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1 Introduction patterns, their avoiders are counted by the sequence
o N . (Un)n=o = (1,1,2,6,21,77,287,1079...) defined by the

We say a permutation istandardif its support set is an  recyrrencei = 1, Un = Un 1+ (32) for n > 1, whence
initial segment of the positive integers, and for a N /2ke2
permutation 7T whose support is any set of positive U = 1+ Sk (iC7). These 7 symmetry classes thus
integers, Stf) is the standard permutation obtained by form & Wilf class []. , ,
replacing the smallest entry afby 1, next smallest by 2, Our napprpach mostly uses the generating function,
and so on. As usual, a standard permutativavoidsa ~ 2n=0UnX", which is, as a routine computation shows,
standard permutationif there is no subsequengeof 1T
for which Stp) = 7. In this contextz is a pattern, and for ;. 1—2X < 1 1) 1y L(l_’_xcl(x))'
alistT of patternsS,(T) denotes the set of permutations 2(1—x) \v1—4x 1-x
of [nN] ={1,2,...,n} that avoid all the patterns if.

In recent decades pattern avoidance has received a Igthroughout,C, = %l(Znn) - (Znn) _ (anl) denotes the
of attention. It has its formal origins in Knuttb][ and 1 VI ax i
Simion and Schmidt7] who considered the problem on Catalan numberﬁ andi(x) = =3~ the generating
permutations and enumerated the number of members dHNCtON 3 n-0Cnx"; C'(x) denotes the derivative &(x).
S avoiding a particular element or subset, respectively, of ©r the first 2clazss, we give a bijective enumeration that
3-letter patterns. Since then the problem has bee@xplains the(y"7) summand irun.
addressed on several other discrete structures, such as Numerical computations show that at most 7 of the
compositionsk-ary words, and set partitions; see, e.g., 317 symmetry classes of triples of 4-letter patterns have
the texts B, 6] and references contained therein. Here, weavoiders counted by this sequence. Our result is the
provide further enumerative results concerning thefollowing.
classical avoidance problem on permutations.

Members ofS, avoiding a single 4-letter pattern have Theorem 1Let
been well studied (see, e.9.8{l0]). There are 56
symmetry classes of pairs of 4-letter patterns, for all but 8 T1 = {241331421324}, T, ={214324131324},

of which the avoiders have been enumeratddless is Ts = {214313241342, T,={314241321243,

known about the 317 symmetry classes of triples of _ _
4-letter patterns. Here, we show that for precisely 7 Ts = {314241231423), T, = {413214321243,

symmetry classes (as defined itj)[of triples of 4-letter T; = {413213421324.
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Then
F=Y [Si(T)X =1+

n>0

forallj=1,2,...,7.

X

1_X(1+XC’(X)),

i3

2 Proofs I 1lli
_______ I_ 1+
1o

For casesl = T;, T, we note that all patterns involved : 9 :

are reverse indecomposable, also known as skew i 8 71

indecomposable. (Seg][for terminology. As a reminder, | 6 !

the permutation 21534 is decomposable with components : 5 :

21 and 534, but 21534 is reverse indecomposable and the _—————— 4

reverse components, also known as skew components, of
68721534 are 687 and 21534.) So a permutation avigids
(resp.Ty) if and only if each of its reverse components
does so. This observation reduces the problem to findin
the numberv, of reverse indecomposable avoiders of
length n, for then withV(x) := Y,>1vnX", the desired
generating functiory .- |Sa(T)[X" is 1/(1—V(x)) by the
combinatorial interpetation of the Invert transform.

%ig. 1: A Ty-avoider, last entry£ 1, with its reverse components
decomposed

Among the reverse components one can now identify
the singletons, all on the diagonal, and for each
non-singleton its first component and tail (all entries

2.1 1 ={241331421324}

Supposartis a reverse indecomposaflgavoider. Recall

that a separable permutation is one that avoids the firsg

two patterns inT; and a separable permutation of length
> 2 is either decomposable or reverse decomposhle [
Hence, fom > 2, ris decomposable and sois uniquely
expressible asn @ ™ with 1@, 7 honemptyT;-avoiders
and i indecomposable. (Herep is the direct sum of
standard permutations, thus 283243= 2134576.) But
now, avoiding the last pattern, 1324, Tnpimplies thatrm
avoids 132 ande avoids 213. Conversely, ifg is an
indecomposable 132-avoider an@, is a nonempty
213-avoider, thenrm & ™ avoids T;. The generating
function for indecomposable  132-avoiders
X(1+ xC(x)%) and for nonempty 213-avoiders@®x) — 1.
Hence, the generating function for reverse
indecomposable T;-avoiders is
V(X) = X(1+ xC(x)%)(C(x) — 1), and one checks that
F(x) = 1/(1—V(x)) coincides with 1 % (1+xC/(x)).
Alternatively, we can give a direct bijective count for
caseT;. A permutationrt whose last entry is 1 avoidg
iff St(m\{1}) avoids T;. Hence, with uy = |Si\(T1)|,
Un Un—1 counts
on = {1me $(T1) : last entry ofrris not 1}. On the other

hand, (3"7) counts lattice paths afi— 2 upsteps(1,1)
and n downsteps (1,—1), or, by prepending and
appending an upsteff®"?) counts the set, of lattice
paths ofn upsteps and downsteps that start and end with
an upstep. Here is a bijection fronf, to %,.

Given 1T € <7, the staircase with corners at the right-

is

following the first component). These are the dashed
quare enclosures in Figure 1. Since each first component
is a 132-avoider, it is determined by its left-right minima
which in turn are specified by the lattice path for which
the left-right min serve as corners (drawn heavy in Figure
2). Similarly each tail is a 213-avoider and so is
determined by an analogous lattice path based on its
right-left maxima (also drawn heavy in Figure 2). The

18

11

|eft max|ma (heavy ||ne in F|gure 1) |dent|f|es the reverse F|g 2: The lattice pa’[hs that determineT@-aVOider, last entry

components oft by its contacts with the diagonal.

#1
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singletons are bracketed by a south-then-east 2-step pah.2 = {21432413 1324}

as in Figure 2. Note that each first component is either a . . o

singleton or else, since it is indecomposable andWe have the following simple characterization of reverse
separable, it is reverse decomposable and consequently idecomposables amorg-avoiders; the proof follows

lattice path has an interior return to the diagonal linefrom the fact that if 1 appears afteiin a 2413-avoiderr,
joining its endpoints. thenrris reverse decomposable.

The heavy-line paths, taking left-right order into Lemma 1A T,-avoider m of length n is reverse
account, determing. Note that the first path always starts indecomposable if and only if appears before n i
with a south step because it brackets either a singleton an
a first component. Also, the last path always ends with
south step since it brackets the tail of a non-singletonbeforen Write 71 asA1BnC whereA, B.C are substrings
reverse componenti(does not end with a 1). Rotate each possibly empty. If 7T is a Tz-avoidér then (i)B is '
path 135 clockwise and concatenate, with bullets to increasing, for else 1 anare the “1” and “4” of a 1324

mgrk the division into reverse components (Figure 3). Thepattern, and (iiA > C (meaning all entries oA exceed all
tail paths appear below the dotted line, while the firstentries ofC), for else 1 anch are the “1” and “4” of a

aSupposen is a permutation orn] in which 1 appears

component and singleton paths appear above it. 2143 pattern. Consequently we may ref® write 1 as
A1B1B;B3nC with By < maxC) < By < min(A) < Bg
if A andB are both nonempty,
_ 1By B3nC with B; < max(C) < B3
if A=0, C+#£0,
A1B;B3n with B; < min(A) < B3
if A£0, C=0.

Then we also have, for d»-avoider, (iii) m =
) o St(A1 1B3) is nonempty, avoids 132 for elgds the “4” of
Fig. 3: A balanced path with distinguished returns a 1324, and 1 is not immediately followed by 27 by
definition of Bg, and (iv) & := St(B1nC) is nonempty,
. avoids 213 for else 1 is the “1” of 1324, and nfax) is
The resulting path hasupstepd) andn downstep® not immediately preceded by mag) — 1 in ™ by
we must first tweak the subpaths corresponding to firsknowledge ofj := |B,|, m, and 7 : add 1 to each entry
components of non-singleton reverse components beforgf r, except replace maxe) by n to getB; nC, then add
erasing the bullets. Each such subpath is a Dyck path angg, | 1 |B,| + |C| to each non-1 entry ofg to getA; 1Bs,
has at least 2 upsteps from ground level since theyng |astly fill in the (increasing) entries B.
corresponding permutation is indecomposable. Transfer conversely, forn > 2, given j > 0 and standard
the secondupstep from ground level to the beginning of permutationsrs, 76 with j + |78| + |75| = n and 1,
the subpath and then erase the bullets (Figure 4). satisfying conditions (iii) and (iv) respectively, the tiat
construction produces a reverse indecomposable
T,-avoider on[n]. Thus we letw, denote the number of
pairs (1m, 1) of total lengthn satisfying (iii) and (iv) so
that, forn > 2, vy, = Wo + Wz + - - - + W, gives the number
of reverse indecomposabl&-avoiders on|n], while

vy =1.
To computew,, we have the following elementary
counts.
Lemma 2Define  wr,s) by w1,1) = 1 and
Fig. 4: A balanced path W(r,s) =Crs 1= 5o (32 forr >2, 1<s<r.

Then, forl <s<r, w(r,s) is both
(i) the number oil32avoiding permutations df] in

The resulting path is i8,. To reverse the map, take which the number of entries weakly aftdr is s
each maximal subpath above ground level—a nonemptyequivalently,1 is in position r—s+ 1) and 1 is not
Dyck path—and transform it, inserting bullets, as follows: immediately followed bg, and
() (UDX — (sUD)¥ where k > 1, (ii) (il ) the number o213-avoiding permutations df] in
(UD)*UUPDQDR— (:UD)XsUPDUQDRwherek >0  which the number of entries weakly before r is s
and P,Q,R are possibly empty Dyck paths (every (equivalently, ris in position)sand r is not immediately
nonempty Dyck path has one of these two forms). preceded by +1. O
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We havew, = 1, and fom > 3, by Lemma2,
n-1r n

BRI

To evaluate these sums, we use
Lemma 3Forr > 2,

—r
w(n—r,t).

)

i W(r, S) = Cr,2,2.

s=1
O
Ther =1termin @) contributesz{‘;llw(n —1,t)=Cy_3p2.
Ther =n— 1 term similarly contribute3 " w(n—1,s) =
Ch—3,2. The remaining terms irll§ contribute (only fomn >
4)

n-2r n

—r n—-2
w(r,s) Yy win—rt)="% C_22Chr22=Cn 45,
rZZle t= r;

the last equality using the convolution property,

(Chr)nz0 * (Cns)n=0 = (Cnris+1)nz0, Of the Catalan
triangle numbers. Hence, for> 3,

Wn = 2Cq_32+Ch_45

withC_15:=0.
Since 3,50ChkX" = C(x)k“, it is now routine to
compute the generating function

W(X) := 3 ns2WnX" = X% + 2x°C(x)3 + x*C(x)® and, since
Vh = W + W3 + - -+ + Wy, we find the generating function
V(X) = SpiWnX" = X + W(X)/(1 — x). After
simplification, thisV (x) agrees with th& (x) in CaseT;.

2.3 3 ={214313241342%

Lemma 4leta, = |S(Ts)|. Then

an=4a, 1—2ay 2
n-2i-1

+ % Z Z & j_q1+1
iS2 iy +tin g a=j-1

withag=a; = 1.

n—j—2
g Ci

ProofLet =i’ be a member 0§,(T3). If i=nn—1
then there are,,_1 possible permutations. So assums 1
i<n-2and 1< j<n, andletr=ijm be a member of
Si(Ts). If j > i, one may verify thatt avoidsTs if and only
ifeitherj=i+1orj=n.Clearly,r=i(i+21)m (resp.m=
in7’') avoidsTs if and only if (i + 1) 7’ (resp.i ) avoidsTs,
which implies there are,,_1 possible permutations. Note
that the casé=n— 1 andj = n is counted twice, which
hasa,,_» possible permutations. Hence

n-2i—1
an =4an_1— 2852+ an(i, ),

whereay(i, j) is the number of permutatioms=ij 7’ in
Si(Ta).

Now supposa > i > j > 1. Sincerr avoids 2143, we
have thatt contains, (i +1),...,n in that order. Sincet
avoids 1324 and 1342, it must be thatloes not contain
any letter? with j+1 < ¢ <i—1to the left ofi + 1. Thus,
mcontainsi, j,(j+1),...,(i—1),(i+21),(i+2),...,nin
that order. Hence, we can expresas

m=ijrV(j+1)r?...(i—-1)nD
(i+ 1)+ 2)nl =142 . ppn=D),
where ¥ avoids 132 for alls = 1,2,....n—j — 2,
a"1-Ynm"-1) avoids Tz, each letter ofi'® is greater
than each letter of>*? foralls=1,2,...,n—j—3, and
each letter of " 1-2 is greater than each letter of

m"-i-U(-) Hence, sincéS,(132)| = C, (see p]), we
obtain

n—j—2
an(i, j) = > Qi 141 |‘l Cis,
i1t +in-j_1=j-1 s=

which completes the proof.
By Lemmad4, we have

n-3 j
@ =4an-1—2a2+ ) | > &j.q+1 rlqs
1=1 gt Hj=n-3—]j s=

with ap = a1 = 1. Let A(X) = Y 0aX". Then our
recurrence can be written as

A(X) —1—x=4x(A(X) — 1) — 23(A(X) — 1)
J

ixIT2(A(X) — 1)C(x)],
+J;JX (A(X) —1)C(x)

leading to
Theorem 2The generating function for the number of
permutations of Ts) is given by

Fa(x) =1+ %( (1+xC(x)).

2.4 T, ={314241321243;

Let Gm(x) be the generating function fdg-avoiders with
m left-right maxima. Clearly, Go(x) = 1 and
G1(X) = XF4(X). Let Hn(X) be the generating function for
T4-avoiders where the left-right maxima form a list rof
consecutive integers.

Lemma5Let m> 1. Then

Hm(X) = XHn-1(X) +Xx ) Gj(),

j=m

where H (X) = G1(X) = XF4(X).

(@© 2017 NSP
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ProofWe denote the set of permutations®{T4) where
the left-right maxima form a list ofn consecutive integers
by <hm. Let us write an equation forHm(x). If
m=n+1-mn+2-mmn?...na"™ € o m, then the
permutation that obtained front by removing the first
letter belongs to,_1m-1. Thus, the contribution of this
case is given by XHy-1(x). Otherwise, let
n=n+1-mnYn+2-mmn?...nr"™ ¢ o m such
that 'V is a nonempty sequence with exadtjeft-right
maxima. Sat = StV (n+2—m)---nM) € S, 1(Ty)
has exactlyn+ k — 1 left-right maxima. Note that any
permutationt in §,_1(T4) with exactlym+k—1,k> 1,
left-right maxima, then 7 can be written as
7V +2—-m)-..nt™, where 7 has exactlyk
left-right maxima (' avoids 1243). Thus, the contribution
of this case is given by ¥ -1 Gm-1k(X) = X3 j>mGj(X).
Hence, by combining these two cases, we have

Hm(X) = XHm_1(X) + X Z Gj(x),

=

whereH;(X) = G1(X) = xF4(X) (by the definitions), which
completes the proof.

Lemma 6For all m> 2,
Xm

Gm(X) = Hm(x) + T—x

(C™1(x) - 1).

ProofLet =iy 1 Vi, . ..i, ™™ be any permutation of
Si(Ta) with exactly m left-right maxima. Sincet avoids
1243, we can writer as

m=im(n+2-mn?...npm,

where each letter ofi'Y) is at mosti; — 1, and each letter
of a = @ ... 1M is at mostn+ 1 — m. Now let us write
an equation foGm(x). If a is empty then the contribution
is Hn(x) (see Lemmd). Otherwise, sincet avoids 2413
and 2431, we see that each lettercofs at leasti; + 1.
Moreover, by the fact m avoids 1243, then
Y = (i;—1)---21, andip i - .. ip,m™ avoids 132, that
is, each letter oft!l) is greater than each letter af i1,

j =2,3,...,m—1. Thus, by the fact that the generating

function for the number of permutations B(132) is
C(x) (see p]), we obtain that the contribution is given by

Xm

1_X(c:m—l(x) ~1).

which implies

Gm(x) - XGm—l(X)
X

= T (C™ 9 -C" ) +x 3

j=m

Gj(x)

with G1(X) = xF(X) = X(G(x,1) + 1). By multiplying the
recurrence by™ ! and summing ovem > 2, we obtain
G(x,U) — X(G(x,1) + 1) — xuG(x, u)
Xu x2u(C(x) — 1)
(1—x)(1—uxC(x))’

(G(x,1) — G(u,x)) +

1-u

which is equivalent to

(1+ 1x_fu) G(x,u)

S X2u(C(x) — 1)
=X+ EG(X’ h+ (1=x)(1—uxCx)’

This functional equation can be solved by the kernel
method (see4] and references therein) using= C(x),
leading to

Theorem 3The generating function for the number of
permutations of §Ta) is given by

Fa(x) = 1+ G(x, 1) = %((de(x)).

2.5T5={314241231423;

Let Gm(x) be the generating function for the number of
permutations irS,(Ts) with exactlym left-right maxima.
Clearly,Gp(x) = 1 andG;(x) = xFs(X). In the next lemma
we deal with the hardest case, namely= 2.

Lemma 7 We have

~ X3(C(x) — 1—xC(x))Fs(X) + X(Fs(x) — 1)
N 1-x '

Gz2(x)

ProofLet m=ia’na’” be any permutation with exactly two
left-right maxima. Let us write an equation f@x(x). In
casd = n— 1, the contribution ix(Fs(x) —1). If i <n—1,

By combining the two contributions, we complete the thena” containsn— 1 and we consider two cases:

proof.

Now, we are ready to find an explicit formula for
Fa(x). Let G(xu) = ¥;>1Gj(x)u~t. Note that
F4(X) = 14+ G(x,1). By Lemma5 and Lemméb, we have

Gm(X) = X"F4(X) + % (€™ t(x)-1)
Xt Gj(x),
AP

—TT contains a lette¥ betweenn andn— 1 such that
£ > i. In this case each letter af” is greater thar.
Thus, the contribution of this case is given by
X%(C(x) — 1 — xC(x))Fs(X), whereC(x) — 1 — XC(X)
counts the number of nonempty permutation of
$1(231) such that the first letter is nat(see p]).

—1T does not contain any lettérbetweenn andn— 1
such tha? > i. Som=ia’n(n—1)a”, which implies
that the contribution is given ¥Gy(x).

@© 2017 NSP
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By combining all three cases, we obt&p(x) = X(Fs(x) —
1) +x%(C(x) — 1—XC(x)) Fs(x) +xGz(x), which completes
the proof.

Now we treat the casm > 3.

Lemma 8For all m > 3, Gm(x) = (XC(x))™ Gz (x).

ProofLet T € S,(Ts) be any permutation with exactin
left-right maxima. Thernrt can be written as

=i, Yim@ .. ipyr™

with im = n. Note thatrr avoidsTs if and only if (1) 7'
avoids 231 for allj = 3,4,...,m, (2) i.Yi,? avoids
Ts, (3) each letter ofti™Y is greater than each letter of
n) for j =3,4,...,m—1, (4) each letter of® is
greater than each letter ofrf'Vi, 2. Hence, by the fact
that 3,50/Sh(23D)|x" = C(x) (see Pp]), we get

Gm(X) = (XC(x))™ °Ga(x), as claimed.

Using the expressions above 185(x) andG(x) and
Lemmas, we have

9= 3 il

which, by Lemmar, implies the following result.

= 1+ xFs(X) + G2(X)C(x),

Theorem 4The generating function for the number of
permutations of §Ts) is given by

Fs(x) =1+ 1—:((1+XC/(X)).

2.6 |5 ={413214321243

Let Gm(x) be the generating function for the number of

permutations 0f5,(Ts) with exactlym left-right maxima.
Clearly, Go(x) = 1 andGs(x) = xFs(X). By using similar
arguments as in the proof of Lemnin we obtain the
following relation.

Lemma9let m> 1 and let Hy(x) be the generating

ProofLet m=i, Vi@ - .ipyil™ be any permutation of
Si(Te) with exactlym left-right maxima. Sincet avoids
1243, we can writgr as

m=imY(n+2-mna@mn+3-mn®...ngm,

where each letter ofi'Y) is at mosti; — 1, and each letter
of a = ?@... 1M is at mostn+ 1 — m. Now let us write
an equation foGn(x). If a is empty then the contribution
is Hm(X) (see Lemm@®). Otherwise, sincer avoidsTg, we
see that there exactly uniqye2 < j < m, such thatt'})

is not empty, which leads ta'l) = (i; +1)--- (n+1—m).
Thus,
—Sincermravoids 1243, we have that
V.= = (i; —1)...21
—Since m avoids 2431, we have that!) can be

decomposed as
a0 iD=l

where all letters oft)) on the left side of the letter
i1+ 1, 19 avoidsTs, and i) avoids 21 (sincet
avoids 1432), fok=1,2,...,i; — 1.

Hence, the contribution in this case is

Xm+1 m 1
—Fe(X) (
1-x gl 1- %

2)-

By combining the two contributions, we complete the
proof.

Now, we ready to find an explicit formula fdfs(x).
Let  G(xu) ¥i>1Gj(x)u~1.  Note that
Fe(X) = 14+ G(x,1). By Lemma9 and LemmalO, we
have

Gm(X) — XGn-1(X)
X1

—X(G(X, D+1)

(1—x)m1
(1—2x)m-1

= +XZGJ(X)

St

with Gy (x) = xFs(X) = X(G(x, 1) + 1). By multiplying the
recurrence by™ ! and summing ovem > 2, we obtain

function for the number of permutations in Sy(Ts) G(x,u) —x(G(x,1) + 1) — xuG(x, u)
where the left-right maxima ofmm are exactly XU X3(G(x,1) + 1
n+1-mn+2—m,....n. Then = 1(Cx1) —Gux) + 1—(2x(—x()1—x))u’
Hm(X) =XHm-1+Xx % Gj(x) which is equivalent to
&
XUP
with Hy(x) = xFs(X). <1+ 1-u ) G(x,u)
Lemma 10For allm > 2, — x4 X
_ 1-2x—x(1—x)u
Xm+ L= : X x3

Z A i vy AR
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This functional equation can be solved by the kernel

method (see4] and references therein) using= C(x),
leading to

Theorem 5The generating function for the number of

permutations of §Tg) is given by

Fo(X) = 1+ G(x,1) = 1+ —— (1+xC (X)),

2.7 T ={413213421324

Let Gn(x) be the generating function for the number of

permutations irS,(T7) with exactlym left-right maxima.
Clearly, Go(x) = 1 and
G1(X) = XT n>0|Sh(132) X" = XC(x) (see B]). In the next
lemma we deal with the hardest case, nanmely 2.

Lemma 11We have

X2(3—4x— /1—4x)

Gal¥) = (1—X)vI- X1+ 1 ax)

ProofLet G,k(x) denote the generating function for

Sk = {me S(T7) : m has exactly two left-right
maxima and the leftmost letter af is n— 1 —k}. Thus
G2(X) = S5 Gok(X)-

Now letrre S, and consider the casks= 0, k=1,
and 2< k < n— 2 separately:

—k = 0. Herer can be presented as= (n— 1)a’na”.
If m has at least three Iletters,
m=(n—1)B'(n—2)B"na” where each letter g8’ is
greater than each letter of ”a”, or
m= (n—1)a’'nB’'(n—2)B" where each letter af’3’
is greater than each letter Bf'. Thus, by the fact that
S n>0/Sh(132)|x" = C(x), we obtain

Go,0(X) = X* +XC(X)G2,0(X) + XC(X)Gz,0(X),

which implies

2

X
Goo(X) = .
200X) = =
-k = 1. Here m <can be presented
m= (n—2)a’'na”(n— 1)a”. Similar to the case
k = 0, by considering the position of— 3, we obtain
that

Gz1(X) = x®+XC(X)Gz.1(X)
+ (XC(X))2G2,0(X) + X2C(X)Gp,0(X).

By Casek = 0, we obtain

O X(1-x(1-vI=4)
CVI—X1+V1-4x)

G2,1(X)

then either

as

—2 < k<n-2.Heremrcan be presented as= (n—1—
kK)a’'na”. If n— 1is the leftmost lettef > n—1—Kkin
a” then sinceat avoids 4132, we have that- 1 is the
leftmost letter ofa’. Otherwise, sincer avoidsT7, we
have thah — 1 is the rightmost lettef > n— 1 — k of
o”. Sincerravoids 1324, we can writg as

m=(n-1-ka'ng®n-kpk...(n—1)pW.

Since 1 avoids T7, we see that each letter @) is
greater than each letter of g1, for
j=kk—1,...,2. Moreover, each letter ai’B© is

greater than each letter @, It is not hard to see

that B() avoids 132 for allj = 1,2,...,k and
(n—1-k)a'(n—k)BO isin S, k0. Hence,
Gak(X) = XGp_1(X) + (XC(X))*G,0(X).
By summing ovek > 2, we obtain
G2(X) — G2,0(X) — G2.1(X)

(XC(x))?

=X(G2(X) — Gz0(X)) + 1—xC(x)

Gz’o(X).

Using the evaluations above foByo and Gpo, we
complete the proof.

Now we treat the casm > 3.

Lemma 12For all m > 3, Gy(x) = (XC(X))™2G(x).

ProofLet 11 € S,(T7) be any permutation with exactiy
left-right maxima. Therrt can be written as

=i (4 17D ... (i 4+ m— 2) DD,

Note thatrr avoidsTy if and only if (1) i) avoids 132 for
all j=0,1,....m—3, (2)ir™2na™Y avoids T, (3)

each letter oft!)) is greater than each letter mfi ™Y for

j=0,1,...,m—4, (4) there is no lettef in ™2 (™)

such that/ between the minimal letter o™ %) andi +

m— 2. HenceGm(x) = (XC(x))™2G,(x), as claimed.

Using the expressions above 18g(x) andG;(x) and
Lemmal2, we have

Fi(X) = 3 G}(X) = 1+XCx) + Ga()CX)
>

which, by Lemmall, implies the following result.

Theorem 6The generating function for the number
permutations of §T7) is given by

F(x) = 1+ %((de(x)).
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3 Conclusion

In this paper, we have used generating functions to
determine all symmetry classes of permutations avoiding
a triple of 4-letter patterns with counting sequence
Uh = 1+ 3P, (Zkkaz) A bijective argument helps to

explain the(3~2) summand iru,.
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