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1 Introduction

We say a permutation isstandardif its support set is an
initial segment of the positive integers, and for a
permutation π whose support is any set of positive
integers, St(π) is the standard permutation obtained by
replacing the smallest entry ofπ by 1, next smallest by 2,
and so on. As usual, a standard permutationπ avoidsa
standard permutationτ if there is no subsequenceρ of π
for which St(ρ) = τ. In this context,τ is a pattern, and for
a list T of patterns,Sn(T) denotes the set of permutations
of [n] = {1,2, . . . ,n} that avoid all the patterns inT.

In recent decades pattern avoidance has received a lot
of attention. It has its formal origins in Knuth [5] and
Simion and Schmidt [7] who considered the problem on
permutations and enumerated the number of members of
Sn avoiding a particular element or subset, respectively, of
3-letter patterns. Since then the problem has been
addressed on several other discrete structures, such as
compositions,k-ary words, and set partitions; see, e.g.,
the texts [3,6] and references contained therein. Here, we
provide further enumerative results concerning the
classical avoidance problem on permutations.

Members ofSn avoiding a single 4-letter pattern have
been well studied (see, e.g., [8–10]). There are 56
symmetry classes of pairs of 4-letter patterns, for all but 8
of which the avoiders have been enumerated [1]. Less is
known about the 317 symmetry classes of triples of
4-letter patterns. Here, we show that for precisely 7
symmetry classes (as defined in [1]) of triples of 4-letter

patterns, their avoiders are counted by the sequence
(un)n≥0 = (1,1,2,6,21,77,287,1079, . . .) defined by the
recurrenceu0 = 1, un = un−1+

(2n−2
n−2

)

for n≥ 1, whence

un = 1+ ∑n
k=2

(2k−2
k−2

)

. These 7 symmetry classes thus
form a Wilf class [1].

Our approach mostly uses the generating function,
∑n≥0unxn, which is, as a routine computation shows,

1+
1−2x

2(1− x)

(

1√
1−4x

−1

)

= 1+
x

1− x

(

1+ xC′(x)
)

.

Throughout,Cn = 1
n+1

(2n
n

)

=
(2n

n

)

−
( 2n

n−1

)

denotes the

Catalan number, andC(x) = 1−
√

1−4x
2x the generating

function ∑n≥0Cnxn; C′(x) denotes the derivative ofC(x).
For the first class, we give a bijective enumeration that
explains the

(2n−2
n−2

)

summand inun.
Numerical computations show that at most 7 of the

317 symmetry classes of triples of 4-letter patterns have
avoiders counted by this sequence. Our result is the
following.

Theorem 1.Let

T1 = {2413,3142,1324}, T2 = {2143,2413,1324},
T3 = {2143,1324,1342}, T4 = {3142,4132,1243},
T5 = {3142,4123,1423}, T6 = {4132,1432,1243},
T7 = {4132,1342,1324}.
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Then

Fj(x) = ∑
n≥0

|Sn(Tj)|xn = 1+
x

1− x

(

1+ xC′(x)
)

,

for all j = 1,2, . . . ,7.

2 Proofs

For casesT = T1, T2, we note that all patterns involved
are reverse indecomposable, also known as skew
indecomposable. (See [2] for terminology. As a reminder,
the permutation 21534 is decomposable with components
21 and 534, but 21534 is reverse indecomposable and the
reverse components, also known as skew components, of
68721534 are 687 and 21534.) So a permutation avoidsT1
(resp.T2) if and only if each of its reverse components
does so. This observation reduces the problem to finding
the numbervn of reverse indecomposable avoiders of
length n, for then with V(x) := ∑n≥1vnxn, the desired
generating function∑n≥0 |Sn(T)|xn is 1/(1−V(x)) by the
combinatorial interpetation of the Invert transform.

2.1 T1 = {2413,3142,1324}
Supposeπ is a reverse indecomposableT1-avoider. Recall
that a separable permutation is one that avoids the first
two patterns inT1 and a separable permutation of length
≥ 2 is either decomposable or reverse decomposable [2].
Hence, forn≥ 2, π is decomposable and soπ is uniquely
expressible asπ1 ⊕ π2 with π1,π2 nonemptyT1-avoiders
and π1 indecomposable. (Here,⊕ is the direct sum of
standard permutations, thus 213⊕ 1243= 2134576.) But
now, avoiding the last pattern, 1324, inT1 implies thatπ1
avoids 132 andπ2 avoids 213. Conversely, ifπ1 is an
indecomposable 132-avoider andπ2 is a nonempty
213-avoider, thenπ1 ⊕ π2 avoids T1. The generating
function for indecomposable 132-avoiders is
x(1+ xC(x)3) and for nonempty 213-avoiders isC(x)−1.
Hence, the generating function for reverse
indecomposable T1-avoiders is
V(x) = x(1 + xC(x)3)(C(x) − 1), and one checks that
F(x) = 1/(1−V(x)) coincides with 1+ x

1−x

(

1+ xC′(x)
)

.
Alternatively, we can give a direct bijective count for

caseT1. A permutationπ whose last entry is 1 avoidsT1
iff St(π\{1}) avoids T1. Hence, with un = |Sn(T1)|,
un − un−1 counts
An := {π ∈ Sn(T1) : last entry ofπ is not 1}. On the other
hand,

(2n−2
n−2

)

counts lattice paths ofn− 2 upsteps(1,1)
and n downsteps (1,−1), or, by prepending and
appending an upstep,

(2n−2
n−2

)

counts the setBn of lattice
paths ofn upsteps andn downsteps that start and end with
an upstep. Here is a bijection fromAn to Bn.

Given π ∈ An, the staircase with corners at the right-
left maxima (heavy line in Figure 1) identifies the reverse
components ofπ by its contacts with the diagonal.
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Fig. 1: A T1-avoider, last entry6= 1, with its reverse components
decomposed

Among the reverse components one can now identify
the singletons, all on the diagonal, and for each
non-singleton its first component and tail (all entries
following the first component). These are the dashed
square enclosures in Figure 1. Since each first component
is a 132-avoider, it is determined by its left-right minima
which in turn are specified by the lattice path for which
the left-right min serve as corners (drawn heavy in Figure
2). Similarly each tail is a 213-avoider and so is
determined by an analogous lattice path based on its
right-left maxima (also drawn heavy in Figure 2). The
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Fig. 2: The lattice paths that determine aT1-avoider, last entry
6= 1
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singletons are bracketed by a south-then-east 2-step path
as in Figure 2. Note that each first component is either a
singleton or else, since it is indecomposable and
separable, it is reverse decomposable and consequently its
lattice path has an interior return to the diagonal line
joining its endpoints.

The heavy-line paths, taking left-right order into
account, determineπ . Note that the first path always starts
with a south step because it brackets either a singleton or
a first component. Also, the last path always ends with a
south step since it brackets the tail of a non-singleton
reverse component (π does not end with a 1). Rotate each
path 135◦ clockwise and concatenate, with bullets to
mark the division into reverse components (Figure 3). The
tail paths appear below the dotted line, while the first
component and singleton paths appear above it.

Fig. 3: A balanced path with distinguished returns

The resulting path hasn upstepsU andn downstepsD
and starts and ends with an upstep. To ensure invertibility,
we must first tweak the subpaths corresponding to first
components of non-singleton reverse components before
erasing the bullets. Each such subpath is a Dyck path and
has at least 2 upsteps from ground level since the
corresponding permutation is indecomposable. Transfer
the secondupstep from ground level to the beginning of
the subpath and then erase the bullets (Figure 4).

Fig. 4: A balanced path

The resulting path is inBn. To reverse the map, take
each maximal subpath above ground level—a nonempty
Dyck path—and transform it, inserting bullets, as follows:
(i) (UD)k → (.UD)k where k ≥ 1, (ii)
(UD)kUUPDQDR→ (.UD)k.UPDUQDRwherek ≥ 0
and P,Q,R are possibly empty Dyck paths (every
nonempty Dyck path has one of these two forms) .⊓⊔

2.2 T2 = {2143,2413,1324}
We have the following simple characterization of reverse
indecomposables amongT2-avoiders; the proof follows
from the fact that if 1 appears aftern in a 2413-avoiderπ ,
thenπ is reverse decomposable.

Lemma 1.A T2-avoider π of length n is reverse
indecomposable if and only if1 appears before n inπ .
⊓⊔
Supposeπ is a permutation on[n] in which 1 appears
beforen. Write π asA1BnCwhereA,B,C are substrings,
possibly empty. If π is a T2-avoider, then (i) B is
increasing, for else 1 andn are the “1” and “4” of a 1324
pattern, and (ii)A>C (meaning all entries ofA exceed all
entries ofC), for else 1 andn are the “1” and “4” of a
2143 pattern. Consequently we may refineB to writeπ as

π =







































A1B1 B2B3nC with B1 < max(C)< B2 < min(A)< B3

if A andB are both nonempty,

1B1 B3nC with B1 < max(C)< B3

if A= /0, C 6= /0,

A1B1 B3n with B1 < min(A)< B3

if A 6= /0, C = /0.

Then we also have, for aT2-avoider, (iii) π1 :=
St(A11B3) is nonempty, avoids 132 for elsen is the “4” of
a 1324, and 1 is not immediately followed by 2 inπ1 by
definition of B3, and (iv) π2 := St(B1nC) is nonempty,
avoids 213 for else 1 is the “1” of 1324, and max(π2) is
not immediately preceded by max(π2) − 1 in π2 by
definition ofB1. Next, note thatπ can be recovered from
knowledge of j := |B2|, π1, andπ2 : add 1 to each entry
of π2 except replace max(π2) by n to getB1nC, then add
|B1|+ |B2|+ |C| to each non-1 entry ofπ1 to getA11B3,
and lastly fill in the (increasing) entries ofB2.

Conversely, forn ≥ 2, given j ≥ 0 and standard
permutationsπ1,π2 with j + |π1|+ |π2| = n and π1,π2
satisfying conditions (iii) and (iv) respectively, the latter
construction produces a reverse indecomposable
T2-avoider on[n]. Thus we letwn denote the number of
pairs(π1,π2) of total lengthn satisfying (iii) and (iv) so
that, forn≥ 2, vn = w2+w3+ · · ·+wn gives the number
of reverse indecomposableT2-avoiders on [n], while
v1 = 1.

To computewn, we have the following elementary
counts.

Lemma 2.Define w(r,s) by w(1,1) = 1 and
w(r,s) = Cr−s−1,s =

s+1
2r−s−1

(2r−s−1
r−s−1

)

for r ≥ 2, 1 ≤ s≤ r.
Then, for1≤ s≤ r, w(r,s) is both

(i ) the number of132-avoiding permutations of[r] in
which the number of entries weakly after1 is s
(equivalently,1 is in position r− s+ 1) and 1 is not
immediately followed by2, and

(ii ) the number of213-avoiding permutations of[r] in
which the number of entries weakly before r is s
(equivalently, r is in position s) and r is not immediately
preceded by r−1. ⊓⊔
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We havew2 = 1, and forn≥ 3, by Lemma2,

wn =
n−1

∑
r=1

r

∑
s=1

w(r,s)
n−r

∑
t=1

w(n− r, t) . (1)

To evaluate these sums, we use

Lemma 3.For r ≥ 2,

r

∑
s=1

w(r,s) =Cr−2,2 .

⊓⊔
Ther = 1 term in (1) contributes∑n−1

t=1 w(n−1, t)=Cn−3,2.
Ther = n−1 term similarly contributes∑n−1

s=1 w(n−1,s)=
Cn−3,2. The remaining terms in (1) contribute (only forn≥
4)

n−2

∑
r=2

r

∑
s=1

w(r,s)
n−r

∑
t=1

w(n− r, t) =
n−2

∑
r=2

Cr−2,2Cn−r−2,2 =Cn−4,5 ,

the last equality using the convolution property,
(Cn,r)n≥0 ∗ (Cn,s)n≥0 = (Cn,r+s+1)n≥0, of the Catalan
triangle numbers. Hence, forn≥ 3,

wn = 2Cn−3,2+Cn−4,5

with C−1,5 := 0.
Since ∑n≥0Cn,kxn = C(x)k+1, it is now routine to

compute the generating function
W(x) := ∑n≥2wnxn = x2+2x3C(x)3 + x4C(x)6 and, since
vn = w2 +w3 + · · ·+wn, we find the generating function
V(x) := ∑n≥1vnxn = x + W(x)/(1 − x). After
simplification, thisV(x) agrees with theV(x) in CaseT1.

2.3 T3 = {2143,1324,1342}
Lemma 4.Let an = |Sn(T3)|. Then

an = 4an−1−2an−2

+
n−2

∑
i=2

i−1

∑
j=1

∑
i1+···+in− j−1= j−1

ain− j−1+1

n− j−2

∏
s=1

Cis

with a0 = a1 = 1.

Proof.Let π = iπ ′ be a member ofSn(T3). If i = n,n−1
then there arean−1 possible permutations. So assume 1≤
i ≤ n−2 and 1≤ j ≤ n, and letπ = i j π ′ be a member of
Sn(T3). If j > i, one may verify thatπ avoidsT3 if and only
if either j = i+1 or j = n. Clearly,π = i(i+1)π ′ (resp.π =
inπ ′) avoidsT3 if and only if (i+1)π ′ (resp.iπ ′) avoidsT3,
which implies there arean−1 possible permutations. Note
that the casei = n−1 and j = n is counted twice, which
hasan−2 possible permutations. Hence

an = 4an−1−2an−2+
n−2

∑
i=2

i−1

∑
j=1

an(i, j),

wherean(i, j) is the number of permutationsπ = i j π ′ in
Sn(T3).

Now supposen≥ i > j ≥ 1. Sinceπ avoids 2143, we
have thatπ containsi,(i +1), . . . ,n in that order. Sinceπ
avoids 1324 and 1342, it must be thatπ does not contain
any letterℓ with j +1≤ ℓ≤ i−1 to the left ofi+1. Thus,
π containsi, j,( j +1), . . . ,(i − 1),(i +1),(i + 2), . . . ,n in
that order. Hence, we can expressπ as

π =i j π (1)( j +1)π (2) · · ·(i −1)π (i− j)

(i +1)π (i− j+1)(i +2)π (i− j+2) · · ·nπ (n− j),

where π (s) avoids 132 for alls = 1,2, . . . ,n − j − 2,
π (n− j−1)nπ (n− j) avoidsT3, each letter ofπ (s) is greater
than each letter ofπ (s+1) for all s= 1,2, . . . ,n− j −3, and
each letter ofπ (n− j−2) is greater than each letter of
π (n− j−1)π (n− j). Hence, since|Sn(132)|=Cn (see [5]), we
obtain

an(i, j) = ∑
i1+···+in− j−1= j−1

ain− j−1+1

n− j−2

∏
s=1

Cis,

which completes the proof.

By Lemma4, we have

an = 4an−1−2an−2+
n−3

∑
j=1

j ∑
i1+···+i j+1=n−3− j

ai j+1+1

j

∏
s=1

Cis

with a0 = a1 = 1. Let A(x) = ∑n≥0anxn. Then our
recurrence can be written as

A(x)−1− x= 4x(A(x)−1)−2x2(A(x)−1)

+ ∑
j≥1

jx j+2(A(x)−1)C(x) j ,

leading to

Theorem 2.The generating function for the number of
permutations of Sn(T3) is given by

F3(x) = 1+
x

1− x

(

1+ xC′(x)
)

.

2.4 T4 = {3142,4132,1243}
Let Gm(x) be the generating function forT4-avoiders with
m left-right maxima. Clearly, G0(x) = 1 and
G1(x) = xF4(x). Let Hm(x) be the generating function for
T4-avoiders where the left-right maxima form a list ofm
consecutive integers.

Lemma 5.Let m≥ 1. Then

Hm(x) = xHm−1(x)+ x ∑
j≥m

G j(x),

where H1(x) = G1(x) = xF4(x).
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Proof.We denote the set of permutations ofSn(T4) where
the left-right maxima form a list ofmconsecutive integers
by An,m. Let us write an equation forHm(x). If
π = (n+1−m)(n+2−m)π (2) · · ·nπ (m) ∈ An,m, then the
permutation that obtained fromπ by removing the first
letter belongs toAn−1,m−1. Thus, the contribution of this
case is given by xHm−1(x). Otherwise, let
π = (n+1−m)π (1)(n+2−m)π (2) · · ·nπ (m) ∈ An,m such
thatπ (1) is a nonempty sequence with exactlyk left-right
maxima. Soπ ′ = St(π (1)(n+2−m) · · ·nπ (m)) ∈ Sn−1(T4)
has exactlym+ k− 1 left-right maxima. Note that any
permutationπ ′ in Sn−1(T4) with exactlym+ k−1, k ≥ 1,
left-right maxima, then π ′ can be written as
π ′(1)(n + 2 − m) · · ·nπ ′(m), where π ′(1) has exactly k
left-right maxima (π ′ avoids 1243). Thus, the contribution
of this case is given byx∑k≥1Gm−1+k(x) = x∑ j≥mG j(x).

Hence, by combining these two cases, we have

Hm(x) = xHm−1(x)+ x ∑
j≥m

G j(x),

whereH1(x) = G1(x) = xF4(x) (by the definitions), which
completes the proof.

Lemma 6.For all m≥ 2,

Gm(x) = Hm(x)+
xm

1− x
(Cm−1(x)−1).

Proof.Let π = i1π (1)i2π (2) · · · imπ (m) be any permutation of
Sn(T4) with exactlym left-right maxima. Sinceπ avoids
1243, we can writeπ as

π = i1π (1)(n+2−m)π (2) · · ·nπ (m),

where each letter ofπ (1) is at mosti1−1, and each letter
of α = π (2) · · ·π (m) is at mostn+1−m. Now let us write
an equation forGm(x). If α is empty then the contribution
is Hm(x) (see Lemma5). Otherwise, sinceπ avoids 2413
and 2431, we see that each letter ofα is at leasti1 + 1.
Moreover, by the fact π avoids 1243, then
π (1) = (i1−1) · · ·21, andi2π (2) · · · imπ (m) avoids 132, that
is, each letter ofπ ( j) is greater than each letter ofπ ( j+1),
j = 2,3, . . . ,m− 1. Thus, by the fact that the generating
function for the number of permutations inSn(132) is
C(x) (see [5]), we obtain that the contribution is given by

xm

1− x

(

Cm−1(x)−1
)

.

By combining the two contributions, we complete the
proof.

Now, we are ready to find an explicit formula for
F4(x). Let G(x,u) = ∑ j≥1G j(x)u j−1. Note that
F4(x) = 1+G(x,1). By Lemma5 and Lemma6, we have

Gm(x) = xmF4(x)+
xm

1− x

(

Cm−1(x)−1
)

+ ∑
ℓ≥2

xℓ−1 ∑
j≥m−ℓ+2

G j(x),

which implies

Gm(x)− xGm−1(x)

=
xm

1− x

(

Cm−1(x)−Cm−2(x)
)

+ x ∑
j≥m

G j(x)

with G1(x) = xF4(x) = x(G(x,1)+1). By multiplying the
recurrence byum−1 and summing overm≥ 2, we obtain

G(x,u)− x(G(x,1)+1)− xuG(x,u)

=
xu

1−u
(G(x,1)−G(u,x))+

x2u(C(x)−1)
(1− x)(1−uxC(x))

,

which is equivalent to

(

1+
xu2

1−u

)

G(x,u)

= x+
x

1−u
G(x,1)+

x2u(C(x)−1)
(1− x)(1−uxC(x))

.

This functional equation can be solved by the kernel
method (see [4] and references therein) usingu = C(x),
leading to

Theorem 3.The generating function for the number of
permutations of Sn(T4) is given by

F4(x) = 1+G(x,1) =
x

1− x

(

1+ xC′(x)
)

.

2.5 T5 = {3142,4123,1423}

Let Gm(x) be the generating function for the number of
permutations inSn(T5) with exactlym left-right maxima.
Clearly,G0(x) = 1 andG1(x) = xF5(x). In the next lemma
we deal with the hardest case, namelym= 2.

Lemma 7.We have

G2(x) =
x2
(

C(x)−1− xC(x)
)

F5(x)+ x(F5(x)−1)

1− x
.

Proof.Let π = iα ′nα ′′ be any permutation with exactly two
left-right maxima. Let us write an equation forG2(x). In
casei = n−1, the contribution isx(F5(x)−1). If i < n−1,
thenα ′′ containsn−1 and we consider two cases:

–π contains a letterℓ betweenn and n− 1 such that
ℓ > i. In this case each letter ofα ′′ is greater thani.
Thus, the contribution of this case is given by
x2
(

C(x)− 1− xC(x)
)

F5(x), whereC(x)− 1− xC(x)
counts the number of nonempty permutation of
Sn(231) such that the first letter is notn (see [5]).

–π does not contain any letterℓ betweenn and n− 1
such thatℓ > i. Soπ = iα ′n(n−1)α ′′′, which implies
that the contribution is given byxG2(x).
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By combining all three cases, we obtainG2(x) = x(F5(x)−
1)+x2

(

C(x)−1−xC(x)
)

F5(x)+xG2(x), which completes
the proof.

Now we treat the casem≥ 3.

Lemma 8.For all m≥ 3, Gm(x) =
(

xC(x)
)m−2

G2(x).

Proof.Let π ∈ Sn(T5) be any permutation with exactlym
left-right maxima. Thenπ can be written as

π = i1π (1)i2π (2) · · · imπ (m)

with im = n. Note thatπ avoidsT5 if and only if (1) π ( j)

avoids 231 for allj = 3,4, . . . ,m, (2) i1π (1)i2π (2) avoids
T5, (3) each letter ofπ ( j+1) is greater than each letter of
π ( j) for j = 3,4, . . . ,m− 1, (4) each letter ofπ (3) is
greater than each letter ofi1π (1)i2π (2). Hence, by the fact
that ∑n≥0 |Sn(231)|xn = C(x) (see [5]), we get

Gm(x) =
(

xC(x)
)m−2

G2(x), as claimed.

Using the expressions above forG0(x) andG1(x) and
Lemma8, we have

F5(x) = ∑
j≥0

G j(x) = 1+ xF5(x)+G2(x)C(x),

which, by Lemma7, implies the following result.

Theorem 4.The generating function for the number of
permutations of Sn(T5) is given by

F5(x) = 1+
x

1− x

(

1+ xC′(x)
)

.

2.6 T6 = {4132,1432,1243}

Let Gm(x) be the generating function for the number of
permutations ofSn(T6) with exactlym left-right maxima.
Clearly,G0(x) = 1 andG1(x) = xF6(x). By using similar
arguments as in the proof of Lemma5, we obtain the
following relation.

Lemma 9.Let m≥ 1 and let Hm(x) be the generating
function for the number of permutationsπ in Sn(T6)
where the left-right maxima of π are exactly
n+1−m,n+2−m, . . .,n. Then

Hm(x) = xHm−1+ x ∑
j≥m

G j(x)

with H1(x) = xF6(x).

Lemma 10.For all m≥ 2,

Gm(x) = Hm(x)+
xm+1

1− x
F6(x)

m−1

∑
j=1

(

1− x
1−2x

) j

.

Proof.Let π = i1π (1)i2π (2) · · · imπ (m) be any permutation of
Sn(T6) with exactlym left-right maxima. Sinceπ avoids
1243, we can writeπ as

π = i1π (1)(n+2−m)π (2)(n+3−m)π (3) · · ·nπ (m),

where each letter ofπ (1) is at mosti1−1, and each letter
of α = π (2) · · ·π (m) is at mostn+1−m. Now let us write
an equation forGm(x). If α is empty then the contribution
is Hm(x) (see Lemma9). Otherwise, sinceπ avoidsT6, we
see that there exactly uniquej, 2≤ j ≤ m, such thatπ ( j)

is not empty, which leads toπ ( j) = (i1+1) · · ·(n+1−m).
Thus,

–Sinceπ avoids 1243, we have that

π (1)π (2) · · ·π ( j−1) = (i1−1) · · ·21.

–Since π avoids 2431, we have thatπ ( j) can be
decomposed as

π ( j ,0)π ( j ,1) · · ·π ( j ,i1−1),

where all letters ofπ ( j) on the left side of the letter
i1 + 1, π ( j ,0) avoidsT6, andπ ( j ,k) avoids 21 (sinceπ
avoids 1432), fork= 1,2, . . . , i1−1.

Hence, the contribution in this case is

xm+1

1− x
F6(x)

m

∑
j=1

(

1
1− x

1−x

) j

.

By combining the two contributions, we complete the
proof.

Now, we ready to find an explicit formula forF6(x).
Let G(x,u) = ∑ j≥1G j(x)u j−1. Note that
F6(x) = 1+ G(x,1). By Lemma 9 and Lemma10, we
have

Gm(x)− xGm−1(x)

=
xm+1

1− x
(G(x,1)+1)

(1− x)m−1

(1−2x)m−1 + x ∑
j≥m

G j(x)

with G1(x) = xF6(x) = x(G(x,1)+1). By multiplying the
recurrence byum−1 and summing overm≥ 2, we obtain

G(x,u)− x(G(x,1)+1)− xuG(x,u)

=
xu

1−u
(G(x,1)−G(u,x))+

x3(G(x,1)+1)
1−2x− x(1− x)u

,

which is equivalent to
(

1+
xu2

1−u

)

G(x,u)

= x+
x3

1−2x− x(1− x)u

+

(

x
1−u

+
x3

1−2x− x(1− x)u

)

G(x,1).
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This functional equation can be solved by the kernel
method (see [4] and references therein) usingu = C(x),
leading to

Theorem 5.The generating function for the number of
permutations of Sn(T6) is given by

F6(x) = 1+G(x,1) = 1+
x

1− x

(

1+ xC′(x)
)

.

2.7 T7 = {4132,1342,1324}

Let Gm(x) be the generating function for the number of
permutations inSn(T7) with exactlym left-right maxima.
Clearly, G0(x) = 1 and
G1(x) = x∑n≥0 |Sn(132)|xn = xC(x) (see [5]). In the next
lemma we deal with the hardest case, namelym= 2.

Lemma 11.We have

G2(x) =
x2(3−4x−

√
1−4x)

(1− x)
√

1−4x(1+
√

1−4x)
.

Proof.Let G2,k(x) denote the generating function for
Sn,2,k := {π ∈ Sn(T7) : π has exactly two left-right
maxima and the leftmost letter ofπ is n− 1− k}. Thus
G2(x) = ∑n−2

k=0 G2,k(x).
Now letπ ∈ Sn,2,k and consider the casesk= 0, k= 1,

and 2≤ k≤ n−2 separately:

–k = 0. Hereπ can be presented asπ = (n−1)α ′nα ′′.
If π has at least three letters, then either
π = (n−1)β ′(n−2)β ′′nα ′′ where each letter ofβ ′ is
greater than each letter of β ′′α ′′, or
π = (n−1)α ′nβ ′(n−2)β ′′ where each letter ofα ′β ′

is greater than each letter ofβ ′′. Thus, by the fact that
∑n≥0 |Sn(132)|xn =C(x), we obtain

G2,0(x) = x2+ xC(x)G2,0(x)+ xC(x)G2,0(x),

which implies

G2,0(x) =
x2

√
1−4x

.

–k = 1. Here π can be presented as
π = (n − 2)α ′nα ′′(n − 1)α ′′′. Similar to the case
k = 0, by considering the position ofn−3, we obtain
that

G2,1(x) = x3+ xC(x)G2,1(x)

+ (xC(x))2G2,0(x)+ x2C(x)G2,0(x).

By Casek= 0, we obtain

G2,1(x) =
x2(1− x)(1−

√
1−4x)√

1−4x(1+
√

1−4x)
.

–2≤ k≤ n−2. Hereπ can be presented asπ = (n−1−
k)α ′nα ′′. If n−1 is the leftmost letterℓ > n−1− k in
α ′′ then sinceπ avoids 4132, we have thatn−1 is the
leftmost letter ofα ′. Otherwise, sinceπ avoidsT7, we
have thatn−1 is the rightmost letterℓ > n−1− k of
α ′′. Sinceπ avoids 1324, we can writeπ as

π = (n−1− k)α ′nβ (0)(n− k)β (k) · · · (n−1)β (1).

Sinceπ avoidsT7, we see that each letter ofβ ( j) is
greater than each letter of β ( j−1), for
j = k,k− 1, . . . ,2. Moreover, each letter ofα ′β (0) is
greater than each letter ofβ (k). It is not hard to see
that β ( j) avoids 132 for all j = 1,2, . . . ,k and
(n−1− k)α ′(n− k)β (0) is in Sn−k,2,0. Hence,

G2,k(x) = xG2,k−1(x)+ (xC(x))kG2,0(x).

By summing overk≥ 2, we obtain

G2(x)−G2,0(x)−G2,1(x)

= x(G2(x)−G2,0(x))+
(xC(x))2

1− xC(x)
G2,0(x).

Using the evaluations above forG2,0 and G2,0, we
complete the proof.

Now we treat the casem≥ 3.

Lemma 12.For all m≥ 3, Gm(x) = (xC(x))m−2G2(x).

Proof.Let π ∈ Sn(T7) be any permutation with exactlym
left-right maxima. Thenπ can be written as

π = iπ (0)(i +1)π (1) · · · (i +m−2)π (m−2)nπ (m−1).

Note thatπ avoidsT7 if and only if (1)π ( j) avoids 132 for
all j = 0,1, . . . ,m− 3, (2) iπ (m−2)nπ (m−1) avoidsT7, (3)
each letter ofπ ( j) is greater than each letter ofπ ( j+1) for
j = 0,1, . . . ,m−4, (4) there is no letterℓ in π (m−2)π (m−1)

such thatℓ between the minimal letter ofπ (m−3) and i +
m−2. Hence,Gm(x) = (xC(x))m−2G2(x), as claimed.

Using the expressions above forG0(x) andG1(x) and
Lemma12, we have

F7(x) = ∑
j≥0

G j(x) = 1+ xC(x)+G2(x)C(x),

which, by Lemma11, implies the following result.

Theorem 6.The generating function for the number of
permutations of Sn(T7) is given by

F7(x) = 1+
x

1− x

(

1+ xC′(x)
)

.
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3 Conclusion

In this paper, we have used generating functions to
determine all symmetry classes of permutations avoiding
a triple of 4-letter patterns with counting sequence
un = 1 + ∑n

k=2

(2k−2
k−2

)

. A bijective argument helps to

explain the
(2k−2

k−2

)

summand inun.
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