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Abstract: In product life testing experiments, accelerated life testing is widely used since it provides significant reduction intime
and cost of experiment. A constant-partially accelerated life test based on progressively censored Burr Type-XII datais considered in
the present article. Approximate confidence intervals based on the normal approximation to the asymptotic distribution of Maximum
Likelihood Equation, Bootstrap Confidence Interval, and One-Sample Bayes prediction bound lengths are obtained. The analysis of the
present discussion has carried out by a real life example.
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1 Introduction

The Burr system of distributions includes twelve types of cumulative distribution functions that yield a variety of density
shapes, and were listed in [1]. It has applied in business, chemical engineering, quality control, medical, and reliability
studies. The probability density function and cumulative density function of Burr Type-XII distribution are given as

f (x;α,β ) = β αxβ−1
(

1+ xβ
)−α−1

; α > 0,β > 0,x≥ 0 (1)

and

F (x;α,β ) = 1−
(

1+ xβ
)−α

; α > 0,β > 0,x≥ 0. (2)

Failure rate function and the reliability function of Burr Type-XII distribution are given as

ρ(x) = β α
xβ−1

1+ xβ ; α > 0,β > 0,x≥ 0 (3)

and

R(x) =
(

1+ xβ
)−α

; α > 0,β > 0,x≥ 0. (4)

Here, the parameterα does not affect the shape of failure rate functionρ(x) given in Eq. (3). The parameterα andβ
both are the shape parameter of Burr Type-XII distribution.Also, ρ(x) has a unimodal curve whenβ > 1 and it has
decreasing failure rate function whenβ ≤ 1. The parameterβ plays an important role for the distribution. It covers a
variety of curve shapes and provides a wide range of values ofskewness and kurtosis that can used to model for any
general lifetime data (biological, clinical, or other experimental data).

The present distribution is useful in failure time modeling, quality control, and reliability studies. Few important and
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resent references on the topic are including here. The empirical Bayes estimators of reliability performances based on
LINEX loss function under progressively Type-II censored samples was study be [2]. Lee et al. [3] assessing the lifetime
performance index of products from progressively Type-II right censored data based on Burr Type-XII model. Based on
exponentiated Burr Type-XII population [4] provided a number of references on the applications of Burrmodel in
different fields of applied statistics.

Soliman et al.[5] obtained some Bayes estimation from Burr Type-XII distribution by using progressive first-failure
censored data. [6] discussed about the problem of estimating the parameters and reliability function of the Burr Type-III
distribution based on Type-II Doubly censored sample. A Koziol-Green model of random censorship for estimating the
Bayes estimator of unknown parameters was discussed by [7]. A multicomponent stress strength reliability by assuming
Burr Type-XII distribution was studied by [8] recently.

The focus of the paper is to study about different confidence limits for the Burr Type-XII distribution under
constant-partially accelerated life test. Based on the normal approximation to the asymptotic distribution of MLE, the
approximate confidence intervals (ACI), Percentile Bootstrap confidence intervals (PBCI), and One-Sample Bayes
prediction bound lengths are obtained in different sections. The analysis of the present discussion has carried out by a
real life example in last section with conclusion.

2 Constant-Partially Accelerated Life Tests

The Type-I and Type-II censoring do not allow the units to be removed from the test at points other than the terminal
point of the experiment when a compromise between reduced time of experimentation and the observations of at least
some extreme lifetimes are sought. This makes the lifetime testing under normal conditions very costly and takes a long
time. For this reason, accelerated life tests (ALT) are prefer to be used in manufacturing industries to obtain enough
failure data, in a short period. In ALT, the test units are runat higher than the usual stress levels to induce early failures.

In ALT, the units are tested only at accelerated conditions.However, in PALT, the units are tested at both accelerated and
normal conditions. When the acceleration factor cannot be,assume as a known value, PALT will be a good choice to
perform the life test. The focus of this paper is based on the constant-stress PALT, in which runs each item at either use
or in accelerated condition only. Several references have with ALT, including [9], [10], [11], [12] and [13].

Now, the lifetime of an item tested at use condition follows following probability density function, distribution function
and failure rate

f1 (x1;α,β ) = β αxβ−1
1

(

1+ xβ
1

)−α−1
; α > 0,β > 0,x1≥ 0,

F1(x1;α,β ) = 1−
(

1+ xβ
1

)−α
; α > 0,β > 0,x1≥ 0

and

ρ1(x1) = β α
xβ−1

1

1+ xβ
1

; α > 0,β > 0,x1≥ 0.

If failure rate functionρ2 (x2) is denoted for an item tested at accelerated condition with acceleration factorλ (> 1), then
it is defined as

ρ2 (x2) = λ ρ1 (x1) .

Under accelerated condition, the failure rate, probability density function, and distribution function are obtainedas

ρ2 (x2) = β αλ
xβ−1

2

1+ xβ
2

; α > 0,β > 0,λ > 0,x2≥ 0,

F2(x2;α,β ,λ ) = 1−
(

1+ xβ
2

)−αλ
; α > 0,β > 0,λ > 1,x2≥ 0

f2 (x2;α,β ,λ ) = β αλ xβ−1
2

(

1+ xβ
2

)−αλ−1
; α > 0,β > 0,λ > 1,x2≥ 0.
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3 Approximate Confidence Intervals

Let n1 items are randomly chosen amongn test items which are allocated to use condition andn2 = n− n1 remaining
items are subjected to an accelerated condition. The Progressive Type-II censoring is applied as usual (See [14]). Based
on progressively Type-II censoring scheme the joint probability density function of order statistics

X
(R j1,R j2,...,R jm)
1j :m j :n j

,X
(R j1,R j2,...,R jm)
2j :m j :n j

, ...,X
(R j1,R j2,...,R jm)
m j :m j :n j ; j = 1,2 is defined as

L(α,β ,λ |x) ∝

{

m1

∏
i=1

f1
(

x(1i);α,β
)(

1−F1
(

x(1i);α,β
))R1i

}

·
{

m2

∏
i=1

f2
(

x(2i);α,β ,λ
)(

1−F2
(

x(2i);α,β ,λ
))R2i

}

(5)

L(α,β ,λ |x) ∝

{

m1

∏
i=1

β αxβ−1
1i

(

1+ xβ
1i

)−α−1(

1+ xβ
1i

)−αR1i

}

·
{

m2

∏
i=1

β αλ xβ−1
2i

(

1+ xβ
2i

)−αλ−1(

1+ xβ
2i

)−αλ R2i

}

⇒ L(α,β ,λ |x) ∝ β m1+m2αm1+m2λ m2e(β−1)T0−T (β )e−αT1(β )e−αλ T2(β ) (6)

where Tj (β ) = ∑
m j
i=1 (1+R ji) log

(

1+ xβ
ji

)

; j = 1,2, T0 = ∑m1
i=1 log x1i + ∑m2

i=1 log x2i and

T (β ) = ∑m1
i=1 log

(

1+ xβ
1i

)

+∑m2
i=1 log

(

1+ xβ
2i

)

.

Taking logarithm on Eq. (6), we get

Log L(α,β ,λ |x) = lM (say) = (m1+m2) log β +(m1+m2) log α +m2log λ

−T (β )+ (β −1)T0−αT1(β )−αλ T2(β ) . (7)

The ML (maximum likelihood) estimator corresponding to parameterα is

α̂ML =
m1+m2

T1 (β )+λ T2(β )
. (8)

Similarly the ML estimators corresponding to parameterβ andλ are given as

β̂ML =
m1+m2

∑m1
i=1 (1+α (1+R1i))

(

xβ
1i log(x1i)

1+xβ
1i

)

+∑m2
i=1 (1+αλ (1+R2i))

(

xβ
2i log(x2i)

1+xβ
2i

)

−T0

(9)

and
λ̂ML =

m2

αT2 (β )
. (10)

Further simplifications of ML estimators are not possible. Some suitable numerically method is applied here for
obtaining the numerical values of the ML estimates.

The common method for obtaining the confidence bounds for theparameters is based on asymptotic normal distribution
of ML estimators. The observed information matrix is now defined and obtained as

I =









− ∂ 2lM
∂α2 − ∂ 2lM

∂α∂β −
∂ 2lM
∂α∂λ

− ∂ 2lM
∂β ∂α −

∂ 2lM
∂β 2 − ∂ 2lM

∂β ∂λ

− ∂ 2lM
∂λ ∂α −

∂ 2lM
∂λ ∂β −

∂ 2lM
∂λ 2









. (11)
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The second order derivatives for the observed Information matrix with respect to parametersα, β andλ are given as

∂ 2lM
∂α2 =−m1+m2

α2

∂ 2lM
∂β 2 =−m1+m2

β 2 −
m1

∑
i=1

(1+α (1+R1i))

(

xβ
1ilog(x1i)

1+ xβ
1i

)2

−
m2

∑
i=1

(1+αλ (1+R2i))

(

xβ
2ilog(x2i)

1+ xβ
2i

)2

∂ 2lM
∂λ 2 =−m2

λ 2

∂ 2lM
∂α∂β

=
∂ 2lM

∂β ∂α
=−

m1

∑
i=1

(1+R1i)

(

xβ
1ilog(x1i)

1+ xβ
1i

)

−λ
m2

∑
i=1

(1+R2i)

(

xβ
2ilog(x2i)

1+ xβ
2i

)

∂ 2lM
∂β ∂λ

=
∂ 2lM

∂λ ∂β
=−α

m2

∑
i=1

(1+R2i)

(

xβ
2ilog(x2i)

1+ xβ
2i

)

and
∂ 2lM

∂α∂λ
=

∂ 2lM
∂λ ∂α

=−
m2

∑
i=1

(1+R2i) log
(

1+ xβ
2i

)

.

Using above values the observed information matrixI from Eq. (11) is obtained. Now, the variance covariance matrixV
(say) is approximated as

V = I−1. (12)

The expression,V involves three unknown parametersα, β and λ . Hence, an estimate ofV
(

= V̂
)

(say) is obtained
by substituting its ML estimators respectively. Hence, 100(1− ε)% ACI for the parametersα,β and λ are obtained
respectively as

α̂∓Zε/2
√

V11 (13)

β̂ ∓Zε/2
√

V22 (14)

and
λ̂ ∓Zε/2

√

V33. (15)

HereV11,V22 andV33 are the main diagonal elements of the variance-covariance matrix V̂ andZε/2 is the percentile of the
standard normal distribution with right-tail probabilityε/2.

4 Bootstrap Confidence Intervals

In statistical inference, the bootstrap is a re-sampling method for estimating biases, variance of an estimator and
confidence intervals ([15]). In the present section, the confidence limits based on parametric bootstrap method ([16]) are
obtained for the parametersα,β andλ respectively.

Based on following steps, the bootstrap samples are obtained :
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The ML estimateα̂ML of the parameterα from Eq. (8), is obtained by using original progressive Type-II censored data

X
(R j1,R j2,...,R jm)
1j :m j :n j

,X
(R j1,R j2,...,R jm)
2j :m j :n j

, ...,X
(R j1,R j2,...,R jm)
m j :m j :n j ; j = 1,2. Similarly, the ML EstimateŝβML of parameterβ from Eq.

(9), and ML EstimateŝλML of λ from Eq. (10), are also obtained respectively from original progressive Type-II censored

dataX
(R j1,R j2,...,R jm)
1j :m j :n j

,X
(R j1,R j2,...,R jm)
2j :m j :n j

, ...,X
(R j1,R j2,...,R jm)
m j :m j :n j ; j = 1,2.

Again, generate two independent progressive samples of sizes m1 and m2 from Burr Type-XII distribution based on
considered censoring schemeR ji (i = 1,2, ...,m j, j = 1,2) . Based on generated samples, compute the bootstrap sample

estimates of ML estimatorŝαML, β̂ML andλ̂ML say ˆ̂αML,
ˆ̂βML andˆ̂λML respectively.

Repeat the above step up toN(= 1000) times to obtainN(= 1000) different bootstrap samples. Arrange all these

samples
(

ˆ̂αML,
ˆ̂βML and ˆ̂λML

)

in ascending order to obtain final bootstrap sample of the form

τ1
α ≤ τ2

α ≤ ...≤ τN
α f or ˆ̂αML

τ1
β ≤ τ2

β ≤ ...≤ τN
β f or ˆ̂βML

and

τ1
λ ≤ τ2

λ ≤ ...≤ τN
λ f or ˆ̂λML.

If G(y) = P
(

τ∗k ≤ y
)

be the cumulative density function ofτ∗k . Where,τ∗k ;∀k = α,β ,λ be the final bootstrap samples.
Then the 100(1− ε)% approximate bootstrap confidence limits is given by

[

τ∗k(B)
(ε

2

)

,τ∗k(B)

(

2− ε
2

)]

(16)

whereτ∗k(B) = G−1(y) for giveny. Here, the Eq.(16) represent the Percentile Bootstrap Confidence Limits.

5 One-Sample Bayes Prediction Limit

The Bayes predicative density of future observationY is denoted byhΘ (y|x) and obtained by simplifying

hΘ (y|x) ∝
∫

Θ
f (y;α,β )π∗Θ dΘ . (17)

where,π∗Θ ;(Θ = α,β ,λ ) be the posterior density corresponding to parameterΘ (= α,β ,λ ) respectively.

Let us assume the prior densities corresponding to parametersα,β andλ are given respectively as

πα ∝ α−1 ; α > 0,

πβ ∝ β−1 ; β > 0

and
πλ ∝ λ−1 ; λ > 0.

Here, the considered prior are vague priors, so that the priors do not have any significant roles in the analyses that follow.
One may use conjugate priors for the analysis. The joint prior is thus obtained as

π(α ,β ,λ ) =
1

αβ λ
.
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Hence, the joint posterior density is thus defined as

π∗(α ,β ,λ ) =
π(α ,β ,λ ) ·L(α,β ,λ |x)

∫

β
∫

λ
∫

α π(α ,β ,λ ) ·L(α,β ,λ |x)dαdλ dβ
.

Now, the marginal posterior density for parameterα is defined and obtained as

π∗(α) =

∫

β
∫

λ π(α ,β ,λ ) ·L(α,β ,λ |x)dλ dβ
∫

β
∫

λ
∫

α π(α ,β ,λ ) ·L(α,β ,λ |x)dαdλ dβ

⇒ π∗(α) = β̄Γ (m2)αm1−1
∫

β

β m1+m2−1

(T2 (β ))m2
e(β−1)T0−T(β )e−αT1(β )dβ (18)

whereβ̄ =
{

Γ (m1)Γ (m2)
∫

β
β m1+m2−1e(β−1)T0−T (β)

(T1(β ))m1(T2(β ))m2 dβ
}−1

.

Similarly, the marginal posterior densities corresponding to parametersβ andλ are obtained as

π∗(β ) = β̄Γ (m1)Γ (m2)β m1+m2−1e(β−1)T0−T(β ) (T1 (β ))−m1 (T2 (β ))−m2 (19)

and

π∗(λ ) = β̄Γ (m1+m2)λ m2−1
∫

β

β m1+m2−1

(T1 (β )+λ T2(β ))m1+m2
e(β−1)T0−T (β )dβ . (20)

Using Eq. (1) and Eq. (18) in Eq. (17), the Bayes predictive density of future variable for the parameterα is obtained as

hα (y|x) ∝
β yβ−1
(

1+ yβ
)

∫

α

αm1

eα log(1+yβ)

∫

β

β m1+m2−1e(β−1)T0−T (β )e−αT1(β )

(T2 (β ))m2
dβ dα. (21)

Similarly, the Bayes predictive density of future variablefor the parameterβ is obtained by using Eq. (1) and Eq. (19) in
Eq. (17) as

hβ (y|x) ∝ α
∫

β

yβ−1
(

1+ yβ)−α−1 β m1+m2

(T1 (β ))m1 (T2 (β ))m2
e(β−1)T0−T (β )dβ . (22)

The Bayes predictive density corresponding to the parameter λ for future variable is obtained as by using Eq. (1) and Eq.
(20) in Eq. (17)

hλ (y|x) ∝ β α
yβ−1

(

1+ yβ
)α+1

∫

λ
λ m2−1

∫

β

β m1+m2−1e(β−1)T0−T(β )

(T1 (β )+λ T2(β ))m1+m1
dβ dλ . (23)

If l1 andl2 be the lower and upper Bayes prediction limits of the future observation and(1−ε) be the confidence prediction
coefficient, then the one-sided Bayes prediction bound limits are obtain by solving following equality

Pr (Y ≤ l1) =
ε
2
= Pr (Y ≥ l2) . (24)

Using Eq. (21) & Eq. (24), the Bayes predictive bound limits for the parameterα are obtained by solving following
equations

ε
2
=

∫ log
(

1+lβ
1

)

Z=0

∫

α

αm1

eαZ

∫

β
β m1+m2−1 e(β−1)T0−T (β )e−αT1(β )

(T2 (β ))m2
dβ dα dZ (25)

and
2− ε

2
=

∫ log
(

1+lβ
2

)

Z=0

∫

α

αm1

eαZ

∫

β
β m1+m2−1 e(β−1)T0−T (β )e−αT1(β )

(T2 (β ))m2
dβ dα dZ (26)
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Table 1: Relief Time (in hours) for 24 Arthritic Patients

0.70 0.58 0.54 0.59 0.71 0.55 0.63 0.84
0.49 0.87 0.73 0.72 0.62 0.82 0.84 0.29
0.51 0.61 0.57 0.29 0.36 0.46 0.68 0.34

It is clear that, the nice close form of Eq. (25) and Eq. (26) do not exists. Some numerical technique is applied here for
the numerical findings. Based on numerical findings ofl1 from Eq. (25) andl2 from Eq. (26), the Bayes predictive bound
length for the parameterα is obtained as

Lα = l2− l1.

Similarly, the Bayes predictive bound limits for the parameterβ are obtained by solving following equations;

ε
2
=

∫

β

(

1−
(

1+ lβ
1

)−α
)

β m1+m2−1e(β−1)T0−T(β )

(T1 (β ))m1 (T2 (β ))m2
dβ (27)

and
2− ε

2
=

∫

β

(

1−
(

1+ lβ
2

)−α
)

β m1+m2−1e(β−1)T0−T (β )

(T1 (β ))m1 (T2 (β ))m2
dβ (28)

The Bayes predictive bound length for the parameterβ is obtained by numerical findings ofl1 from Eq. (27) andl2 from
Eq. (28) as,

Lβ = l2− l1.

On similar line, the Bayes predictive bound limits and boundlength for the parameterλ are obtained by using Eq. (23)
and Eq. (24) as

ε
2
=

(

1−
(

1+ lβ
1

)−α
)

∫

λ
λ m2−1

∫

β

β m1+m2−1e(β−1)T0−T (β )

(T1 (β )+λ T2(β ))m1+m2
dβ dλ (29)

2− ε
2

=

(

1−
(

1+ lβ
2

)−α
)

∫

λ
λ m2−1

∫

β

β m1+m2−1e(β−1)T0−T (β )

(T1 (β )+λ T2(β ))m1+m2
dβ dλ (30)

and
Lλ = l2− l1.

6 Numerical Analysis

For illustrative purposes, the performance of the proposedprocedures is studied by a real data set on relief time (in
hours) for 24 arthritic patients ([17]). Recently, [18], presents some analysis based on present data under Burr Type-XII
distribution. The data are given in the Table 1.

The progressive censoring scheme for the censored sample sizem1 andm2 are assume as
Based on above Progressive censoring scheme and data given in Table 1, the ML estimates for the parametersα,β

andλ are obtained, and presented in the Table 3 for selected parametric values. It is observed from the table that, the ML
estimate increases as the censored sample size increases. Similar properties also have seen when parametric values
increases.

The approximate confidence limits (ACL), percentile Bootstrap confidence limits (PBCL) and Bayes predictive bound
lengths (BPBL) are obtained for the parametersα,β andλ respectively and presented in Table 4-6, with confidence
valuesε = 90%,95%,99% and selected parametric values.
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Table 2: Different Progressive Censoring Scheme

m j; j = 1,2 R ji ; i = 1,2, ...,m j; j = 1,2
10 1 2 0 1 0 1 0 0 3 1
15 1 0 1 3 0 2 1 0 3 1 0 0 3 1 1
20 1 0 2 0 4 1 0 2 3 0 2 1 0 0 1 0 1 0 2 1

Table 3: Different ML Estimates

n = 24,λ = 2.00 ML Estimators
(m1,m2) ↓ (α,β ) ↓ α̂ML β̂ML λ̂ML

(10, 10) (0.25, 1.00) 0.6781 1.7556 1.3152
(15, 20) (0.50, 3.00) 0.6918 1.7666 1.3655
(20, 20) (1.00, 5.00) 0.6921 1.7679 1.3855

Table 4: ACL, PBCL & BPBL for the Parameterα

n = 24,λ = 2.00 ← α →
ε ↓ (m1,m2) ↓ (α,β ) ↓ ACL PBCL BPBL

(10, 10) (0.25, 1.00) 0.8756 0.8654 0.8689
90% (15, 20) (0.50, 3.00) 0.9368 0.9219 0.9296

(20, 20) (1.00, 5.00) 1.0303 1.0191 1.0302
(10, 10) (0.25, 1.00) 0.8816 0.8754 0.8789

95% (15, 20) (0.50, 3.00) 0.9432 0.9316 0.9411
(20, 20) (1.00, 5.00) 1.0381 1.0218 1.0348
(10, 10) (0.25, 1.00) 0.9156 0.8881 0.8951

99% (15, 20) (0.50, 3.00) 0.9796 0.9576 0.8796
(20, 20) (1.00, 5.00) 1.0676 1.0436 1.0531

Table 5: ACL, PBCL & BPBL for the Parameterβ

n = 24,λ = 2.00 ← β →
ε ↓ (m1,m2) ↓ (α,β ) ↓ ACL PBCL BPBL

(10, 10) (0.25, 1.00) 1.2158 1.2095 1.2141
90% (15, 20) (0.50, 3.00) 1.5776 1.5694 1.5754

(20, 20) (1.00, 5.00) 1.6917 1.6418 1.6842
(10, 10) (0.25, 1.00) 1.4538 1.4314 1.4318

95% (15, 20) (0.50, 3.00) 1.8735 1.8601 1.8609
(20, 20) (1.00, 5.00) 2.1009 1.8497 2.0101
(10, 10) (0.25, 1.00) 1.7091 1.6528 1.6833

99% (15, 20) (0.50, 3.00) 2.2260 2.1768 2.1977
(20, 20) (1.00, 5.00) 2.2699 2.1921 2.0032

It is observed from the Tables (4-6) that, the limits increase asε increases. Similar, behavior also has seen when
censoring scheme changed or censored sample size increases. Remarkable point is that, the percentile Bootstrap
confidence limit (PBCL) has minimum length, whereas the approximate confidence limit (ACL) shows maximum
lengths for all considered parametric values.
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Table 06 :: ACL, PBCL & BPBL for the Parameter λ

n = 24,λ = 2.00 ← λ →
ε ↓ (m1,m2) ↓ (α,β ) ↓ ACL PBCL BPBL

(10, 10) (0.25, 1.00) 1.1121 1.1056 1.1856
90% (15, 20) (0.50, 3.00) 1.1898 1.1828 1.2684

(20, 20) (1.00, 5.00) 1.2967 1.2891 1.3824
(10, 10) (0.25, 1.00) 1.1851 1.1776 1.2701

95% (15, 20) (0.50, 3.00) 1.2749 1.2668 1.3638
(20, 20) (1.00, 5.00) 1.3985 1.3897 1.4975
(10, 10) (0.25, 1.00) 1.2577 1.2491 1.3155

99% (15, 20) (0.50, 3.00) 1.3605 1.3512 1.3647
(20, 20) (1.00, 5.00) 1.4021 1.3292 1.5155

7 Conclusions

In the present article, the Burr Type-XII distribution is taken here as the underlying model for the study about approximate
confidence intervals (ACI), percentile Bootstrap CI, and One-Sample Bayes prediction bound lengths. The constant-
partially accelerated life test based on progressive censored data is considered here for the discussion. It is observed from
the numerical findings is that; the Percentile Bootstrap confidence limit has minimum length, whereas the approximate
confidence limit shows maximum lengths for all considered parametric values.
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