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1 Introduction and Preliminaries

Banach ([8]) proved a unique fixed point for a self
mappingT defined on a complete metric space(X ,d)
satisfying the following condition for allx,y ∈ X

d(T x,Ty)≤ kd(x,y), (1)

wherek ∈ (0,1).

It is remarkable that a self mapT satisfying condition
(1) implies that T is continuous. Banach Fixed Point
Theorem was generalized by many authors by using
different types of control f unctions. Mishra et al.
([10]-[12]) have discussed some results of Fixed point
theorems in partial metric spaces and other spaces with
different type of contraction conditions. Applications of
these type of common fixed point theorems were
discussed in ([13]-[23]). The weak contraction condition
in Hilbert Space was introduced by Alber and Gurerre -
Delabriere ([9]). Later Rhoades ([2]) has shown that the
result of Alber and Gurerre - Delabriere ([9]) in Hilbert
Spaces is also true in a complete metric space. Rhoades
[2] established a fixed point theorem in a complete metric

space by using the following contraction condition:

A weakly contractive mappingT : X → X which satisfies
the condition for all x, y∈ X

d(T x,Ty)≤ d(x,y)−ϕ(d(x,y)), (2)

where ϕ : [0,∞) → [0,∞) is a continuous and
nondecreasing function such thatϕ(t) = 0 if and only if
t = 0.

Remark: In the above result ifϕ(t) = (1− k)t where
k ∈ (0,1), then we have the condition (1) due to Banach.
So, in view of (1), the condition (2) is weaker condition
and we call this condition as a Weakly Contraction
Condition.

Recently, Dutta and Choudhury ([6]) proved the
following theorem by employing two control functions.
The theorem follows:

Theorem 1.1 Let (X ,d) be a complete metric space and
let T : X → X satisfying the inequality
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for all x, y∈ X

ψ(d(T x,Ty))≤ ψ(d(x,y))−φ(d(x,y)) (3)

where φ ,ψ : [0,∞) → [0,∞) are both continuous and
monotone nondecreasing functions withφ(t) = ψ(t) = 0
if and only if t = 0. ThenT has a unique fixed point.

Zhang and Song([7]) used generalizedφ− weak
contraction for a pair of two maps and proved a common
fixed point theorem which follows.

Theorem 1.2 Let (X ,d) be a complete metric space and
T,S : X → X are two mappings such that for allx,y ∈ X

d(T x,Sy)≤ M(x,y)−ψ(M(x,y)), (4)

where ψ : [0,∞) → [0,∞) is lower semi-continuous
function withψ(t)> 0 for t ∈ (0,∞) andψ(0) = 0,

M(x,y) = max{d(x,y),d(Tx,x),d(Sy,y),
1
2[d(y,T x)+ d(x,Sy)]}.

Then there exists the unique pointu ∈ X such that
u = Tu = Su.

Doric ([4]) generalized the above Theorem 1.2 by using
more than one control function to establish the following
theorem:

Theorem 1.3 Let (X ,d) be a complete metric space and
let T,S : X → X be the two self-mappings such that for all
x, y ∈ X

ψ(d(T x,Sy))≤ ψ(M(x,y))−φ(M(x,y)), (5)

where

1.M(x,y) = max{d(x,y),d(Tx,x),d(Sy,y),
1
2[d(y,T x)+ d(x,Sy)]},

2.ψ : [0,∞) → [0,∞) is continuous monotone
non-decreasing function withψ(t) = 0 if and only if
t = 0,

3.φ : [0,∞) → [0,∞) is lower semi-continuous with
φ(t) = 0 if and only if t = 0,

Then there exists unique fixed pointu ∈ X such that
u = Tu = Su.

In 2012 Choudhury and Kundu ([3]) proved some
coincidence point and common fixed point theorems in a
partial order metric spaces using(ψ1,ψ2,φ)-weak
contraction condition. Akbar and Choudhury ([1]) also
proved some results using(ψ1,ψ2,φ)-weak contraction in
partial order metric spaces.
In this paper, we prove some theorems using quadratic
(ψ1,ψ2,φ)- weak contractive condition and produce an
example to support our results.

2 Main Results

Theorem 2.1. Let (X ,d) be a complete metric space. Let
T,S : X → X be two self-mappings such that for allx,y ∈X

ψ1(d
2(T x,Sy))≤ ψ2(M(x,y))−φ(M(x,y)) (6)

where

1.M(x,y) = max{d2(x,y),d2(x,T x),d2(y,Sy),

d(x,T x).d(y,Sy),d(x,Sy).d(y,T x),d(x,T x).d(x,Sy),
d(y,Sy).d(y,T x)

2 },
2.ψ1,ψ2 : [0,∞) → [0,∞) is continuous monotone non-

decreasing functions,
3.φ : [0,∞) → [0,∞) is lower semi-continuous with

φ(t) = 0 if and only if t = 0, φ(t) > 0 for all
t ∈ (0,∞),

4.satisfyingψ1(t)−ψ2(t)+φ(t)> 0 for t > 0.

Then there exists unique fixed pointu ∈ X such thatu =
Tu = Su.

Proof.For an arbitraryx0 ∈ X such thatx1 = Sx0, x2 = T x1,
x3 = Sx2, x4 = Tx3... and so on. In general, for alln ∈
N ∪{0} we can construct a sequence{xn} by

x2n+1 = Sx2n,x2n+2 = T x2n+1.

At first we shall assumexn 6= xn+1, for all n ≥ 0.
Putting thatx = xn andy = xn−1 in (6), we have

ψ1(d
2(xn+1,xn))≤ ψ2(M(xn,xn−1))−φ(M(xn,xn−1)), (7)

where
M(x,y) = max{d2(xn,xn−1),d2(xn,xn+1),d2(xn−1,xn),

d(xn,xn+1).d(xn−1,xn),d(xn,xn).d(xn−1,xn+1),

d(xn,xn+1).d(xn,xn),
d(xn−1,xn).d(xn−1,xn+1)

2 }.
If

d(xn,xn+1)> d(xn,xn−1) (8)

then

M(xn,xn−1) = d2(xn,xn+1). (9)

By using (7) and (9), we have

ψ(d2(xn+1,xn))≤ ψ(d2(xn,xn+1))−φ(d2(xn,xn+1)),

a contradiction. Hence for alln ≥ 0,

d(xn,xn+1)≤ d(xn,xn−1). (10)

Using (10), we get

M(xn,xn−1) = d2(xn,xn−1). (11)

Therefore for alln ≥ 0. The sequence{d(xn,xn+1} is
monotone decreasing and bounded. So, we have

limn→∞d(xn,xn+1) = r ≥ 0.

Using (7) and (11) , we then obtain
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ψ1(d2(xn,xn+1))≤ ψ2(d2(xn,xn−1))−φ(d2(xn,xn−1)).

On lettingn → ∞, we have

ψ1(r2)≤ ψ2(r2)−φ(r2),

a contradiction by the property of theφ function. This
implies thatr = 0.
Hence

limn→∞d(xn,xn+1) = 0. (12)

Next, we shall prove that{xn} is a cauchy sequence. For
this, it is enough to prove that subsequence{x2n} is a
Cauchy sequence. Then∃ anε > 0 for which we can find
subsequence{x2m(k)} and {x2n(k)} such that n(k) is
smallest positive integer for whichn(k)> m(k)> k,

d(x2m(k),x2n(k))≥ ε (13)

is satisfied. Then we have

d(x2m(k),x2n(k)−1)< ε. (14)

By triangle inequality, we have

d(x2m(k),x2n(k))≤ d(x2m(k),x2n(k)−1)+ d(x2n(k)−1,x2n(k)).

Takingk → ∞, we get

limk→∞d(x2m(k),x2n(k)) = ε. (15)

Again

d(x2n(k)−1,x2m(k))≤ d(x2n(k)−1,x2n(k))+ d(x2n(k),x2m(k)),

d(x2n(k),x2m(k))≤ d(x2n(k)−1,x2n(k))+ d(x2n(k)−1,x2m(k)).

By taking the limitk → ∞, we get

limk→∞d(x2n(k)−1,x2m(k)) = ε. (16)

Again

d(x2n(k)−1,x2m(k)−1)≤ d(x2n(k)−1,x2n(k))+ d(x2n(k),

x2m(k))+ d(x2m(k),x2m(k)−1),

d(x2n(k),x2m(k))≤ d(x2n(k)−1,x2n(k))+ d(x2n(k)−1,

x2m(k)−1)+ d(x2m(k)−1,x2m(k)).

Again taking the limitk → ∞, we get

limk→∞d(x2n(k)−1,x2m(k)−1) = ε. (17)

Again for all positive integer k∈ N,

d(x2m(k)−1,x2n(k))≤ d(x2m(k)−1,x2m(k))+ d(x2n(k),x2m(k)),

d(x2n(k),x2m(k))≤ d(x2m(k),x2m(k)−1)+ d(x2m(k)−1,x2n(k)).

On lettingk → ∞, we get

limk→∞d(x2m(k)−1,x2n(k)) = ε. (18)

By puttingx = x2n(k)−1 andy = x2m(k)−1 in (6), we get

ψ1(d
2(x2n(k),x2m(k))) ≤ ψ2(M(x2n(k)−1,x2m(k)−1))

− φ(M(x2n(k)−1,x2m(k)−1)) (19)

where
M(x2n(k)−1,x2m(k)−1) = max{d2(x2n(k)−1,x2m(k)−1),

d2(x2n(k)−1,x2n(k)),d
2(x2m(k)−1,x2m(k)),d(x2n(k)−1,x2n(k)).

d(x2m(k)−1,x2m(k)),d(x2n(k)−1,x2m(k)).d(x2m(k)−1,x2n(k)),

d(x2n(k)−1,x2n(k)).d(x2n(k)−1,x2m(k)),

d(x2m(k)−1,x2m(k)).d(x2m(k)−1,x2n(k))

2 }.

On lettingk → ∞, we get

limn→∞M(x2n(k)−1,x2m(k)−1) = max{ε2,0,0,0,ε2,0,0}

= ε2. (20)

Using (20) and (19), we shall obtain

ψ1(ε2)≤ ψ2(ε2)−φ(ε2),

which is a contradiction. Hence we have shown that{xn}
be a Cauchy sequence inX . SinceX is a complete metric
space so that∃ u ∈ X such thatxn → u as n → ∞
consequently the subsequences,Sx2n andT x2n+1 → u as
n → ∞.

To prove thatz is the fixed point ofT andS.
First we shall assume that, letd(u,Su) 6= 0. By putting
x = x2n+1 andy = u in (6), we get

ψ1(d2(T x2n+1,Su))≤ ψ2(M(x2n+1,u))−φ(M(x2n+1,u)),

On lettingn → ∞, we get

ψ1(d
2(u,Su)) ≤ ψ2(limn→∞M(x2n+1,u))

−φ(limn→∞M(x2n+1,u)), (21)

where
M(x2n+1,u) = max{d2(x2n+1,u),d2(x2n+1,x2n+2),

d2(u,Su),d(x2n+1,x2n+2).d(u,Su),d(x2n+1,Su).d(u,x2n+2),

d(x2n+1,x2n+2)d(x2n+1,Su), d(u,Su).d(u.Tx2n+1)
2 }.

By taking the limitn → ∞, we get

M(u,u) = max{0,0,d2(u,Su),0,0,0}= d2(u,Su). (22)

So, we have

ψ1(d2(u,Su))≤ ψ2(d2(u,Su))−φ(d2(u,Su)),
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which is a contradiction. Henced2(u,Su) = 0 ⇒ u = Su.
Similarly, by putting x = u, y = x2n in (6), we get
d2(Tu,u) = 0⇒ Tu = u. Henceu is common fixed point
of S andT .

To prove the uniqueness: Assumew is the second
common fixed point ofS andT i.e. Tw = w andSw = w,
we letd(u,w) 6= 0. By puttingx = u andy = w in (6), we
get

ψ1(d
2(Tu,Sw))≤ ψ2(M(u,w))−φ(M(u,w)), (23)

where

M(u,w) = d2(u,w). (24)

We have

ψ1(d2(u,w))≤ ψ2(d2(u,w))−φ(d2(u,w)),

a contradiction in terms of the functionφ . Therefore
d2(u,w) = 0 ⇒ u = w. Hence T and S has a unique
common fixed point inX .

If we put S = T inTheorem 2.1 we shall obtain the
following theorem:

Theorem 2.2. Let (X ,d) be a complete metric space. Let
T : X → X be a self-mapping such that for allx,y ∈ X

ψ1(d
2(T x,Ty))≤ ψ2(M(x,y))−φ(M(x,y)), (25)

where

1.M(x,y) = max{d2(x,y),d2(x,T x),d2(y,Ty),

d(x,T x).d(y,Ty),d(x,Ty).d(y,T x),d(x,T x).d(x,Ty),
d(y,Ty).d(y,Tx)

2 },
2.ψ1,ψ2 : [0,∞) → [0,∞) is continuous monotone non-

decreasing functions,
3.φ : [0,∞) → [0,∞) is lower semi-continuous with

φ(t) = 0 if and only if t = 0, φ(t) > 0 for all
t ∈ (0,∞),

4.satisfyingψ1(t)−ψ2(t)+φ(t)> 0 for t > 0.

Then there exists unique fixed pointu ∈ X such that
u = Tu.

Again if we put ψ1(t1) = t1 and ψ2(t2) = t2 in above
Theorem 2.1 and Theorem 2.2 respectively, we have the
followings corollaries:

Corollary 2.3. Let (X ,d) be a complete metric space. Let
T,S : X → X are two self-mappings such that for all
x,y ∈ X

d2(T x,Sy)≤ M(x,y)−φ(M(x,y)), (26)

where

1.M(x,y) = max{d2(x,y),d2(x,T x),d2(y,Sy),

d(x,T x).d(y,Sy),d(x,Sy).d(y,T x),d(x,T x).d(x,Sy),
d(y,Sy).d(y,Tx)

2 },

2.φ : [0,∞) → [0,∞) is lower semi-continuous with
φ(t) = 0 if and only if t = 0, φ(t) > 0 for all
t ∈ (0,∞).

Then there exists unique fixed pointu ∈ X such that
u = Tu = Su.

Corollary 2.4. Let (X ,d) be a complete metric space . Let
T : X → X be a self-mapping such that for allx,y ∈ X

d2(T x,Sy)≤ M(x,y)−φ(M(x,y)) (27)

where

1.M(x,y) = max{d2(x,y),d2(x,T x),d2(y,Ty),

d(x,T x).d(y,Ty),d(x,Ty).d(y,T x),d(x,T x).d(x,Ty),
d(y,Ty).d(y,T x)

2 }, and
2.φ : [0,∞) → [0,∞) is lower semi-continuous with

φ(t) = 0 if and only if t = 0 and φ(t) > 0 for all
t ∈ (0,∞).

Then there exists unique fixed pointu ∈ X such that
u = Tu.

Theorem 2.5. Let (X ,d) be a complete metric space Let
T, S :X → X be mappings satisfying

ψ1(d
2(T x,Sy))≤ ψ2(M(x,y))−φ(N(x,y)), (28)

for all x, y ∈ X , where

1.M(x,y) = max{d2(x,y),d2(x,T x),d2(y,Sy),

d(x,T x).d(y,Sy),d(x,Sy).d(y,T x),d(x,T x).d(x,Sy),
d(y,Sy).d(y,T x)

2 }
and
N(x,y) = min{d2(x,y),d2(x,T x),d2(y,Sy),

d(x,T x).d(y,Sy), d(y,Sy).d(y,T x)
2 },

2.ψ1,ψ2 : [0,∞)→ [0,∞) are continuous monotone non-
decreasing functions,

3.φ : [0,∞)→ [0,∞) is such thatφ(t)>0 and lower semi-
continuous for allt > 0, φ is discontinuous att = 0
with φ(0) = 0,

4.satisfyingψ1(t)−ψ2(t)+φ(t)> 0 for t > 0.

Then there exists unique fixed pointu ∈ X such thatu =
Tu = Su.

Proof.Let x0 ∈ X be an arbitrary point ofX and define
x1 = Sx0, x2 = T x1, x3 = Sx2, x4 = Tx3........ and so on. In
general, for alln ≥ 0 we can construct a sequence in the
following manner

x2n+1 = Sx2n,x2n+2 = T x2n+1. (29)

First we shall assume thatn ∈ N ∪{0}, and for

xn 6= xn+1. (30)

Putx = xn andy = xn−1 in (28), we have

ψ1(d
2(xn+1,xn)) ≤ ψ2(M(xn,xn−1))

−φ(N(xn,xn−1)), (31)
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where
M(x,y) = max{d2(xn,xn−1),d2(xn,xn+1),

d2(xn−1,xn),d(xn,xn+1).d(xn−1,xn),d(xn,xn).d(xn−1,xn+1),

d(xn,xn+1).d(xn,xn),
d(xn−1,xn).d(xn−1,xn+1)

2 }
and
N(x,y) = min{d2(xn,xn−1),d2(xn,xn+1),d2(xn−1,xn),

d(xn,xn+1).d(xn−1,xn),
d(xn−1,xn).d(xn−1,xn+1)

2 } .
If

d(xn,xn+1)> d(xn,xn−1) (32)

then

M(xn,xn−1) = d2(xn,xn+1). (33)

By the virtue of (30), we haveN(xn,xn−1) > 0.By using
(28), and (33) , we have

ψ1(d2(xn,xn+1))≤ ψ2(d2(xn,xn+1))−φ(N(xn,xn−1)),

a contradiction. Hence for alln ∈ N ∪{0},

d(xn,xn+1)≤ d(xn,xn−1). (34)

Using (28) and (34), we get

M(xn,xn−1) = d2(xn,xn−1) (35)

N(xn,xn−1) = d2(xn,xn+1). (36)

Thus, the sequence{d(xn,xn+1)} is monotone decreasing
sequence of non negative real numbers, there exists a
numberr ≥ 0 such that

limn→∞d(xn,xn+1) = r ≥ 0.

By using (28), (35) and (36), we can write

ψ1(d2(xn,xn+1))≤ ψ2(d2(xn,xn−1))−φ(d2(xn,xn−1)).

Taking the limitn → ∞ in the above inequality , we get

ψ1(r2)≤ ψ2(r2)−φ(r2),

which is a contradiction. Then∀n ∈ N ∪{0} we have

limn→∞d(xn,xn+1) = 0. (37)

Next we prove that{xn} is a Cauchy sequence. It is
sufficient if we prove that the subsequence{x2n} is a
Cauchy sequence. Then∃ ε > 0 for which we can find
subsequence{x2m(k)} and {x2n(k)} such that n(k) is
smallest positive integer for whichn(k)> m(k)> k,

d(x2m(k),x2n(k))≥ ε (38)

is satisfied. Then we have

d(x2m(k),x2n(k)−1)< ε. (39)

Using triangle inequality, we have

d(x2m(k),x2n(k))≤ d(x2m(k),x2n(k)−1)+ d(x2n(k)−1,x2n(k)).

Letting the limitk → ∞, we get

limk→∞d(x2m(k),x2n(k)) = ε. (40)

Again for allk ∈ N,

d(x2n(k)−1,x2m(k))≤ d(x2n(k)−1,x2n(k))+ d(x2n(k),x2m(k)),

and

d(x2n(k),x2m(k))≤ d(x2n(k)−1,x2n(k))+ d(x2n(k)−1,x2m(k)).

Letting the limitk → ∞, we get

limk→∞d(x2n(k)−1,x2m(k)) = ε. (41)

Now again,

d(x2n(k)−1,x2m(k)−1)≤ d(x2n(k)−1,x2n(k))+ d(x2n(k),

x2m(k))+ d(x2m(k),x2m(k)−1),

d(x2n(k),x2m(k))≤ d(x2n(k)−1,x2n(k))+ d(x2n(k)−1,

x2m(k)−1)+ d(x2m(k)−1,x2m(k)).

Lettingk → ∞, we get

limk→∞d(x2n(k)−1,x2m(k)−1) = ε. (42)

Again for all positive integerk ∈ N, we have

d(x2m(k)−1,x2n(k))≤ d(x2m(k)−1,x2m(k))+ d(x2n(k),x2m(k)),

and

d(x2n(k),x2m(k))≤ d(x2m(k),x2m(k)−1)+ d(x2m(k)−1,x2n(k)).

Letting the limitk → ∞, we get

limk→∞d(x2m(k)−1,x2n(k)) = ε. (43)

Puttingx = x2n(k)−1 andy = x2m(k)−1 in (28) for all k ∈ N,
we have

ψ1(d
2(x2n(k),x2m(k))) ≤ ψ2(M(x2n(k)−1,x2m(k)−1))

−φ(M(x2n(k)−1,x2m(k)−1)) (44)

where
M(x2n(k)−1,x2m(k)−1) = max{d2(x2n(k)−1,x2m(k)−1),

d2(x2n(k)−1,x2n(k)),d
2(x2m(k)−1,x2m(k))d(x2n(k)−1,x2n(k)).

d(x2m(k)−1,x2m(k)),d(x2n(k)−1,x2m(k)).d(x2m(k)−1,x2n(k)),

d(x2n(k)−1,x2n(k)).d(x2n(k)−1,x2m(k)),

d(x2m(k)−1,x2m(k)).d(x2m(k)−1,x2n(k))

2 } and
N(x2n(k)−1,x2m(k)−1) = min{d2(x2n(k)−1,x2m(k)−1),

d2(x2n(k)−1,x2n(k)),d
2(x2m(k)−1,x2m(k))d(x2n(k)−1,x2n(k)).

d(x2m(k)−1,x2m(k)),
d(x2m(k)−1,x2m(k)).d(x2m(k)−1,x2n(k))

2 }.

Taking the limitk → ∞, we get

limk→∞M(x2n(k)−1,x2m(k)−1) = max{ε2,0,0,0,ε2,0,0}

= ε2, (45)

limk→∞N(x2n(k)−1,x2m(k)−1) = min{ε2,0,0,0,0}= 0.(46)

On taking limitk → ∞in (43) and using (44) and (45) we
shall obtain
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ψ1(ε2)≤ ψ2(ε2)− limk→∞φ(N(xm(k)−1,xn(k)−1)).

The fact thatφ has a discontinuous att = 0 andφ(t) > 0
for t > 0, we observe that the last term of the right hand
side of the above inequality is non zero, so we arrive at a
contradiction. Hence{xn} is Cauchy sequence in complete
metric space X, there existsu ∈ X such thatxn → u as
n → ∞ we can also write,

Sx2n → u andT x2n+1 → u asn → ∞

To prove thatz is the fixed point ofT andS.

For this, letd(u,Su) 6= 0 and puttingx = x2n+1 andy = u
in (28), we get

ψ1(d
2(T x2n,Su)) ≤ ψ2(M(x2n+1,u))

−φ(N(x2n+1,u)), (47)

where
M(x2n+1,u) = max{d2(x2n+1,u),d2(x2n+1,x2n+2),

d2(u,Su),d(x2n+1,x2n+2).d(u,Su),d(x2n+1,Su).d(u,x2n+2),

d(x2n+1,x2n+2).d(x2n+1,Su), d(u,Su).d(u.Tx2n+1)
2 }

and
N(x2n+1,u) = min{d2(x2n+1,u),d2(x2n+1,x2n+2),

d2(u,Su),d(x2n+1,x2n+2).d(u,Su), d(u,Su).d(u.Tx2n+1)
2 }.

On applying limit asn → ∞ in the above conditions, we
shall obtain

limn→∞M(x2n+1,u) = max{0,0,d2(u,Su),0,0,0}=
d2(u,Su)

and

limn→∞N(x2n+1,u) = min{0,0,d2(u,Su),0}= d2(u,Su).

Letting limit n → ∞ in (47), we have

ψ1(d2(u,Su))≤ ψ2(d2(u,Su))− limk→∞φ(N(x2n+1,u)),

Using discontinuity ofφ at t = 0 andφ(t) > 0 for t > 0,
we observe that the last term of the right hand side of the
above inequality in non zero, Therefore we obtain,

ψ1(d2(u,Su))≤ ψ2(d2(u,Su))−φ(d2(u,Su)),

a contradiction. Henced2(u,Su) = 0⇒ u = Su. Similarly
by puttingx = u, y = x2n in (28), and arguing as above,
we get,d2(Tu,u) = 0 ⇒ Tu = u. Henceu is common
fixed point ofS andT .

For uniqueness:- Letw is the another fixed point ofS and
T such thatTw = w and Sw = w and let d(u,w) 6= 0,
puttingx = u andy = w in (28), we get

ψ(d2(u,w)) ≤ ψ(d2(u,w))φ(d2(u,w)),

a contradiction of the assumption, so, we haved2(u,w) =
0⇒ u = w.

If we put S = T in Theorem 2.5, we have the following
theorem:

Theorem 2.6. Let (X ,d) be a complete metric space.
Let T : X → X be a map such that for allx,y ∈ X

ψ1(d
2(T x,Ty))≤ ψ2(M(x,y))−φ(N(x,y)), (48)

where

1.M(x,y) = max{d2(x,y),d2(x,T x),d2(y,Ty),

d(x,T x).d(y,Ty),d(x,Ty).d(y,T x),d(x,T x).d(x,Ty),
d(y,Ty).d(y,T x)

2 }
and
N(x,y) = min{d2(x,y),d2(x,T x),d2(y,Ty),

d(x,T x).d(y,Ty), d(y,Ty).d(y,T x)
2 },

2.ψ1,ψ2 : [0,∞)→ [0,∞) are continuous monotone non-
decreasing functions,

3.φ : [0,∞)→ [0,∞) is such thatφ(t)>0 and lower semi-
continuous for allt > 0, φ is discontinuous att = 0
with φ(0) = 0,

4.satisfyingψ1(t)−ψ2(t)+φ(t)> 0 for t > 0.

Then there exists a unique fixed pointu ∈ X such that
u = Tu.

If we put ψ1(t) = t1 andψ2(t) = t2 in above Theorem 2.8
and Theorem 2.9 we get the followings corollaries:

Corollary 2.7. Let (X ,d) be a complete metric space and
let T, S :X → X be the two self-mappings such that for all
x, y ∈ X

d2(T x,Sy)≤ M(x,y)−φ(N(x,y)), (49)

where

1.M(x,y) = max{d2(x,y),d2(x,T x),d2(y,Sy),

d(x,T x).d(y,Sy),d(x,Sy).d(y,T x),d(x,T x).d(x,Sy),
d(y,Sy).d(y,T x)

2 }
and
N(x,y) = min{d2(x,y),d2(x,T x),d2(y,Sy),

d(x,T x).d(y,Sy), d(y,Sy).d(y,T x)
2 },

2.φ : [0,∞)→ [0,∞) is such thatφ(t)>0 and lower semi-
continuous for allt > 0, φ is discontinuous att = 0
with φ(0) = 0,

Then there exists a unique fixed pointu ∈ X such that
u = Tu = Su.

Corollary 2.8. Let (X ,d) be a complete metric space. Let
T : X → X be a map such that for all x, y∈ X

d2(T x,Ty)≤ M(x,y)−φ(N(x,y)), (50)

where
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1.M(x,y) = max{d2(x,y),d2(x,T x),d2(y,Ty),

d(x,T x).d(y,Ty),d(x,Ty).d(y,T x),d(x,T x).d(x,Ty),
d(y,Ty).d(y,T x)

2 }
and
N(x,y) = min{d2(x,y),d2(x,T x),d2(y,Ty),

d(x,T x).d(y,Ty), d(y,Ty).d(y,T x)
2 }.

2.φ : [0,∞)→ [0,∞) is such thatφ(t)>0 and lower semi-
continuous for allt > 0, φ is discontinuous att = 0
with φ(0) = 0.

Then there exists a unique fixed pointu ∈ X such that
u = Tu.

Example 2.9. Let X = {0,1,2} and define

d(x,y) =

{

x+ y : if x 6= y
0 : if x = y

is a complete metric space. DefineT,S : X → X such that

T0= 0, T1= 0, T2= 1,

S0= 0, S1= 2, S2= 0

Let ψ1(t) = t for all t ≥ 0 and

ψ2(t) =

{

2t : if 0 ≤ t ≤ 1
t + 1

t : if t > 1
and φ(t) =

{

1 : if t > 0
0 : if t =0

We can seeψ1(t)−ψ2(t)+ φ(t) > 0 for t > 0. Now we
have to verify that the following inequality of Theorem
2.5 for the following cases.

Case 1: if x = 0 and y = 0 then ψ1(d2(T x,Sy)) = 0,
M(x,y) = 0 and N(x,y) = 0. So,
ψ(M(x,y)−φ(N(x,y) = ψ1(d2(Tx,Sy)).

Case 2: if x = 2 and y = 1 then ψ1(d2(T x,Sy)) = 9,
M(x,y) = 12 and N(x,y) = 3. So,
ψ2(M(x,y)−φ(N(x,y) = 133/12> 9= ψ1(d2(T x,Sy)).

Case 3: if x = 1 and y = 2 then ψ1(d2(T x,Sy)) = 0,
M(x,y) = 9 and N(x,y) = 1. So,
ψ2(M(x,y)−φ(N(x,y) = 73/9> 0= ψ1(d2(T x,Sy)).

Case 4: if x = 2 and y = 0 then ψ1(d2(T x,Sy)) = 1,
M(x,y) = 9 and N(x,y) = 0. So,
ψ2(M(x,y)−φ(N(x,y) = 82/9> 1= ψ1(d2(T x,Sy)).

Case 5: if x = 0 and y = 2 then ψ1(d2(T x,Sy)) = 0,
M(x,y) = 4 and N(x,y) = 0. So,
ψ2(M(x,y)−φ(N(x,y) = 17/4> 0= ψ1(d2(T x,Sy)).

Case 6: if x = 1 and y = 0 then ψ1(d2(T x,Sy)) = 0,
M(x,y) = 1 and N(x,y) = 0. So,
ψ2(M(x,y)−φ(M(x,y) = 2> 0= ψ1(d2(T x,Sy)).

Case 7: if x = 2 and y = 2 then ψ1(d2(T x,Sy)) = 1,
M(x,y) = 16 and N(x,y) = 3. So,
ψ2(M(x,y)−φ(M(x,y) = 241/16> 1= ψ1(d2(T x,Sy)).

Case 8: if x = 1 and y = 1 then ψ1(d2(T x,Sy)) = 4,
M(x,y) = 9 and N(x,y) = 1. So,
ψ2(M(x,y)−φ(M(x,y) = 73/9> 4= ψ1(d2(T x,Sy)).

Case 9: if x = 0 and y = 1 then ψ1(d2(T x,Sy)) = 4,
M(x,y) = 9 and N(x,y) = 0. So,
ψ2(M(x,y) − φ(M(x,y) = 82/9 > 4 = ψ1(d2(T x,Sy)).
Inequality holds for all cases. HenceT andS has a unique
common fixed pointx = 0 in X .

3 Conclusion

The authors have tried to established some unique
common fixed point theorems in a complete metric space
using (ψ1,ψ2,φ)- Weak Contraction Conditions. Proved
theorems are interesting as they strengthen the results due
to : (i) D. W. Boyd and J. S. W. Wong, On nonlinear
contractions, Proc. Amer. Math. Soc, 20(1969),
458-468.(ii) B. E. Rhoades, Some theorms on weakly
contractive maps, Nonlinears Analysis 47 (2001),
2683-2693,(iii) Penumarthy Parvateesam Murthy, Kenan
Tas and Uma Devi Patel, Common Fixed Point Theorems
for Generalized(φ ,ψ)-weak contraction condition in
Complete Metric Spaces, Journal of Inequalities and
Applications (2015) 2015:139. Three control functions
were used in place of real non-negative constants used in
many fixed point theorems before 2000 in general.
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