary condition is given by:

σrr(r̄) = 0 at r̄ = 1. (4.1)

Using the above condition and Eq. (3.6a), the constant C1 is given by

C1 = −
(

α11R
′(1) + α12R(1)

α11P ′(1) + α12P (1)

)
, (4.2)

where the prime (′) means differentiation with respect to r̄. Since the stresses must be finite
at the center of the cylinder (r = 0), thus the constant C2 must be set equal to zero.

The radial displacement and stresses for the rotating variable-thickness and density
inhomogeneous orthotropic solid cylinder with free surface can be calculated from Eqs.
(4.2), (3.2) and (3.6).

The solution (3.8) for the rotating uniform-thickness and density homogeneous or-
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thotropic solid cylinder with free surface takes the form

u(r̄) =
ρ0Ω2b3

α22 − 9α11

[
r̄3 −

(
3α11 + α12

α11

√
α22/α11 + α12

)
r̄
√

α22/α11

]
, (4.3a)

σrr(r̄) =
3α11 + α12

α22 − 9α11

[
r̄2 − r̄(

√
α22/α11−1)

]
ρ0Ω2b2, (4.3b)

σθθ(r̄) =
3α11 + α12

α22 − 9α11

[(
3α12 + α22

3α11 + α12

)
r̄2 −

(
α12

√
α22/α11 + α22

α11

√
α22/α11 + α12

)

× r̄(
√

α22/α11−1)

]
ρ0Ω2b2, (4.3c)

σzz(r̄) =
3α11 + α12

α22 − 9α11

[(
3α13 + α23

3α11 + α12

)
r̄2 −

(
α13

√
α22/α11 + α23

α11

√
α22/α11 + α12

)

× r̄(
√

α22/α11−1)

]
ρ0Ω2b2. (4.3d)

Also, the radial displacement and stresses (3.10) for the rotating uniform-thickness and
density homogeneous isotropic solid cylinder with free surface can be written as

u(r̄) =
(1 + ν)(1− 2ν)

8E(1− ν)
[
(3− 2ν)− r̄2

]
ρ0Ω2b3r̄, (4.4a)

σrr(r̄) =
(3− 2ν)
8(1− ν)

[
1− r̄2

]
ρ0Ω2b2, (4.4b)

σθθ(r̄) =
(3− 2ν)
8(1− ν)

[
1− (1 + 2ν)

(3− 2ν)
r̄2

]
ρ0Ω2b2, (4.4c)

σzz(r̄) =
ν

4(1− ν)
[
(3− 2ν)− 2r̄2

]
ρ0Ω2b2, (4.4d)

this is the well-known solution of the rotating uniform thickness cylinder [14].
On the other hand, when the outer surface of the cylinder (r = b) is clamped, hence the

boundary condition is given by:

u(r̄) = 0 at r̄ = 1. (4.5)

From Eqs. (4.5) and (3.2), the constant C1 is given by

C1 = − R(1)
P (1)

. (4.6)

Since the radial displacement must be finite at the axis of the cylinder (r = 0), thus the
constant C2 must be vanished.

With the help of Eqs. (4.6), (3.2) and (3.6), we can obtain the radial displacement and
stresses for the rotating inhomogeneous orthotropic solid cylinder with variable-thickness
and density subjected to clamped surface.
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The solution (3.8) for the rotating uniform-thickness and density homogeneous or-
thotropic solid cylinder with clamped surface takes the form:

u(r̄) =
ρ0Ω2b3

α22 − 9α11

[
r̄3 − r̄

√
α22/α11

]
, (4.7a)

σrr(r̄) =
ρ0Ω2b2

α22 − 9α11

[
(3α11 + α12)r̄2 − (α11

√
α22/α11 + α12)r̄(

√
α22/α11−1)

]
,

(4.7b)

σθθ(r̄) =
ρ0Ω2b2

α22 − 9α11

[
(3α12 + α22)r̄2 − (α12

√
α22/α11 + α22)r̄(

√
α22/α11−1)

]
,

(4.7c)

σzz(r̄) =
ρ0Ω2b2

α22 − 9α11

[
(3α13 + α23)r̄2 − (α13

√
α22/α11 + α23)r̄(

√
α22/α11−1)

]
.

(4.7d)
Finally, the radial displacement and stresses (3.10) for the rotating homogeneous isotropic
solid cylinder with uniform-thickness and density subjected to clamped surface can be
written as

u(r̄) =
(1 + ν)(1− 2ν)

8E(1− ν)
[
1− r̄2

]
ρ0Ω2b3r̄, (4.8a)

σrr(r̄) =
ρ0Ω2b2

8(1− ν)
[
1− (3− 2ν)r̄2

]
, (4.8b)

σθθ(r̄) =
ρ0Ω2b2

8(1− ν)
[
1− (1 + 2ν)r̄2

]
, (4.8c)

σzz(r̄) =
ν

4(1− ν)
[
1− 2r̄2

]
ρ0Ω2b2. (4.8d)

5 The Rotating Hollow Cylinder

In the present section, we will obtain the elastic solutions for the rotating hollow cylin-
der of internal radius a by the application of the boundary conditions. When the inner and
outer surfaces (r = a, r = b) of the cylinder are free of any traction, hence the boundary
conditions are given by:

σrr(r̄) = 0 at r̄ = a/b, (5.1a)

σrr(r̄) = 0 at r̄ = 1. (5.1b)

From the conditions (5.1) and Eq. (3.7a), the constants C1 and C2 are given by

C1 =
S12S23 − S13S22

S11S22 − S12S21
, (5.2a)

C2 =
S13S21 − S11S23

S11S22 − S12S21
, (5.2b)
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where

S11 = α11P
′(a/b) + α12

bP (a/b)
a

, S21 = α11P
′(1) + α12P (1),

S12 = α11Q
′(a/b) + α12

bQ(a/b)
a

, S22 = α11Q
′(1) + α12Q(1), (5.3)

S13 = α11R
′(a/b) + α12

bR(a/b)
a

, S23 = α11R
′(1) + α12R(1).

Substituting from Eqs. (5.2) into Eqs. (3.2) and (3.6), we can get the radial displacement
and stresses for the rotating inhomogeneous orthotropic hollow cylinder with variable-
thickness and density subjected to free surfaces.

In addition, the solution for the rotating uniform-thickness and density homogeneous
orthotropic hollow cylinder with free surfaces can be obtained from Eqs. (3.8) with the
help of the following constants:

C1 =
(3α11 + α12)

(
(a/b)−

√
α22/α11−3 − 1

)
(a/b)2 ρ0Ω2b3

(α22 − 9α11)(α11

√
α22/α11 + α12)

(
(a/b)

√
α22/α11−1 − (a/b)−

√
α22/α11−1

) ,

(5.4a)

C2 =
(3α11 + α12)

(
(a/b)

√
α22/α11−3 − 1

)
(a/b)2 ρ0Ω2b3

(α22 − 9α11)(α11

√
α22/α11 + α12)

(
(a/b)

√
α22/α11−1 − (a/b)−

√
α22/α11−1

) .

(5.4b)
Also, the radial displacement and stresses (3.10) for the rotating uniform-thickness and
density homogeneous isotropic hollow cylinder with free surfaces become as

u(r̄) =
(1 + ν)(1− 2ν)

8E(1− ν)

[
a2 + b2

b2
(3− 2ν) +

(3− 2ν)
(1− 2ν)

a2

b2r̄2
− r̄2

]
ρ0Ω2b3r̄, (5.5a)

σrr(r̄) =
(3− 2ν)
8(1− ν)

[
a2 + b2

b2
− a2

b2r̄2
− r̄2

]
ρ0Ω2b2, (5.5b)

σθθ(r̄) =
(3− 2ν)
8(1− ν)

[
a2 + b2

b2
+

a2

b2r̄2
− (1 + 2ν)

(3− 2ν)
r̄2

]
ρ0Ω2b2, (5.5c)

σzz(r̄) =
ν

4(1− ν)

[
a2 + b2

b2
(3− 2ν)− 2r̄2

]
ρ0Ω2b2, (5.5d)

this is the well-known solution of the rotating uniform thickness cylinder [14].
On the other hand, when the inner and outer surfaces (r = a, r = b) of the cylinder are

clamped, hence the boundary conditions are given by:

u(r̄) = 0 at r̄ = a/b, (5.6a)
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u(r̄) = 0 at r̄ = 1. (5.6b)

With the aid of conditions (5.6) and Eq. (3.2) , the constants C1 and C2 are given by

C1 =
Q(a/b)R(1)−R(a/b)Q(1)
P (a/b)Q(1)−Q(a/b)P (1)

, (5.7a)

C2 =
R(a/b)P (1)− P (a/b)R(1)
P (a/b)Q(1)−Q(a/b)P (1)

. (5.7b)

The radial displacement and stresses for the rotating variable-thickness and density inho-
mogeneous orthotropic hollow cylinder with clamped surfaces can be obtained from Eqs.
(5.7), (3.2) and (3.6).

Also, the solution (3.8) for the rotating uniform-thickness and density homogeneous
orthotropic hollow cylinder with clamped surfaces can be calculated with the help of the
following constants:

C1 =

(
(a/b)−

√
α22/α11−3 − 1

)
(a/b)3 ρ0Ω2b3

(α22 − 9α11)
(

(a/b)
√

α22/α11 − (a/b)−
√

α22/α11

) , (5.8a)

C2 =
−
(

(a/b)
√

α22/α11−3 − 1
)

(a/b)3 ρ0Ω2b3

(α22 − 9α11)
(

(a/b)
√

α22/α11 − (a/b)−
√

α22/α11

) . (5.8b)

Finally, one can obtain easily the radial displacement and stresses (3.10) for the rotating
uniform-thickness and density homogeneous isotropic hollow cylinder with clamped sur-
faces in the form:

u(r̄) =
(1 + ν)(1− 2ν)

8E(1− ν)

[
a2 + b2

b2
− a2

b2r̄2
− r̄2

]
ρ0Ω2b3r̄, (5.9a)

σrr(r̄) =
ρ0Ω2b2

8(1− ν)

[
a2 + b2

b2
+

a2(1− 2ν)
b2r̄2

− (3− 2ν)r̄2

]
, (5.9b)

σθθ(r̄) =
ρ0Ω2b2

8(1− ν)

[
a2 + b2

b2
− a2(1− 2ν)

b2r̄2
− (1 + 2ν)r̄2

]
, (5.9c)

σzz(r̄) =
ν

4(1− ν)

[
a2 + b2

b2
− 2r̄2

]
ρ0Ω2b2. (5.9d)

6 Numerical Examples and Discussion

In this section, some numerical examples for the rotating inhomogeneous orthotropic
solid and hollow cylinders with variable-thickness and density will be introduced. These
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examples will include some special cases of rotating homogeneous isotropic solid and hol-
low cylinders with uniform-thickness and density.

The numerical applications will be carried out for the radial displacement and stresses
that being reported herein are in the following dimensionless form:

ur =
Eu(�r )
� 0
 2b3 ; � r =

� rr (�r )
� 0
 2b2 ; � � =

� �� (�r )
� 0
 2b2 ; � z =

� zz (�r )
� 0
 2b2 :

The effect of the elastic properties of the cylinder material on the dimensionless radial
displacement and stresses will be shown in Figs 6.1-6.16. Firstly, the effects of inhomo-
geneity and the orthotropy will be illustrated by putting� 11 = � 22 = 1 :0711409; � 12 =
0:27114093; � 13 = � 23 = 0 :33557046and different values ofn andm. The results are
given for three pro�les(k = 0 :7; n = 2 :3; m = 0 :25), (k = n = 2 :3; m = 0 :5) and
(k = 2 :3; n = 0 :7; m = 1) .

Figure 6.1: Dimensionless stresses and displacement for variable thickness – solid cylinder of free

surface: k = 0 :7; n = 2 :3; m = 0 :25:

Figure 6.2: Dimensionless stresses and displacement for variable thickness – solid cylinder of free

surface: k = n = 2 :3; m = 0 :5:
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