
Appl. Math. Inf. Sci.10, No. 4, 1619-1635 (2016) 1619

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100442

On Post-Processing the Outputs of Prediction Systems:
Strategies, Empirical Evaluations and a Case Study in
Computer Security

Mouaad Kezih1,∗, Mahmoud Taibi1, Salem Benferhat2 and Karim Tabia2

1 LASA Laboratory, Electronics Department, Faculty of Sciences, Badji Mokhtar University, P.O. Box 12, 23000 Annaba, Algeria.
2 CRIL - CNRS UMR 8188, Artois University, France.

Received: 10 Apr. 2014, Revised: 20 Mar. 2015, Accepted: 23 Mar. 2015
Published online: 1 Jul. 2016

Abstract: Supervised classification is a well-known task in data-mining and it is widely used in many real world domains. Classifiers
are automatic prediction systems used to predict the class label of items described by a set of features. In many areas, itis important
to take into account some extra knowledge and constraints inaddition to the one learnt or encoded by the classifier. In this paper, we
propose an approach allowing to exploit the available domain knowledge with the predictions of a classifier. More precisely, we propose
to post-process the predictions of a classifier in order to take into account some domain knowledge. This approach can be applied with
any classifier be it probabilistic or not. We propose post-processing criteria and methods to encode and exploit different kinds of domain
knowledge. Finally, the paper provides extensive experimental studies on a representative set of benchmarks and classification problems
including imbalanced datasets. We also provide a case studyon two crucial problems in computer security which are intrusion detection
and alert correlation. Interestingly enough, the results show that using only some available knowledge about the training datasets or the
performances of the used classifiers can improve these classifiers’ efficiency while fitting the available domain knowledge.

Keywords: Classifiers, Post-processing, Revision, Computer Security, Intrusion Detection System (IDS)

1 Introduction

In real world applications, many problems are dealt with
as classification tasks or more generally as prediction
problems. Classification (also called supervised
classification) is a well-known task in data-mining and
machine learning. It consists in predicting the class of an
object given its features. Examples of well-known
classifiers are decision trees [32], Bayesian networks [19],
SVMs [15], kNN [1], etc. Classifiers are predictive
models built either from expert knowledge or
automatically learnt from empirical data. Most works in
classification deal either with learning efficient classifiers
from data or combining multiple classifiers [25]. Many
related issues receive also much interest especially
regarding learning classifiers from imbalanced datasets
[12], classifier evaluation, reject and drift options [13],
non-exclusive or multiple class classification problems,
etc.

In this paper, with deal with a new and
complementary issue aiming to exploit any extra domain
knowledge by post-processing the classifier predictions.
Indeed, in many applications it is important to take into
account some extra knowledge, constraints or preferences
of the users. In computer security for instance, an
operator monitoring and checking the alerts raised by
intrusion detection systems [3], may want to select only
10% of most reliable alerts. The problem dealt with in
this paper is the one of revising the predictions of a
classifier in order to fit the user requirements. These latter
can be seen as constraints to satisfy and can refer to
expert knowledge on the addressed problem, preferences,
etc. We addressed this problem originally in [6] in a
computer security context and we dealt only with
probabilistic classifiers. Moreover, in that work we
proposed only two basic criteria to revise the predictions
of a classifier. In the following, we mention mostly
classifiers but the proposed approach can apply as well on
any prediction or detection system as illustrated in our

∗ Corresponding author e-mail:kezih.mouad@gmail.com

c© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/100442

1620 M. Kezih et al.: On post-processing the outputs of prediction systems

case study in computer security.

In this paper, we address the problem of
post-processing the predictions of a classifier in order to
exploit any available domain knowledge. The main
contributions of this paper are:

1.We propose a formalization of the problem of
post-processing the predictions of a classifier in order
to fit some extra knowledge. This problem is new in
the supervised classification community and there is
no formal definition for it.

2.We propose new post-processing criteria. In particular,
we propose a criterion allowing to relabel the items
where the classifier’s confidence is low measured in
terms of entropy. Another criterion is tailored for cost-
sensitive classification problems and allows to choose
the items to relabel based on the classifier confidence
and the miss-classification costs.

3.We generalize and extend the post-processing
procedure to any classifier and any prediction system
instead of only probabilistic-based ones.

4.We carried out an extensive experimental study
covering most of the problems dealt with in
classification tasks. In particular, we evaluated on
many benchmarks with different characteristics in
terms of features number, instances, number of
classes (namely binary and non binary classification
problems). We also provide experimental results on
the class imbalance problem.

5.We provide a case study on two typical computer
security problems where it really makes sense to
revise the predictions of a prediction/detection system
with the users’ domain knowledge, constraints and
preferences.

This paper is organized as follows: In Section 2, we
present the motivations of this work and review the
related works. Section 3 gives insights into classifiers’
predictions while Section 4 presents the strategies to
post-process the predictions in presence of domain
knowledge. In Section 5 we present the post-processing
criteria. In Section 6 we present our experimental studies.
In Section 7 we provide a case study in intrusion
detection and alert correlation areas. Finally, Section 8
concludes the paper.

2 Related works and motivations

In supervised classification, many issues are still hot
research topics and represent an active research field. For
instance, a lot of interest and effort is devoted for
designing efficient classifiers and for combining
classifiers to take advantage of their complementarities
and strengths. Approaches trying to exploit some kinds of
domain knowledge mainly do it in a pre-processing step
(for instance by choosing high quality training datasets,
selecting good priors, etc.). Indeed, most works aiming to

exploit background and expert knowledge along with
classifiers focus on improving model learning and model
selection. For example, in [39] the authors combine
background knowledge elicited from experts and
empirical data to better learn the structure of Bayesian
networks.

As for post-processing a probabilistic classifier
predictions, one can list the combination techniques
where several classifiers are combined to exploit their
mutual complementarities [34]. Note that multiple
classifier combination [24,34] is concerned with
aggregating the predictions made by multiple classifiers
but there is no domain knowledge that is used for the
combination. Other works dealing with classifier
predictions are those based on the reject option where a
prediction is made only if the probability of making a
good decision is higher than a user defined threshold [13].
Note that the reject option relies only on the confidence of
the classifier when making predictions and the user
defined thresholds. This corresponds to another type of
expert knowledge (the required confidence level by the
user). Note also that a lot of works dealt with calibrating
the posterior probability estimates [20] but such works
aim to provide more reliable posterior probability
distributions for the items to classify without considering
any expert knowledge. Calibration is important for
ranking predictions, combining multiple classifiers or
when using the reject option.

In many real world applications, typically a classifier
or a prediction/detection model is used to classify items
of interest. For example, spam filters, intrusion detection
systems [3], object, action and activity recognition
systems in video analysis [38] are well-known
detection/prediction models and in such domains, the
models are not necessarily learnt from training data. Then
if a user wants that his model complies to some specific
requirements (for instance constraints or preferences)
then he cannot learn a new model or tune the existing one.
Our approach can well fit such needs and it is appropriate
for both machine learning-based classifiers and
prediction/detection models.

2.1 Domain knowledge

The goal of our revision-based post-processing is to
exploit the available extra-knowledge in order to fit the
user’s knowledge, constraints and preferences. In the
following, we provide some typical domain knowledge a
user may want to exploit over a classifier predictions:

–i) Domain knowledge about the items to classify:
Assume that we haven objects to classify denotedo1,
o2,.., on. Then one may have information (in general
or within a specific situation) that the amount of items
of a classci is greater thanc j (namely, the probability

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 4, 1619-1635 (2016) /www.naturalspublishing.com/Journals.asp 1621

p(ci)>p(c j)). For example, in anomaly detection
problems [3] which can be viewed as a classification
task, it is common to assume that the frequency of
normal events is greater thanabnormal ones. Then
one may want to satisfy all the time or in particular
cases a constraint of the form
p(normal)>p(abnormal) where p(normal) (resp.
p(abnormal)) denotes the frequency of items detected
asnormal(resp.abnormal).

–ii) A user’s requirements: In many
prediction/detection applications, a user may want to
have a specific amount of instances in a given class.
For example, in computer security [3] and video
surveillance applications [38], human operators
monitoring the detected events are overwhelmed with
the huge numbers of anomalous events and they are
incapable to analyze them all. What is generally done
in practice is to limit the number of alerts. This
objective can be achieved by selecting among all the
predictions a user specified amount that they can
analyze. Such requirements represent application
constraints or simple user preferences.

In the following, we use the generic termdomain
knowledgeto designate the available knowledge of the
application domain under consideration as well as the
specific constraints and preferences of the users.
Typically, one can have three types of domain knowledge
that can be exploited to post-process the predictions of a
classifier:

–Knowledge about a single class:This knowledge can
be in the form of an amount or a frequency. For
instance, a user may want to select exactly 100 top
instances of classci or select 2% of the items that
belong to a classci .

–Knowledge about the ranking over the classes:In this
case, a user may just want to have more or less
instances of classci than classc j . This knowledge can
be expressed for example asp(ci)>p(c j). One may
also want to have a complete ranking over the classes
p(ci)>p(c j)>..>p(ck).

–Knowledge about the class distribution:The third
kind of knowledge can be a precise distribution for all
the predictions. Namely, fori=1..k, we specify the
frequencyp(ci) of items that should be predicted in
classci .
Knowledge about the class distribution is the most

exhaustive and accurate domain knowledge. In the
experimental studies, we provide experiments using these
three kinds of domain knowledge.

3 Classification and classifiers

3.1 Classification

Classification, also known as supervised learning,
consists in predicting the right class of an item. For

example, spam filtering can be seen as a classification
problem since the problem consists in classifying any new
mail in one of predefined classes (namelyspam or
normal). In computer security, intrusion detection can
also be seen as a classification task consisting in labeling
the analyzed activities asauthorizedor attack).
Formally, a classification problem is defined by:

–A feature space:A set of attributesA1, A2,..,An where
each variableAi is associated with a domainDi which
can be discrete or continuous. The set of attributesA1,
A2,.., An are observable and describe the objects to
classify.

–A class space:It consists of a discrete variableC with
a domainDC={c1,c2, ..,ck}. The valuesci∈DC are
called class instances or class labels.

A classifier is a function that associates a classci∈DC
with an objeta1a2..an. This latter is an instantiation of the
attributesA1, A2,..,An. The objective is to minimize a loss
(or a miss-classification) function. Namely, a classifier
aims to minimize the classification error rate. In
cost-sensitive classification problems, the aim is to
minimize the overall miss-classification cost.

3.2 Classifier outputs

Classifiers are predictive models that can be grouped
according to the nature of their outputs mainly into three
categories:

–Single class output:Such classifiers only output the
predicted class. An example of such classifiers is
standard decision trees [32]. Some prediction and
deception systems such as intrusion detection systems
are of this type.

–Ranking-based output:This kind of classifiers output
a ranking of the different class instances for the item
to classify then one can select the first or then best
candidate classes.

–Score-based output:It is the most informative output
a classifier can provide allowing to predict and assess
the classifier confidence regarding its predictions.
Examples of probabilistic classifiers are Bayesian
network classifiers.

4 Post-processing a classifier’s predictions to
fit domain knowledge

4.1 Post-processing strategies

As illustrated on Figure1, the objective is to design a post-
processor to revise the predictions made by a classifier to
fit the set of requirements of the user.

Assume that we have a set of items to classify denoted
O={(a1a2..an)1, (a1a2..an)2 .. (a1a2..an)m} where

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1622 M. Kezih et al.: On post-processing the outputs of prediction systems

a1a2..an

a1a2..an

Input

.........
a1a2..an

Classifier ci

ck

Predictions

...
cm

Revision

Knowledge

cm

ck

predictions

Revised

...
ck

Fig. 1: Post-processing a classifier’s predictions

a1a2..an is an instantiation of the attributesA1A2..An. The
classifier f will associate with each instance (a1a2..an)i a
class instanceck∈DC, denotedck= f ((a1a2..an)i). Without
loss of generality, let us assume that the classifierf
outputs a vector of scoresvi=(s1,s2, ..,sk)i for each
instance to classify (a1a2..an)i (here, k denotes the
number of class instances, namelyk=|DC|). The score
vector(s1,s2, ..,sk)i is :

i)A posterior probability distributionin case of using a
probabilistic classifier. For instance, Bayesian
network classifiers [19] associate with any object to
classify a posterior probability distribution
v=(p(c1|a1..an), p(c2|a1..an), .., p(ck|a1..an)). In the
k-NN classifier, the scoressi could be the proportion
of training items labeledci among thek selected items
while classifying the item in hand. Generally, the
score si can be interpreted as the confidence,
uncertainty or membership degree of the classifier that
the right class isci .

ii)A vector of zeros and onesin case of classifiers
outputting only class labels as predictions. For
example, a classifier predictingc1 will output the
vector (1,0, ..,0) where the value 1 denotes the
predicted classes while the remaining zeros exclude
the corresponding classes. Well-known example of
classifiers outputting only class labels is standard
decision trees [32].

iii) A probability distributionto encode the ranking such
that if ci is ranked beforec j then p(ci)>p(c j). It is
easy to build a probability distributionp over the class
variable domainDC inducing the desired class ranking
[20].

Note that there are calibration techniques [20] that can be
used to scale and normalize any classifier outputs into a
probability distribution. Using normalized probability
distributions offers many advantages [20] for
post-processing tasks such as prediction combination in
multiple classifier systems, cost-sensitive classification,
classification with reject option, etc.

In this paper, we deal with post-processing the
predictions of a classifier where a predictionc∗ for an
item a1..an is generally obtained according to the

following rule:

c∗ = argmaxi=1..k(si) (1)

where the scoresi denotes the score associated by the
classifier f to the itema1..an for being in the classci .
Until now, we showed how the outputs of any classifier
can be encoded as vectors of scores. Let us now see how
to revise them to fit the user’s requirements.

4.2 Strategies for revising a classifier’s
predictions

Let us denote the set of objects to classify byo1,..,om with
oi=(a1a2..an)i . Let us also denote the set of predictions
made by the classifierf by v1,..,vm such that f (oi)=vi .
Similarly, let us usefi (resp.r i) to denote the class label
predicted by f (resp. the revision-based post-processor)
for the objectoi. Assume also that we have a set of
constraintsK ={K1,..,Kw} representing the extra domain
knowledge and requirements to satisfy. In Section2.1, we
showed that any constraintKi∈K can be expressed in the
form pK(ci)=αi∈[0,1]. Then there are three situations to
be considered:

1.Case 1:∀Ki∈K , pf (ci)=αi . This means that all the
constraintsKi (namelypK(ci)=αi) are already satisfied
by the classifierf (here,pf (ci) denotes the proportion
of items predicted in the classci by the classifierf).
Then the post-processor just predicts the same thing as
the classifier, there is no relabeling of objects.

2.Case 2:∃Ki∈K , pf (ci)>αi . This situation happens
when the classifierf classifies more objects in a class
ci than required by the domain knowledge. To satisfy
the constraintKi , some of the objects predicted asci
have to be relabeled in the other classesck with k6=i.
The question that rises now is which items to relabel?
This issue is dealt using selection criteria presented in
the following section.

3.Case 3:∃Ki∈K , pf (ci)<αi . This situation happens if
the classifierf has not predicted enough objects in
classci meaning that some objects predicted byf in
the other classesck with k6=i have to be revised and
predicted by the post-processor in the classci . Here
again, the question is which items from the other
classes to relabel such that the constraintKi is
satisfied? We provide selection criteria to deal with
issue in the following section.

For Case 2and Case 3, many strategies can be adopted
to select the objects to relabel while satisfying the set of
constraintsK . The principles that our revision strategy
follows are:

–Minimize miss-classification cost:This objective aims
to minimize the overall miss-classification cost while
satisfying the user’s constraints. Such an objective
requires i) relabeling only miss-classified items by the
classifier and ii) relabel them in the right classes. In

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 4, 1619-1635 (2016) /www.naturalspublishing.com/Journals.asp 1623

order to achieve such an objective, we propose five
criteria for selecting the items to relabel specifically
designed to minimize the miss-classification cost.

–Minimize relabelings: This objective aims to ensure
tractable computational complexity for the revision
operation. Indeed, there are many solutions allowing
to satisfy the set of input constraints. Our revision
algorithm is designed to revise as few predictions as
possible such that the user constraints are satisfied.

We use a heuristic algorithm to minimize the number of
relabelings. It deals with the classifier predictions
incrementally. It first satisfies the constraintKi requiring
the largest items in classci , then it continues with the
following constraints in a decrementing order. Note that it
is enough to deal only with constraints ofCase 3 to
satisfy the set of constraintsK . Moreover, in order to
minimize relabelings, an item predicted in the classci will
not be relabeled if the corresponding constraintKi
requires more items inci than predicted by the classifier
f . In Algorithm 1, the functionSelectItem(O,Cr) allows

Algorithm 1 Post-processing algorithm
Input: O={o1,o2, ..,om} // Objects to classify

V = {v1,v2, ..,vm} // Score vectors output byf
K = {K1,K2, ..,Kw} // Constraints to satisfy

Output: R={r1, r2, .., rm} // Revised predictions
1: procedure POST-PROCESS(O ,V ,K)
2: R← /0
3: SK← AscendingSort(K) //Get class order for relabeling
4: while SK6= /0 do
5: c j ← pop(SK) //Pick the highest class fromSK
6: R j ← f j //Set of object predicted inc j by f
7: while |Rj |<α j do //While constraintK j is not satisfied
8: o← SelectItem(O ,Cr) //Select object to relabel
9: r(o)← c j //Relabelo in classc j

10: R j ←R j ∪{r(o)}
11: O ← O \o //Discardo from remaining items inO
12: end while
13: R←R∪R j

14: end while
15: return R

16: end procedure

to select an object to relabel among the remaining
candidates inO using a criterionCr among the ones
presented in the next section. It is clear that the
complexity of this algorithm is polynomial in the number
objects to post-process thanks to the incremental
processing of items while satisfying the constraints ofK .
Indeed, the costly operations are the sort function
AscendingSort() (which is in the worst case inO(k2)
using a quick sort algorithm withk denoting the number
of classes) and the complexity of the two nestedwhile
loops is less thanO(m2) with m denoting the number
objects to post-process. In fact, each iteration discards an
object and the functionSelectItem() implementing our
criteria is linear in the number of candidates|O|.

5 Criteria for post-processing the predictions

In case a given constraintKi is not satisfied (for instance,
the proportion of items predicted by the classifierf in ci
is less than required by the constraintKi) then we need to
relabel some items predicted byf in the other classes and
predict them in the target classci . There are many
methods to select the items to relabel. In the following,
we propose five criteria aiming at minimizing
miss-classifications. The first three criteria are originally
proposed in [6] in a computer security application.

5.1 MCTC (Maximize Confidence in the Target
Class)

This criterion interprets the scoresvi=(s1,s2, ..,sk)i
associated with an objectoi by the classifierf as the
confidence of f that the right class of oi is
argmax((s1,s2, ..,sk)i), namely the class corresponding to
the highest score. Leto1,..,om be the set of objects that
can be relabeled inci . The selected object ˆo j using the
MCTCcriterion is defined as follows:

ô j = argmaxj=1..m(v[i] j), (2)

wherev[i] j is the scoresi of the target classci in the vector
v j of the scores associated by the classifierf to o j .

Example 1.Assume that we want to relabel one object
amongo1, o2 ando3 in the classc4.

o1 o2 o3
Classes v1 v2 v3

c1 .1 .4 0
c2 .6 .15 .15
c3 .2 .3 .45
c4 .1 .15 .4

f (oi) c2 c1 c3

In this example, the objectso1, o2 ando3 are predicted by
the classifierf respectively inc2, c1 andc3. Since there is
need to relabel one among them in the target classc4, then
the criterionMCTC selects to relabel the objecto3 as the
score ofc4 in v3 is the highest.

Intuitively, the MCTC criterion selects to relabel the
object where the target classci has the best score, it is the
object where the confidence inci is the highest that is
selected. Doing so, we have more chances that the
selected object byMCTC is in fact in the classci .

5.2 MCPC (Minimize Confidence in the
Predicted Class)

Here also the selection criterion interprets the scores
vi=(s1,s2, ..,sk)i associated with an objectoi as the
confidence of f that the right class of oi is
argmax((s1,s2, ..,sk)i). Since the objects to select among
o1,..,om are considered as miss-classified, then another

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1624 M. Kezih et al.: On post-processing the outputs of prediction systems

way to select the object to relabel is to select the one
classified with the lowest confidence. More formally,

ô j = argminj=1..m(max((s1, ..,sk) j)), (3)

where max((s1, ..,sk) j) denotes the highest score among
the ones associated by the classifierf to the objecto j .

Example 2.Let the set of objects to relabel beo1, o2 ando3
and let the target class bec4.

o1 o2 o3
Classes v1 v2 v3

c1 .1 .4 0
c2 .6 .15 .15
c3 .2 .3 .45
c4 .1 .15 .4

f (oi) c2 c1 c3

In this example, the criterionMCPCselects to relabel
the objecto2 as its predicted class isc1 and it is predicted
with the lowest confidence (namely, .4).

5.3 MPTCD (Minimize the Predicted-Target
Class Confidence Difference)

This criterion is a combination of the criteriaMCTC and
MCPC and aims at minimizing the gap between the
predicted class and the target one.

ô j = argminj=1..m(max((s1, ..,sk) j)− v[i] j). (4)

Example 3.Let o1, o2 ando3 be the set of objects to relabel
and let the target class bec4.

o1 o2 o3
Classes v1 v2 v3

c1 .1 .4 0
c2 .6 .15 .15
c3 .2 .3 .45
c4 .1 .15 .4

f (oi) c2 c1 c3

MPTCD will select to relabel the objecto3 since the
gap between the score of the predicted classc3 and the
target onec4 is .05 which is the smallest gap. The gap is
interpreted here as a kind of confidence.

5.4 ME (Maximize the Entropy)

This criterion aims to select among the objects to relabel
the one where the classifierf is less confident in terms of
entropy. This measure allows to assess the amount of
uncertainty in a probability distribution. The entropy is
maximal in case of uniform distributions and it is minimal
if there is a value with all the probability mass (namely, 1)

while all the other values have a zero probability.
Intuitively, this criterion allows to relabel the object where
the classifierf is most uncertain (namely, less confident).

ô j = argminj=1..m(entropy(s1, ..,sk) j), (5)

whereentropy((s1, ..,sk) j)=-∑k
i=1si ∗ log(si). The entropy-

based criterionME aims to relabel the objects where the
classifier is most uncertain as it generally happens in case
of novel and outlier objects.

Example 4.Assume that we have to choose amongo1, o2
ando3 an object to be relabeled in the target classc4.

o1 o2 o3
Classes v1 v2 v3

c1 .1 .4 0
c2 .6 .15 .15
c3 .2 .3 .45
c4 .1 .15 .4

f (oi) c2 c1 c3
entropy(vi) 1.57 1.87 1.46

In this example, the criterionME selects to relabel the
object o2 since the score vectorv2 contains the greatest
entropy (uncertainty).

5.5 MMCC (Minimize Miss-Classification Cost)

This criterion allows to take into account both the scores
output by the classifierf and the miss-classification costs.
Indeed, in some applications the cost of miss-classifying
an object and predicting it in a wrong classck is more
costly than miss-classifying it and predicting it in another
wrong classc j . For instance, the cost of detecting an
attack while there is no attack has not the same cost as not
detecting any attack while there is actually one (see [31]
for cost-sensitive classification problems). The choice of
an object using the classifier’s confidence and the
miss-classification costs can be done as follows:

ô j = argminj=1..m(
k

∑
h=1

sh ∗cost(f (o j),ci)), (6)

wherecost(f (o j),ci) is the cost of miss-classification ofci
in the class predicted by the classifierf (o j).

Example 5.In order to illustrate theMMCC criterion, let
us assume that we deal with a cost-sensitive classification
problem where the miss-classification costs are given in
the following cost matrix.

c1 c2 c3 c4
c1 0 10 2 12
c2 3 0 2 10
c3 1 4 0 1
c4 5 10 1 0

Assume that we have to choose amongo1, o2 ando3
an object to relabel in the target classc4.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 4, 1619-1635 (2016) /www.naturalspublishing.com/Journals.asp 1625

o1 o2 o3
Classes v1 v2 v3

c1 .1 .4 0
c2 .6 .15 .15
c3 .2 .3 .45
c4 .1 .15 .4

f (oi) c2 c1 c3
cost(vi) 7.2 6.3 1.5

In this example, the criterionMMCC selects to relabel
the objecto3 since the mean cost of score vectorv3 is the
lowest.

6 Experimental setup

6.1 Datasets

Table 1 gives the details of the used datasets. All these
datasets are publically available (from the well-known
UCI repository1 and the KEEL imbalanced dataset
repository2). Note that we selected different types of

Table 1: Datasets used in the experimental evaluation
Dataset # instances # attributes # classes
spambase 4601 57 2
dbworld 64 4702 2
column 2c 310 7 2
column 3c 310 7 3
AU 25000 46 6
contraceptive 1473 10 3
balance 625 5 3
glass 214 10 7
yeast 1484 8 10
lymphography 148 18 4
ecoli 336 8 8
thyroid 720 22 3

datasets with different characteristics. We selected
multi-dimensional datasets with different sizes (#
instances), dimensions (# attributes) and classification
type problem (# classes). In particular, we selected some
imbalanced3 datasets especially because most classifiers
are unable to achieve good classification rates on rare
classes [12]. In Table 1, the datasetscontraceptive,
balance, glass, yeast, lymphography, ecoliandthyroid are
imbalanced. Note that in Table1 the datasetscolumn 2c
and column 3care part of the UCIVertebral Column
dataset whileAU denotes the UCIAutoUnivdataset.

Other datasets from the MDP repository4 are also
used to evaluate our approach on binary and imbalanced
classification problems.

1 https://archive.ics.uci.edu/ml/datasets.html
2 http://sci2s.ugr.es/keel/imbalanced.php
3 A dataset is said imbalanced if some classes are under

represented.
4 http://nasa-softwaredefectdatasets.wikispaces.com/

Table 2: MDP (NASA Metrics Data Program) datasets used in
the experimental evaluation

Dataset # instances # attributes # classes
cm1 344 38 2
jm1 9593 22 2
kc1 2096 22 2
kc3 200 40 2
mc1 9277 39 2
mc2 127 40 2
mw1 264 38 2
pc1 759 38 2
pc2 1585 37 2
pc3 1125 38 2
pc4 1399 38 2
pc5 17001 39 2

The results of the evaluated classifiers on the MDP
datasets of Table2 are given in the appendix.

6.2 Evaluated classifiers

In order to evaluate our post-processing approach, we
carried out experiments on both probabilistic classifiers
(namely outputting probability distributions) and non
probabilistic ones (namely outputting only one single
class).

Table 3: Classifier details tested in the experimental studies
Abrev. Name Reference Category
NB Naive Bayes [19] Probabilistic
TAN Tree

Augmented
Naive Bayes

[19] Probabilistic

BNK2 Bayesian
Network built
with the K2
algorithm

[26] Probabilistic

C4.5 Decision Tree
C4.5

[32] Non probabilistic

kNN k Nearest
Neighbor

[1] Non probabilistic

We evaluated as probabilistic classifiers the Naive
Bayes classifierNB, TAN5 and BNK26 [19]. These
classifiers output posterior probability distributions for
each object to classify. Such outputs are directly used by
our post-processor when relabeling objects. As for non
probabilistic classifiers, we used a C4.5 decision tree [32]
and akNN classifier where only class labels are predicted.
Note that it is possible to obtain somehow probability

5 Tree Augmented Naive Bayes.
6 Bayesian Network built with the K2 algorithm.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
https://archive.ics.uci.edu/ml/datasets.html
http://sci2s.ugr.es/keel/imbalanced.php
http://nasa-softwaredefectdatasets.wikispaces.com/

1626 M. Kezih et al.: On post-processing the outputs of prediction systems

distributions from decision trees andkNNs but in this
work, we use only class label predictions.

6.3 Domain knowledge

Since it is difficult to show the interest of our approach on
a specific application domain with real constraints, we
first chose to perform experimental studies on widely
used benchmarks for evaluating classifiers. In our
experiments, we used datasets to build and evaluate the
classifiers on them. As domain knowledge, we use
different kinds of knowledge obtained only from training
datasets.

–Training Dataset Distribution (TDD): Here, we use
as domain knowledge the frequencies of the different
classes in the training dataset. LetD be the training
dataset and letpD(ci) denote the frequency of items
labeled asci in D . The knowledge we exploit here is
K ={K1, ..,Kk} such that each constraintKi requires
that pK(ci)=pD(ci), namely the amount of objects
labeled inci after the post-processing step should be
equal to the amount of objects in the classci in the
training dataset. As it will be shown in the obtained
results, revising only with this available information
allows to improve the classification rate using most
classifiers.

–Miss-Classification Rates (MCR):The domain
knowledge we exploit here is relative to the
miss-classification rates (namely, miss-classification
rates over all or some of the classes). Such rates are
obtained by evaluating the classifier on the training
dataset. It is easy to encode these rates as constraints
composingK and exploit them for post-processing
predictions. Here again, the used knowledge is
available and it allows to improve the classifiers
performances on most datasets.

6.4 Post-processing with knowledge on training
datasets

6.4.1 Evaluation of probabilistic classifiers

Table 4 provides the results of the Naive BayesNB
classifier on the datasets of Table1.

The experiments of Table4 are done by revising the
predictions of theNB classifier with the distributions
(TDD) of the training datasets and the miss-classification
rate of only one class ofNB on the training datasets. The
first six result columns of Table4 denote respectively the
PCC (Percentage of Correct Classification: It represents
the proportion of correctly classified instances among all
the classified instances) obtained with theNB classifier
without any post-processing (columnNB) while the
remaining columns denote the results of post-processing
the NB predictions using the criterion in the header of

Table 4: Results ofNBclassifier evaluation on the datasets of Table1.
Dataset NB MCTC MCPC MPTCD ME MMCC MMCC

Cost
spam-
base

79.22% 79.33%
(80.42%)

78.77%
(79,46%)

77.80%
(81.83%)

76.61%
(77.63%)

76%
(82.13%)

0.207
(0.178)

dbworld 89.06% 84.37%
(87.50%)

87.50%
(90.63%)

96.68%
(96.87%)

85.94%
(90.62%)

90.62%
(90.62%)

0.109
(0.093)

column
2c

77.74% 49.67%
(65.80%)

49.67%
(68.06%)

73.22%
(80.96%)

73.22%
(79.67%)

80.64%
(80.96%)

0.226
(0.190)

column
3c

83.22% 48.70%
(61.61%)

48.06%
(79.03%)

83.54%
(83.54%)

82.90%
(83.22%)

80.64%
(83.54%)

0.168
(0.165)

AU 52% 46.35%
(48.62%)

47.69%
(52.36%)

54.55%
(54.81%)

54.46%
(54.76%)

52.78%
(54.81%)

0.48
(0.452)

contra-
ceptive

49.69% 50.98%
(51.45%)

50.03%
(51.66%)

55.24%
(53.68%)

51.66%
(50.91%)

51.32%
(53.68%)

0.503
(0.463)

balance 90.08% 64.48%
(70.24%)

64.96%
(71.68%)

89.76%
(90.08%)

89.44%
(90.08%)

89.76%
(90.40%)

0.099
(0.09)

glass 47.19% 46.73%
(47.66%)

44.39%
(45.79%)

47.19%
(48.59%)

50%
(50.46%)

53.74%
(54.20%)

0.528
(0.458)

yeast 57.61% 53.50%
(57.88%)

54.04%
(58.15%)

57.47%
(58.69%)

57.07%
(57.74%)

58.35%
(58.55%)

0.424
(0.415)

lympho-
graphy

83.78% 77.02%
(82.34%)

77.02%
(83.78%)

83.10%
(84.45%)

81.75%
(83.78%)

82.43%
(84.45%)

0.162
(0.155)

ecoli 85.41% 77.67%
(80.35%)

77.38%
(81.25%)

83.92%
(86.30%)

80.95%
(85.41%)

85.11%
(86.90%)

0.146
(0.131)

thyroid 95% 94.44%
(94.72%)

96.52%
(96.66%)

94.86%
(95.83%)

96.38%
(95.41%)

95.41%
(96.94%)

0.05
(0.031)

each column. In each cell, we give the results of revising
with TDD knowledge and the results of revising with
MCR knowledge between brackets. Note that for the
MMCC criterion, we provide results obtained using a
cost-matrix generated randomly. We provide results in
terms of PCC, average classification cost without
post-processing (in the last column) and average
classification cost after post-processing (between
brackets). For imbalanced datasets, the costs of
miss-classifying rare classes are more important than
miss-classifying majority ones. Finally, the results are
obtained through a 10-fold cross-validation on the
training datasets. The results of Table4 show three main
trends:

–The first trend is that on most the datasets using the
MCR knowledge performs better than the classifier
alone and better than the classifier with the
post-processor exploiting the TDD knowledge.
Indeed, revising with the MCR knowledge
outperforms post-processing with the TDD
knowledge with a gain in the PCC reaching
sometimes 19% (see the results ofNBclassifier on the
column 2cdataset in Table1). Regarding theMMCC
criterion, the revision decreases the miss-classification
cost significantly meaning that the relabelings succeed
in revising the labels of miss-classified instances of
classes with high costs.

–The second trend is that on most the datasets the
criteria ME and MMCC perform better than the
MCTC, MCPC and MPTCD both when using TDD
knowledge or the MCR knowledge. This result shows
that when revising, theME and MMCC criteria are
better for selecting items to relabel among those
miss-classified by theNB classifier. For theME
criterion, this is generally the case for outliers and

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 4, 1619-1635 (2016) /www.naturalspublishing.com/Journals.asp 1627

items containing some novelty (for instance, novel
values in some attributes). Indeed, theNB classifier
and more generally probabilistic ones, will return
uniform posterior distributions making these items
favorite candidates for the relabeling as their entropy
is maximal. As for theMMCC criterion, it gives
priority to relabel items with low posterior probability
but taking into account the miss-classification cost.

–The improvements made by post-processing are more
significant on the datasets where theNB alone has not
good classification rate as on theAU, contraceptive,
glass and yeast datasets. This result is somehow
natural since it is hard for the post-processor to
perform better than the base classifier if this latter
already performs well on a dataset.

Table 5 provides the results of theTAN
(Tree-Augmented Naive Bayes) classifier on the datasets
of Table1.

Table 5: Results ofTANclassifier evaluation on the datasets of Table1.
Dataset TAN MCTC MCPC MPTCD ME MMCC MMCC

Cost
spam-
base

93.08% 93.04%
(93.15%)

93.04%
(91.78%)

92.78%
(93.35%)

92.78%
(93.35%)

93.26%
(93.84%)

0.0692
(0.062)

dbworld 79.68% 78.12%
(81.25%)

78.12%
(73.43%)

78.12%
(82.81%)

78.12%
(82.81%)

81.25%
(82.81%)

0.2032
(0.172)

column
2c

80.64% 80.64%
(80.96%)

80.64%
(80.96%)

81.93%
(82.25%)

81.93%
(82.25%)

81.29%
(81.93%)

0.1936
(0.181)

column
3c

78.06% 76.77%
(78.7%)

76.12%
(77.09%)

77.41%
(79.03%)

76.77%
(79.67%)

80%
(80.64%)

0.2194
(0.194)

AU 59.71% 59.15%
(59.77%)

49.77%
(59.39%)

59.74%
(60.18%)

59.16%
(59.72%)

61.28%
(61.6%)

0.4029
(0.384)

contra-
ceptive

51.66% 51.45%
(51.73%)

50.98%
(51.32%)

50.57%
(52.61%)

51.39%
(52.41%)

51.86%
(52.47%)

0.4834
(0.475)

balance 71.68% 65.92%
(72%)

64.96%
(71.04%)

72.32%
(72.48%)

72.48%
(72.64%)

72.64%
(73.44%)

0.2832
(0.266)

glass 75.23% 71.02%
(75.23%)

60.74%
(74.76%)

71.49%
(75.7%)

72.42%
(76.17%)

76.17%
(76.63%)

0.2477
(0.234)

yeast 58.15% 57.47%
(58.22%)

55.86%
(58.01%)

57.95%
(58.49%)

57.34%
(58.36%)

57.68%
(58.55%)

0.4185
(0.415)

lympho-
graphy

87.16% 87.16%
(87.16%)

85.81%
(86.48%)

86.48%
(87.16%)

86.48%
(87.16%)

87.16%
(87.83%)

0.1284
(0.122)

ecoli 80.05% 80.35%
(80.65%)

80.05%
(80.35%)

81.25%
(81.54%)

80.95%
(80.65%)

80.35%
(80.95%)

0.1995
(0.191)

thyroid 96.8% 96.8%
(97.08%)

96.52%
(96.52%)

96.8%
(97.08%)

96.66%
(97.36%)

96.94%
(97.5%)

0.032
(0.025)

The results of the Table5 are similar to those of Table
4. However, given thatTAN classifier is already more
effective thanNB on most datasets and as it is better
before the use of post-processing then the post-processing
results are not as significant as the improvements obtained
in Table 4. Regarding the different revision criteria and
the kind of knowledge we revise with, the results of the
Table 5 allow us to draw the same conclusions as the
trends drawn from Table4.

In Table 6, we provide the results of the Bayesian
network classifier BNK2 learnt using the K2 [14]
algorithm. This evaluation is done on the datasets of Table
1.

From the results of Tables6, one can notice that the
results of the probabilistic classifierBNK2 share the main

Table 6: Results ofBNK2 classifier evaluation on the datasets of Table1.
Dataset BNK2 MCTC MCPC MPTCD ME MMCC MMCC

Cost
spam-
base

89.8% 89.74%
(89.91%)

86.91%
(89.74%)

89.74%
(89.95%)

89.74%
(89.95%)

89.93%
(89.98%)

0.102
(0.100)

dbworld 90.62% 85.93%
(89.06%)

84.37%
(87.5%)

87.5%
(92.18%)

87.5%
(92.18%)

90.62%
(92.18%)

0.0938
(0.078)

column
2c

76.45% 80.64%
(81.29%)

70.32%
(72.25%)

80.96%
(81.61%)

80.96%
(81.61%)

81.29%
(82.9%)

0.2355
(0.171)

column
3c

74.83% 70.32%
(73.22%)

70.64%
(72.25%)

75.8%
(76.45%)

76.12%
(75.8%)

76.12%
(76.77%)

0.2517
(0.232)

AU 54.92% 37.4%
(54.26%)

37.11%
(53.66%)

54.22%
(54.97%)

53.56%
(54.98%)

54.94%
(55.13%)

0.4508
(0.449)

contra-
ceptive

51.12% 50.91%
(51.32%)

50.78%
(50.23%)

50.91%
(52.07%)

50.71%
(51.66%)

51.05%
(51.45%)

0.4888
(0.485)

balance 71.68% 67.52%
(72%)

68.16%
(71.84%)

71.36%
(73.12%)

71.36%
(73.12%)

73.28%
(75.2%)

0.2832
(0.248)

glass 73.36% 66.35%
(73.83%)

59.81%
(71.49%)

71.02%
(74.76%)

70.56%
(73.83%)

71.96%
(74.29%)

0.2664
(0.257)

yeast 56.73% 56.33%
(56.8%)

53.36%
(55.25%)

56.46%
(56.8%)

56.19%
(56.53%)

56.87%
(57.07%)

0.4327
(0.429)

lympho-
graphy

85.81% 85.13%
(85.13%)

83.1%
(85.13%)

87.16%
(86.48%)

86.48%
(86.48%)

85.81%
(86.48%)

0.1419
(0.135)

ecoli 81.25% 78.86%
(81.54%)

75.89%
(80.35%)

81.54%
(82.44%)

81.84%
(82.44%)

82.73%
(83.33%)

0.1875
(0.166)

thyroid 96.66% 96.52%
(96.66%)

96.38%
(96.66%)

96.38%
(97.36%)

96.66%
(97.08%)

97.22%
(97.91%)

0.0334
(0.021)

trends and conclusions of the results ofNB and TAN
classifiers of Table4 and5.

6.4.2 Evaluation of non probabilistic classifiers

We use in the following experiments a standard C4.5
decision tree classifier [32] and akNN classifier [1]. As
for domain knowledge, we use only the class labels
predicted by these classifiers. Table7 (resp. Table8) gives
the results of C4.5 (resp.kNN) on the datasets of Table1.

Table 7: Results of theC4.5 classifier evaluation on the datasets of Table1.
Dataset C4.5 MCTC MCPC MPTCD ME MMCC MMCC

Cost
spam-
base

92.97% 92.91%
(92.97%)

92.97%
(92.78%)

92.91%
(93%)

92.91%
(93.04%)

93.28%
(93.52%)

0.0703
(0.065)

dbworld 71.87% 62.5%
(70.31%)

64.06%
(70.31%)

65.63%
(71.87%)

62.5%
(71.87%)

84.37%
(85.94%)

0.2813
(0.141)

column
2c

81.61% 80.64%
(83.22%)

78.06%
(78.7%)

82.58%
(83.22%)

82.58%
(83.22%)

83.22%
(84.84%)

0.1839
(0.152)

column
3c

81.61% 75.48%
(81.93%)

49.67%
(80.96%)

76.77%
(81.29%)

71.61%
(80.64%)

82.90%
(83.23%)

0.1839
(0.168)

AU 64.25% 64.08%
(64.32%)

63.96%
(64.18%)

64.35%
(65.3%)

64.37%
(65.58%)

64.1%
(65.22%)

0.3575
(0.348)

contra-
ceptive

53.76% 52.95%
(53.83%)

52.81%
(54.03%)

54.31%
(54.37%)

53.9%
(54.1%)

54.79%
(55.4%)

0.4624
(0.446)

balance 78.56% 75.68%
(77.44%)

75.52%
(77.44%)

76.8%
(80.64%)

76.32%
(79.52%)

80.96%
(81.92%)

0.2144
(0.181)

glass 67.75% 64.95%
(67.28%)

66.35%
(67.75%)

67.75%
(69.16%)

64.48%
(68.69%)

69.16%
(70.56%)

0.3225
(0.294)

yeast 55.86% 55.86%
(55.99%)

55.72%
(56.13%)

55.79%
(55.99%)

55.86%
(56.06%)

56.06%
(56.74%)

0.4414
(0.433)

lympho-
graphy

80.4% 80.4%
(80.4%)

80.4%
(80.4%)

80.08%
(81.08%)

80.4%
(81.75%)

80.41%
(82.43%)

0.196
(0.176)

ecoli 84.22% 84.22%
(84.52%)

83.03%
(83.92%)

84.22%
(84.52%)

83.33%
(84.82%)

84.52%
(85.42%)

0.1578
(0.146)

thyroid 98.61% 98.61%
(98.75%)

98.61%
(98.47%)

98.47%
(98.75%)

98.33%
(98.61%)

98.75%
(98.89%)

0.0139
(0.011)

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1628 M. Kezih et al.: On post-processing the outputs of prediction systems

TheC4.5 classifier is well-known and it is recognized
among the most efficient ones in the literature. On the
datasets of Table1, one can notice that compared to the
results of probabilistic classifiersNB, TAN and BNK2,
C4.5 classifier provides better performances on most
datasets. Regarding the post-processing, one can draw
almost the same conclusions as those drawn from the
results of the probabilistic classifiers, namely i) on most
the datasets, the revision improves the PCC (for example,
the PCC is improved by 14% on thedbworld dataset
using theMMCC criterion), ii) revision with the MCR
knowledge provides better results than post-processing
based on TDD knowledge and iii) theMMCC criterion
provides better results than the other criteria.

As for the results of thekNN classifier given in Table
8, the results are slightly mixed in comparison with the
probabilistic classifiersNB, TAN andBNK2 and those of
C4.5 decision tree. Indeed, on some datasets, there is a
slight deterioration in the PCC while on others, there are
slight improvements. But on the majority of datasets, the
use of MCR knowledge in post-processing provides better
results than when using the TDD knowledge and the
MMCC criterion provides the best results.

Table 8: Results of thekNN classifier evaluation on the datasets of Table1.
Dataset kNN MCTC MCPC MPTCD ME MMCC MMCC

Cost
spam-
base

90.76% 90.39%
(90.39%)

90.39%
(90.39%)

90.39%
(91.13%)

90.39%
(91.11%)

91.05%
(91.59%)

0.0924
(0.084)

dbworld 79.68% 78.12%
(78.12%)

67.18%
(68.75%)

81.25%
(82.81%)

79.68%
(82.81%)

81.25%
(84.38%)

0.2032
(0.156)

column
2c

81.61% 81.29%
(82.25%)

81.29%
(81.93%)

81.29%
(82.58%)

81.29%
(82.58%)

81.93%
(82.9%)

0.1839
(0.171)

column
3c

78.38% 77.74%
(79.03%)

74.51%
(77.41%)

77.74%
(80%)

78.06%
(79.68%)

79.35%
(80.97%)

0.2162
(0.190)

AU 41.11% 41.11%
(41.13%)

41.01%
(41.2%)

41.16%
(41.43%)

40.43%
(41.13%)

41.15%
(41.42%)

0.5889
(0.586)

contra-
ceptive

43.1% 40.19%
(42.97%)

42.97.1%
(43.1%)

43.17%
(44.73%)

43.31%
(43.85%)

43.92%
(44.12%)

0.569
(0.559)

balance 87.36% 85.6%
(87.2%)

77.4%
(86.72%)

87.68%
(89.62%)

86.88%
(87.52%)

88.8%
(90.24%)

0.1264
(0.0978)

glass 70.09% 47.66%
(50%)

67.75%
(70.09%)

71.03%
(71.96%)

69.15%
(70.56%)

71.5%
(72.9%)

0.2991
(0.271)

yeast 52.29% 47.16%
(49.79%)

45.88%
(51.81%)

52.22%
(52.49%)

51.88%
(52.29%)

52.63%
(52.7%)

0.4771
(0.473)

lympho-
graphy

80.4% 79.05%
(80.4%)

77.7%
(79.72%)

80.4%
(81.76%)

80.4%
(81.08%)

81.76%
(83.78%)

0.196
(0.162)

ecoli 80.35% 66.66%
(78.27%)

77.08%
(80.35%)

80.06%
(81.25%)

79.46%
(80.35%)

79.76%
(82.14%)

0.1965
(0.178)

thyroid 90% 87.77%
(90.41%)

87.5%
(89.86%)

90.13%
(92.63%)

89.86%
(91.94%)

91.25%
(93.19%)

0.1
(0.068)

The conclusions that can be drawn from the results of
Table 7 and Table8 on non probabilistic classifiers are
basically the same as the three trends characterizing the
evaluation of Tables4, 5 and6.

7 Case study: Exploiting domain knowledge
in computer security

This section provides a realistic application needing to
post-process the predictions of classifiers and
detection/prediction systems with domain knowledge and
user’s constraints in the computer security field.

7.1 Intrusion detection and alert correlation

The objective of computer security is to protect the
system against any attempt to violate the security policy.
Two kinds of solutions are generally used to ensure the
confidentiality, integrity and availability of information
and services of an information system:

–Prevention solutions: Like fire-walls, ciphering
technologies, access control, etc., such solutions aim
to prevent the violation of the security policy.

–Detection solutions:Because there is no guarantee
that the used prevention solutions provide a complete
security, there is need to use tools to detect the
intrusions and attacks that overcome the prevention
security tools. Examples of detection tools are
intrusion detection systems (IDSs for short)[3] such
as Snort IDS7, alert correlation [28][18] and activity
monitoring [27][23].

Intrusion detection consists in analyzing the activities
(ex. network traffic, log files, etc.) to detect in real-time or
offline any attempt to violate the security policy. IDSs act
as burglar alarms and they are either misuse-based [33] or
anomaly-based [30] or a combination of both the
approaches in order to exploit their mutual
complementarities [37].

Computer security practitioners often deploy multiple
security products and solutions in order to increase the
detection rates by exploiting their mutual
complementarities. For instance, misuse-based IDSs are
often combined with anomaly-based ones in order to
detect both old and novel attacks and anomalies. It is
important to note that all exiting anomaly-based
approaches have a major drawback consisting in very
high false alarm rates. These systems build profiles and
models of legitimate activities and detect attacks by
computing the deviations of the analyzed activities from
normal activity profiles. In the literature, most
anomaly-based IDSs are novelty or outlier approaches
[30][35] adapted for the intrusion detection problem.
Moreover, all modern IDSs (even thede factonetwork
Snort IDS are well-known to trigger large amounts of
alerts most of which are redundant and false ones. This
problem is due to several reasons such as bad parameter
settings and inappropriate IDS tuning, etc. [36]. As a
consequence, huge amounts of alerts are daily reported

7 http://snort.org/

c© 2016 NSP
Natural Sciences Publishing Cor.

http://snort.org/

Appl. Math. Inf. Sci.10, No. 4, 1619-1635 (2016) /www.naturalspublishing.com/Journals.asp 1629

making the task of the security administrators
time-consuming and inefficient. In order to cope with
such quantities of alerts, alert correlation approaches are
used [17][16].

Alert correlation [17][16] consists in analyzing the
alerts triggered by one or multiple IDSs and other security
tools in order to provide asyntheticandhigh-levelview
of the interesting malicious events targeting the
information system. The input data for alert correlation
tools is gathered from various sources such as IDSs,
fire-walls, web server logs, etc. Correlating alerts reported
by multiple analyzers and sources has several advantages
such as exploiting the complementarities of multiple
analyzers. The main objectives of alert correlation are:

1.Alert reduction and Redundant alerts elimination:
The objective of alert correlation here is to eliminate
redundant alerts by aggregating or fusing similar
alerts [17]. In fact, IDSs often trigger large amounts
of redundant alerts due to the multiplicity of IDSs and
the repetitiveness of some malicious events such
scans, floodings, etc.

2.Multi-step attack detection:Most IDSs report only
elementary malicious events while several attacks
perform through multiple steps where each step can
be reported by an alert. Detecting multi-step attacks
requires analyzing the relationships and connections
between several alerts [7][11][29].

3.Alert filtering and prioritization: Among the huge
amount of triggered alerts, security administrators
must select a subset of alerts according to their
dangerousness and the contexts. Alerts
filtering/prioritization aims at presenting to the
administrators only the alerts they want to analyze[8].

In the literature, alert correlation approaches are often
grouped into similarity-based approaches [17], predefined
attack scenarios [29], pre and post-conditions of
individual attacks [16] and statistical approaches [40][22].

We illustrate here the need to post-processing
prediction or detection systems outputs in order to fit the
user knowledge and requirements.

–In intrusion detection, a typical domain knowledge
requiring to revise the predictions and decisions of a
detection system (here an IDS for instance) is that
security operators may know for example that there
can not be successful attacks against a the Web server
given that there is no Web server in the monitored
network. Here the domain knowledge requires to
relabel for example the alerts saying that a Web attack
is currently undergoing as normal activity for
instance. This same scenario is also encountered for
attacks targeting systems and versions that are not
present or running in the network. In this case, it is
knowledge about application domain that allows to
revise the predictions of the IDS.

–In alert correlation , the security operators are faced
continuously to very large volumes of alerts generated
by the IDSs. Since it is impossible to analyze and
manually check all the triggered alerts, security
operators often prefer to select a subset of alerts
according to operators’ availability and the
dangerousness of the attacks. Typically, this is a
post-processing task of the predictions IDSs to fit the
constraints of the security operators. In this case, the
security operator may want to select only the 1000
most dangerous or most likely attacks among all those
generated by the IDSs. In this case, the knowledge
requiring to post-process the predictions of the
detection systems is the constraints and preferences of
the security operators. This task is similar in some
sense to prioritizing alerts (ranking the triggered alerts
according to user specified criteria [9]).

In the above scenarios, it is clear that it really makes
sense to post-process the predictions of security tools
which can be non probabilistic (outputting only symbolic
information like alerts that can be though of as classes) or
probabilistic (for instance, when the detection is based on
a probabilistic model as in SPADE system8). In order to
evaluate our post-processing approach, we carried out
experimentations similar to the ones of the experimental
study Section but they are done on real and representative
data from intrusion detection in Web attacks and alert
correlation.

7.2 Experiments on the intrusion detection
problem

In order to evaluate our post-processing approach on real
dataset, we use the Webtraffic dataset of Table9. It
contains real network traffic data collected on a university
campus. 18 days of network traffic were collected and the
volume of collected data is 100 Giga bytes. The raw data
is preprocessed into connection records described by
relevant features as described in [10]. For our
experimentations, only 15 Giga bytes of traffic were used.
The normal traffic is real and includes inbound and
outbound htt p connections captured with TCPDump
sniffer. While the attacks are simulated and reproduced
from [21] which are among the richest and well
documented Web attacks databases (several source codes
and scripts of these attacks are publicly available9). These
attacks have various strategies and objectives:

–Denial of Service (DOS):submerge the server with
requests (attacks by flooding) or provoke the services
stop or deceleration (attacks by buffer-overflow, errors
of decoding and interpretation of data, bad allowance,
etc.)

8 http://sourceforge.net/projects/snortspade/
9 http://www.i-pi.com/HTTP-attacks-JoCN-2006/

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
http://sourceforge.net/projects/snortspade/
http://www.i-pi.com/HTTP-attacks-JoCN-2006/

1630 M. Kezih et al.: On post-processing the outputs of prediction systems

–Scans of vulnerabilities (SOV):search possible
breaches and errors of con- figuration in the Web
applications in order to exploit them for malevolent
ends.

–Unauthorized Accesses (UA):reach the system or
reveal information with unauthorized ways. The
unauthorized access to the system is carried out with
command injections, Shell codes, etc. The
unauthorized access to the data can be done with SQL
injection, Cross Scripting Site, Directory Climbing,
etc.

Table 9: Webtraffic dataset
Training dataset Test dataset

Class # % # %

Normal connections 55911 56.29% 61378 88.875%
Vulnerability scans 30979 31.19% 4456 6.45%

Flooding 12375 12.46% 3159 4.57%
Buffer overflow 9 0.009% 15 0.022%

URL decoding error 36 0.036% 21 0.03%
Directory Climbing 4 0.004% 1 0.001%

Values misinterpretation 2 0.002% 2 0.003%
Cross Site Scripting 0 0% 6 0.009%

SQL injection 0 0% 14 0.02%
Command injection 0 0% 9 0.013%

Total 99316 100% 69061 100%

Note that the testing dataset involves new attacks
which do not appear in training dataset. Indeed, in order
to evaluate the efficiency to detect new attacks which is a
serious issue in IDSs, the testing data set of Webtraffic
includes normal realhtt p connections as well as known
attacks and new ones (attacks in bold in Table9).

Table10provides the results of probabilistic classifiers
NB, TAN andBNK2 and non probabilistic classifierC4.5
decision tree on the dataset of Table9.

Table 10:Results of the classifiers on the Webtraffic dataset
ClassifierWithout

Revision
MCTC MCPC MPTCD ME MMCC MMCC

Cost
NB
ALL

93.89% 97.94%
(98.06%)

89.25%
(97.95%)

97.91%
(98.35%)

97.77%
(98.18%)

97.98%
(98.18%)

0.061
(0.018)

TAN
ALL

97.43% 98.05%
(98.7%)

96.16%
(98.02%)

98.51%
(98.66%)

97.82%
(98.58%)

98.75%
(99.28%)

0.026
(0.007)

BNK2
ALL

94.5% 94.72%
(94.5%)

90.26%
(94.72%)

97.83%
(98.26%)

94.69%
(99.31%)

97.29%
(99.31%)

0.055
(0.007)

C4.5
ALL

93.33% 93.32%
(93.37%)

87.04%
(92.88%)

93.33%
(93.39%)

93.33%
(93.39%)

93.35%
(99.18%)

0.067
(0.008)

NB
2classes

97.81% 95.69%
(96.87%)

95.69%
(96.87%)

96.87%
(98.25%)

96.87%
(98.39%)

97.84%
(98.13%)

0.022
(0.018)

TAN
2classes

96.09% 94.76%
(97.51%)

94.76%
(97.51%)

97.51%
(98.25%)

97.51%
(98.25%)

98.45%
(98.7%)

0.039
(0.013)

BNK2
2classes

99.31% 98.75%
(99.46%)

98.75%
(99.46%)

99.46%
(99.32%)

99.46%
(99.48%)

99.61%
(99.93%)

0.007
(0.001)

C4.5
2classes

93.3% 99.59%
(99.79%)

87.02%
(93.1%)

99.59%
(99.8%)

99.59%
(99.8%)

97.5%
(98.5%)

0.067
(0.015)

In Table10, we first provide (in the rows taggedALL)
the results ofNB, TAN, BNK2 andC4.5 classifiers on the
dataset of Table10 and we provide the results of these

classifiers where the dataset Webtraffic is modified and
consider only two classes (Normal and Attack) in the
rows tagged 2classes. The conclusions that can be drawn
from the results of Table10 are basically the same as
those drawn form the results of the previous experimental
evaluation Section. It particular, one can observe real
improvements of the PCC achieved by all the revision
criteria over the four evaluated classifiers. Note that in
this section, we use only the MCR knowledge.

In order to have more insights into the results
(namely, which classes are improved), Tables11, 12, 13
and 14 provide the PCC rates on both theNormal and
Attackclasses ofNB, TAN, BNK2 andC4.5 classifiers on
the dataset of Table10 .

Table 11: Result details of theNB classifier on Webtraffic
datatset

Class Without
revision

MCTC MCPC MPTCD ME MMCC

Normal 97.57% 97.59% 97.59% 98.07% 98.21% 97.93%
Attack 99.71% 91.05% 91.05% 99.71% 99.79% 99.71%
PCC 97.81% 96.87% 96.87% 98.25% 98.39% 98.13%

Table 12: Result details of theTAN classifier on the Webtraffic
dataset

Class Without
revision

MCTC MCPC MPTCD ME MMCC

Normal 99.94% 99.41% 99.41% 99.29% 99.29% 99.63%
Attack 65.13% 82.21% 82.21% 89.89% 89.89% 91.2%
PCC 96.09% 97.51% 97.51% 98.25% 98.25% 98.7%

Table 13: Result details of theBNK2 classifier on the Webtraffic
dataset

Class Without
revision

MCTC MCPC MPTCD ME MMCC

Normal 99.94% 99.94% 99.94% 99.94% 99.94% 99.94%
Attack 94.27% 95.62% 95.62% 94.32% 95.62% 99.79%
PCC 99.31% 99.46% 99.46% 99.32% 99.48% 99.93%

One can notice in the results of Tables11, 12, 13 and
14 that there are significant improvements in the attack
detection rate. Indeed, despite the fact that the Webtraffic
dataset is imbalanced and contains several new attacks
(which are not included in the training data), the attack
detection rate has been significantly enhanced. For
instance, in Table14 the C4.5 classifier detected only
41.36% of the attacks while after the post-processing,
99.14% of the attacks were detected usingME criterion.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 4, 1619-1635 (2016) /www.naturalspublishing.com/Journals.asp 1631

Table 14: Result details of theC4.5 decision tree on the
Webtraffic dataset

Class Without
revision

MCTC MCPC MPTCD ME MMCC

Normal 99.77% 99.78% 99.7% 99.88% 99.88% 99.83%
Attack 41.36% 99.89% 40.05% 99.14% 99.14% 87.78%
PCC 93.3% 99.79% 93.1% 99.8% 99.8% 98.5%

Regarding the detection of new attacks (namely those
that do not appear in the training data set), the obtained
results are some how similar to the results on other
intrusion detection benchmarks using decisions trees and
NB classifiers that can be found for instance in [4]. More
precisely, the detection rates on most intrusion detection
benchmarks are often high for known attacks and normal
activities and very insufficient for novel and rare attacks.
In our experiments, the detection rate of some new attacks
has been improved but it is not equivalent to the
improvements achieved on some known attacks. Indeed,
since the new attacks are novel, their posterior
probabilities are very low (in general, new attacks are too
different from known attacks), hence the revision criteria
do not recover them in this case.

7.3 Experiments on the alert correlation
problem

In this experiment, we used a dataset built on real alert
log files produced by Snort IDS monitoring a university
campus network. These alert logs represent three months
activity. This data consists in alerts generated by Snort IDS
gathered in IDMEF10 format then preprocessed into CSV
(Comma Separated Values). In these experiments, we use
the datasets of Table15 obtained from real IDMEF alerts
reported during three months by the Snort IDS. We first
preprocessed the first month of collected alerts in order
to build the training data set and preprocessed the second
month to build the testing set. Table15provides details on
the attacks we used in our experimentations.

Among the attacks detected by Snort IDS, we selected
9 Web-based attacks to predict on the basis of the alerts
that often precede/prepare these attacks. All these attacks
are associated with a high severity level and are targeting
either Web servers or related web-based applications.
Such attacks may result in arbitrary code execution and
full control of the targeted system. Interested readers can
refer to Snort IDS signature database for additional
information and references on these attacks.

The results of Table16 allow to draw the same
conclusion as the results of theNB, TAN, BNK2 andC4.5
classifiers on the Webtraffic dataset. Similarly, the result
details given in Tables17, 18, 19 and 20 allow also to

10 IDMEF stands for the Intrusion Detection Message
Exchange Format.http://www.ietf.org/rfc/rfc4765.txt

Table 15:Training and testing datasets distributions of the alerts dataset
Training set Testing set

Sid Snort alert name # % # %

1091 WEB-MISC ICQ Webfront
HTTP DOS

87 0,18% 6 0,01%

2002 WEB-PHP remote include
path

50 0,10% 231 0,47%

2229 WEB-PHP viewtopic.php
access

5169 10,42% 1580 3,20%

1012 WEB-IIS fpcount attempt 3 0,01% 10 0,02%
1256 WEB-IIS CodeRed v2

root.exe access
2 0,004% 3 0,01%

1497 WEB-MISC cross site
scripting attempt

5602 11,30% 7347 14,90%

2436 WEB-CLIENT Microsoft
wmf metafile access

145 0,29% 53 0,11%

1831 WEB-MISC jigsaw dos
attempt

659 1,33% 153 0,31%

1054 WEB-MISC weblogic/tomcat
.jsp view source...

3412 6,88 % 3885 7,88%

Table 16:Results of the classifiers on the alerts dataset
ClassifierWithout

Revision
MCTC MCPC MPTCD ME MMCC MMCC

Cost
NB 90.17% 87.77%

(90.24%)
87.27%
(90.2%)

89.7%
(90.36%)

89.95%
(90.37%)

90.26%
(90.41%)

0.0983
(0.096)

TAN 90.78% 89.84%
(90.87%)

87.32%
(90.46%)

90.56%
(90.88%)

90.51%
(90.79%)

90.88%
(90.92%)

0.092
(0.091)

BNK2 90.5% 87.97%
(90.38%)

87.89%
(90.22%)

90.18%
(90.57%)

90.19%
(90.57%)

90.73%
(90.75%)

0.095
(0.092)

C4.5 91.07% 86.86%
(91.17%)

86.82%
(91.14%)

90.19%
(91.2%)

90.12%
(91.12%)

91.16%
(91.2%)

0.0893
(0.088)

kNN 91.04% 87.13%
(91.1%)

87.06%
(90.93%)

90.81%
(91.15%)

90.78%
(91.04%)

91.17%
(91.28%)

0.089
(0.087)

draw the same conclusions except the fact that the only
slight improvements are achieved on the attack rates.

Table 17: Result details of theNB classifier on the alerts dataset
Class Without

revision
MCTC MCPC MPTCD ME MMCC

Normal 95.92% 95.94% 95.93% 95.97% 95.97% 95.97%
Attack 77.14% 77.34% 77.22% 77.71% 77.75% 77.9%
PCC 90.87% 90.94% 90.9% 91.06% 91.07% 91.11%

Table 18:Result details of theTANclassifier on the alerts dataset
Class Without

revision
MCTC MCPC MPTCD ME MMCC

Normal 98.29% 98.29% 98.29% 98.28% 98.29% 98.29%
Attack 72.48% 72.81% 71.27% 72.84% 72.5% 72.98%
PCC 91.34% 91.43% 91.02% 91.44% 91.35% 91.48%

In Table21, we provide the results of post-processing
the non probabilistic C4.5 decision tree classifier
predictions with different thresholds. In each column, we
give the results of the selecting only a proportionx% of
the predictions made by the C4.5 decision tree as attacks
using the revision criteria presented in this paper.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
http://www.ietf.org/rfc/rfc4765.txt

1632 M. Kezih et al.: On post-processing the outputs of prediction systems

Table 19: Result details of theBNK2 classifier on the alerts
dataset

Class Without
revision

MCTC MCPC MPTCD ME MMCC

Normal 96.78% 96.78% 96.72% 96.72% 96.72% 96.74%
Attack 75.42% 74.97% 74.54% 75.85% 75.85% 76.45%
PCC 91.03% 90.91% 90.75% 91.1% 91.1% 91.28%

Table 20: Result details of theC4.5 decision tree on the alerts
dataset

Class Without
revision

MCTC MCPC MPTCD ME MMCC

Normal 98.57% 98.59% 98.59% 98.59% 98.58% 98.59%
Attack 73.03% 73.32% 73.21% 73.42% 73.17% 73.42%
PCC 91.69% 91.79% 91.76% 91.82% 91.74% 91.82%

Table 21: Result of theC4.5 decision tree on the alerts dataset
with different thresholds.

Threshold 2% 5% 10% 20% 100%
MCTC 43.59% 77.38% 88.69% 94.34% 98.16%
MCPC 9.62% 63.75% 81.88% 90.94% 40.6%
MPTCD 42.86% 76.86% 88.72% 94.34% 98.19%
ME 42.86% 76.86% 88.72% 94.34% 98.19%
MMCC 36.23% 74.42% 87.23% 93.61% 97.95%

As it can be seen in Table21, even when we just pick
a small proportion of predictions detecting attacks by
C4.5, the majority of selected items after post-processing
are indeed attacks. For example, when we select just 10%
of the predictions classified attacks by C4.5, all the
revision criteria select over than 80% of attacks. Note that
the same experiment is carried out using the Naive Bayes
classifier and we obtained similar results.

8 Discussions and concluding remarks

This paper dealt with a novel and important issue in
classification. More precisely, it addressed the problem of
exploiting the available domain knowledge in order to
achieve two objectives: i) improve the classifier efficiency
and ii) fit the user requirements. This issue is addressed as
a general problem and it can be encountered in many
applications, typically where users have specific domain
constraints that their detection/prediction models should
satisfy.

In [2], the authors proposed a method for classifying
data items with some uncertain observations using a
possibilistic decision trees. Then, they proposed a method
to evaluate the classifier taking into account the
uncertainty of the predictions. Clearly, our work is
complementary since we allow revising the outputs of a
classifier to fit the user requirements. Indeed, using
possibilistic decision trees as first-level classifiers fully

make sense especially if the data objects to be classified
can be uncertain. In [5] the authors also dealt with
evaluation criteria for probabilistic classifiers but did not
address the issue of revising the predictions. Their
objective was to define alternative and more informative
evaluation criteria in case where the prediction of the
classifier is probability distribution over the set of classes
instead of just only one class.

The selection criteria proposed in this paper are based
on natural ideas and aim at minimizing
miss-classifications while fitting all the considered
domain knowledge. Note that the criteriaMCTC, MCPC
and MPTCD are originally proposed in [6] within a
computer security application. In this paper, two more
efficient criteria are proposed and the five criteria are
evaluated on widely used benchmarks in the classification
community. The obtained experimental results are
appealing and very encouraging sincei) the proposed
approach guarantees that the post-processed
predictions fit well the domain knowledge constraints
and ii) does not deteriorate the prediction system
classification rates but may even improve it.

Algorithm 1 proposed to post-process the classifier
predictions gives priority to minimizing the number of
relabelings to guarantee a better post-processing time
complexity. This of course affects the miss-classification
rates. A better compromise between complexity and
minimizing miss-classifications requires to reconsider the
predictions of items even those predicted in the target
class (currently, the algorithm don’t reconsider items
predicted in the target classci if the corresponding
constraintKi requires more items inci).

To sum up, the contributions of the paper are:

1.Proposing a unifying encoding for classifiers and
prediction models outputs in general. It also provides
a unifying encoding of different types of domain
knowledge such as generic information about the
objects to classify, user preferences and constraints.

2.Proposing a polynomial post-processing algorithm to
revise the predictions of a classifier guaranteeing
revised predictions in full agreement with the domain
knowledge.

3.Different criteria are proposed to select among the
items to relabel the ones that best allow to achieve the
post-processing objectives.

4.Extensive experimental studies are carried out
showing that the proposed post-processing approach
can achieve significant improvements especially on
datasets where the classifiers have poor efficiency as
on imbalanced datasets.

5.A case study on two typical computer security
problems is provided. In these problems it really
makes sense to revise the predictions of a
prediction/detection system with the users’ domain

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 4, 1619-1635 (2016) /www.naturalspublishing.com/Journals.asp 1633

knowledge, constraints and preferences. In particular,
we showed that exploiting some background
knowledge allows to improve the attack detection
rates.

It is important to point out that our approach is
designed as a plug-in to be combined with any prediction
model be it a probabilistic or non probabilistic classifier
or even any detection or prediction model (such as spam
filters, IDSs [3], etc.). In particular, this approach can be
adapted for the classification with reject option [13] to
make alternative predictions instead of just rejecting some
items. Other future works will deal with this issue in
regression problems, multiple classifier systems and
consider this problem in real-time contexts.

9 Appendix

9.1 Evaluation on binary classification
problems of datasets of Table2

In the following, we provide in Table22 and Table23 the
results of evaluating theNB classifier and C4.5 decision
tree classifier on the MDP datasets of Table2.

Table 22:Results of the NB classifier evaluation on MDP datasets of Table 2
Dataset NB MCTC MCPC MPTCD ME MMCC Cost
CM1 82.26% 83.72%

(86.04%)
74.41%
(80.52%)

82.55%
(87.2%)

82.55%
(87.2%)

82.26%
(87.79%)

0.1774
(0.122)

JM1 81.41% 74.02%
(81.59%)

79.65%
(81.21%)

74.02%
(81.5%)

74.02%
(81.5%)

73.85%
(81.13%)

0.186
(0.188)

KC1 82.44% 81.77%
(82.91%)

77.81%
(81.77%)

81.77%
(83.68%)

81.77%
(83.68%)

82.44%
(84.3%)

0.176
(0.157)

KC3 78.5% 77%
(82%)

67%
(75.5%)

77%
(83%)

77%
(83%)

79%
(84%)

0.215
(0.16)

MC1 94.11% 98.85%
(98.87%)

92.13%
(93.16%)

98.7%
(98.92%)

98.7%
(98.92%)

98.84%
(98.98%)

0.059
(0.010)

MC2 73.22% 66.92%
(74.44%)

54.33%
(70.68%)

66.92%
(74.01%)

66.92%
(74.01%)

66.92%
(73.22%)

0.268
(0.268)

MW1 81.81% 83.33%
(87.12%)

79.16%
(78.4%)

86.36%
(87.12%)

86.36%
(87.12%)

87.87%
(89.01%)

0.182
(0.109)

PC1 88.27% 88.4%
(89.32%)

87.48%
(87.08%)

89.45%
(91.17%)

89.45%
(91.17%)

89.72%
(91.43%)

0.117
(0.085)

PC2 95.45% 98.1%
(98.67%)

86.68%
(82.96%)

98.23%
(98.8%)

98.23%
(98.8%)

98.54%
(98.8%)

0.045
(0.012)

PC3 35.82% 76%
(77.24%)

64.71%
(54.04%)

83.28%
(82.75%)

83.28%
(82.75%)

83.55%
(85.33%)

0.642
(0.146)

PC4 86.91% 85.99%
(86.34%)

84.7%
(84.84%)

85.99%
(87.77%)

85.99%
(87.77%)

86.7%
(87.84%)

0.131
(0.122)

PC5 96.3% 96.48%
(96.76%)

93.79%
(95.18%)

96.64%
(97.01%)

96.64%
(97.01%)

96.44%
(96.96%)

0.037
(0.030)

9.2 Conclusion

The conclusions that can be drawn from the results of
Table 22 and Table23 using a probabilistic and a non
probabilistic classifiers on the MDP datasets confirm the
main trends characterizing the evaluations of Tables4, 5,
6.

Table 23:Results of the C4.5 classifier evaluation on MDP datasets of Table2
Dataset C4.5 MCTC MCPC MPTCD ME MMCC Cost
CM1 85.46% 83.13%

(86.33%)
83.13%
(79.36%)

83.13%
(87.2%)

83.13%
(87.2%)

85.46%
(87.79%)

0.1454
(0.122)

JM1 79.93% 77.52%
(81.48%)

77.52%
(79.13%)

76.85%
(80.51%)

76.85%
(80.52%)

81.66%
(81.74%)

0.200
(0.182)

KC1 84.16% 81.77%
(84.25%)

81.77%
(83.68%)

81.77%
(84.49%)

81.77%
(84.49%)

84.44%
(84.73%)

0.158
(0.152)

KC3 80.5% 78%
(82.5%)

78%
(80.5%)

78%
(82.5%)

78%
(82.5%)

82%
(84%)

0.195
(0.16)

MC1 99.36% 99.01%
(99.4%)

99.01%
(99.4%)

99.01%
(99.4%)

99.01%
(99.44%)

99.32%
(99.39%)

0.006
(0.006)

MC2 62.99% 57.48%
(66.14%)

57.48%
(66.14%)

57.48%
(62.99%)

57.48%
(62.99%)

64.56%
(66.14%)

0.370
(0.338)

MW1 89.39% 86.36%
(90.53%)

86.36%
(90.53%)

86.36%
(92.05%)

86.36%
(92.05%)

88.63%
(90.53%)

0.106
(0.094)

PC1 90.9% 88.93%
(92.09%)

88.93%
(92.09%)

88.93%
(91.3%)

88.93%
(91.3%)

91.17%
(91.43%)

0.09
(0.085)

PC2 98.73% 97.98%
(98.86%)

97.98%
(98.67%)

97.98%
(98.99%)

97.98%
(98.99%)

98.67%
(98.99%)

0.012
(0.010)

PC3 85.77% 84.17%
(86.13%)

84.17%
(85.86%)

84.17%
(87.82%)

84.17%
(87.82%)

86.66%
(87.55%)

0.142
(0.124)

PC4 89.56% 89.7%
(89.84%)

89.7%
(88.27%)

89.7%
(89.84%)

89.7%
(89.84%)

88.56%
(88.92%)

0.104
(0.110)

PC5 97.35% 97.24%
(97.38%)

97.24%
(97.29%)

97.24%
(97.38%)

97.24%
(97.38%)

97.15%
(97.34%)

0.026
(0.026)

References

[1] David W. Aha, D. Kibler, and Marc K. Albert. Instance-
based learning algorithms. Mach. Learn., 6(1):37–66,
January 1991.

[2] N. Ben Amor, S. Benferhat, and Z. Elouedi. Qualitative
classification and evaluation in possibilistic decision trees.
In IEEE International Conference on Fuzzy Systems, FUZZ-
IEEE 2004, Budapest, Hungary, July 25-29, 2004., pages
653–657, 2004.

[3] S. Axelsson. Intrusion detection systems: A survey and
taxonomy. Technical Report 99–15, Chalmers Univ., March
2000.

[4] N. Ben Amor, S. Benferhat, and Z. Elouedi. Naive
Bayes vs Decision Trees in Intrusion Detection Systems.
In Proceedings of the 2004 ACM Symposium on Applied
Computing, SAC ’04, pages 420–424, New York, NY, USA,
2004. ACM.

[5] N. Ben Amor, S. Benferhat, and Z. Elouedi. Towards
a definition of evaluation criteria for probabilistic
classifiers. InEighth European Conference of Symbolic and
Quantitative Approaches to Reasoning with Uncertainty
ECSQARU-2005, pages 921–931. LNAI 3571, Springer
Verlag, 2005.

[6] S. Benferhat, A. Boudjelida, K. Tabia, and H. Drias. An
intrusion detection and alert correlation approach based on
revising probabilistic classifiers using expert knowledge.
Appl. Intell., 38(4):520–540, 2013.

[7] S. Benferhat, T. Kenaza, and A. Mokhtari. Tree-augmented
naive bayes for alert correlation. In3rd conference on
Advances in Computer Security and Forensics(ACSF’08),
pages 45–52, jul 2008.

[8] S. Benferhat and K. Sedki. Alert correlation based
on a logical handling of administrator preferences and
knowledge. InInternational Conference on Security and
Cryptography(SECRYPT’08), pages 50–56, Porto, Portugal,
jul 2008.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1634 M. Kezih et al.: On post-processing the outputs of prediction systems

[9] S. Benferhat and K. Sedki. An alert correlation approach
based on security operator’s knowledge and preferences.
Journal of Applied Non-Classical Logics, 20(1-2):7–37,
2010.

[10] S. Benferhat and K. Tabia. Classification features for
detecting server-side and client-side web attacks. InIFIP
TC-11 23rd International Information Security Conference,
IFIP 20th World Computer Congress, IFIP SEC 2008,
September 7-10, 2008, Milano, Italy, pages 729–733, 2008.

[11] Z. Bin and A. Ghorbani. Alert correlation for extracting
attack strategies.I. J. Network Security, 3(3):244–258, 2006.

[12] Nitesh V. Chawla. Data mining for imbalanced datasets:
An overview. InData Mining and Knowledge Discovery
Handbook, pages 875–886. 2010.

[13] C. Chow. On optimum recognition error and reject tradeoff.
IEEE Transactions on Information Theory, 16(1):41–46, Jan
1970.

[14] G. F. Cooper and E. Herskovits. A bayesian method for
the induction of probabilistic networks from data.Machine
Learning, 09(4):309–347, October 1992.

[15] N. Cristianini and J. Shawe-Taylor.An Introduction to
Support Vector Machines and Other Kernel-based Learning
Methods. Cambridge University Press, 1 edition, 2000.

[16] F. Cuppens and A. Miège. Alert correlation in a cooperative
intrusion detection framework. InIEEE Symposium on
Security and Privacy, pages 187–200, USA, 2002.

[17] H. Debar and A. Wespi. Aggregation and correlation of
intrusion-detection alerts. InRecent Advances in Intrusion
Detection, pages 85–103, London, UK, 2001. Springer.

[18] H. T. Elshoush and I. M. Osman. Alert correlation in
collaborative intelligent intrusion detection systemsa survey.
Applied Soft Computing, 11(7):4349 – 4365, 2011.

[19] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian
network classifiers.Machine Learning, 29(2-3):131–163,
1997.

[20] M. Gebel and C. Weihs. Calibrating classifier scores into
probabilities. In Reinhold Decker and Hans-J. Lenz, editors,
Advances in Data Analysis, Studies in Classification, Data
Analysis, and Knowledge Organization, pages 141–148.
Springer Berlin Heidelberg, 2007.

[21] Kenneth L. Ingham and Hajime Inoue. Comparing anomaly
detection techniques for http. InProceedings of the 10th
International Conference on Recent Advances in Intrusion
Detection, RAID’07, pages 42–62, Berlin, Heidelberg,
2007. Springer-Verlag.

[22] K. Julisch and M. Dacier. Mining intrusion detection
alarms for actionable knowledge. InEighth ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 366–375, New York, NY, USA, 2002. ACM.

[23] L. Kufel. Security event monitoring in a distributed systems
environment. Security Privacy, IEEE, 11(1):36–43, Jan
2013.

[24] I. Kuncheva. Combining Pattern Classifiers: Methods and
Algorithms. Wiley-Interscience, 2004.

[25] Ludmila I. Kuncheva. Combining Pattern Classifiers:
Methods and Algorithms. Wiley-Interscience, 2004.

[26] B. Lerner and R. Malka. Investigation of the k2 algorithm
in learning bayesian network classifiers.Applied Artificial
Intelligence, 25(1):74–96, 2011. n/a.

[27] Z. Mian. Network Intrusion Detection: Monitoring,
Simulation and Visualization. PhD thesis, Orlando, FL,
USA, 2005. AAI3188144.

[28] S. A. Mirheidari, S. Arshad, and R. Jalili. Alert correlation
algorithms: A survey and taxonomy. InCSS, volume 8300
of Lecture Notes in Computer Science, pages 183–197.
Springer, 2013.

[29] P. Ning, Y. Cui, and D. S. Reeves. Constructing attack
scenarios through correlation of intrusion alerts. In9th ACM
conference on Computer and communications security,
pages 245–254, NY, USA, 2002. ACM.

[30] A. Patcha and J. Park. An overview of anomaly detection
techniques: Existing solutions and latest technological
trends.Computer Networks, 51(12):3448–3470, 2007.

[31] Z. Qin, C. Zhang, T. Wang, and S. Zhang. Cost sensitive
classification in data mining. InAdvanced Data Mining and
Applications, volume 6440 ofLecture Notes in Computer
Science, pages 1–11. Springer Berlin Heidelberg, 2010.

[32] J. R. Quinlan. Induction of decision trees.Mach. Learn.,
1(1):81–106, 1986.

[33] M. Roesch. Snort - lightweight intrusion detection for
networks. pages 229–238, 1999.

[34] L. Rokach. Taxonomy for characterizing ensemble methods
in classification tasks: A review and annotated bibliography.
Computational Statistics & Data Analysis, 53(12):4046 –
4072, 2009.

[35] R. Smith, N. Japkowicz, M. Dondo, and P. Mason. Using
unsupervised learning for network alert correlation. In
21st conference on Advances in artificial intelligence, pages
308–319, Berlin, Heidelberg, 2008. Springer-Verlag.

[36] G. C. Tjhai, M. Papadaki, S. Furnell, and N. L.
Clarke. Investigating the problem of ids false alarms:
An experimental study using snort. In23rd International
Information Security Conference SEC 2008, pages 253–267,
2008.

[37] E. Tombini, H. Debar, L. Mé, and M. Ducassé. A Serial
Combination of Anomaly and Misuse IDSes Applied to
HTTP Traffic. In Annual Computer Security Applications
Conference 2004, pages 428–437, Beijing Chine, 12 2004.

[38] P. K. Turaga, R. Chellappa, and A. Veeraraghavan.
Advances in video-based human activity analysis:
Challenges and approaches.Advances in Computers,
80:237–290, 2010.

[39] Marcel v. G. and J. F. Lucas. Using background knowledge
to construct bayesian classifiers for data-poor domains. In
Twenty-fourth SGAI International Conference on Innovative
Techniques and Applications of Artificial Intelligence,
Queens’ College, Cambridge, UK, 13-15 December 2004,
pages 269–282. Springer.

[40] A. Valdes and K. Skinner. Probabilistic alert correlation.
In Recent Advances in Intrusion Detection, pages 54–68,
London, UK, 2001. Springer-Verlag.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 4, 1619-1635 (2016) /www.naturalspublishing.com/Journals.asp 1635

Mouaad Kezih received
his M. Sc. Degrees in
Multimedia and Digital
Communication from
Annaba University, Algeria,
in 2010. He is currently
pursuing a PhD. degree
in Multimedia and Digital
Communication at Badji
Mokhtar Annaba University,

Algeria. His research interests include Artificial
Intelligence, Computer security, intrusion detection and
alert correlation.

Mahmoud Taibi
received his BSc in electrical
engineering from USTO
University, Oran, Algeria
in 1980, then an MSc
from Badji-Mokhtar
University, Annaba, Algeria
in 1996. Currently, he is a full
professor in computer science
since 2006 at Badji-Mokhtar

University of Annaba, Algeria. His research interests
are in intelligent systems, security and for medical
applications as well as document analysis.

Salem Benferhat is a
full professor at University of
Artois and CRIL laboratory
(CNRS UMR 8188). His
current research interests are
in knowledge representation,
uncertainty handling,
possibilistic networks,
causality, non-classical
logics, intrusion detection and

alerts correlation. He is the author or the co-author of a
large number of research papers (more than 250 papers
including 45 international journal papers and 155 papers
in international conferences).

Karim Tabia is assistant
professor at the University of
Artois since September 2010.
He finished his PhD thesis
in 2008 at CRIL - Artois
University on Graphical
models and anomaly-based
approaches for intrusions
detection. His research topics
revolve around artificial
intelligence, knowledge

representation and reasoning under uncertain and
imperfect information. The application domains of his
works are mainly in computer security. He co-authored 6
publications in well-rated international journals. He is
also the author or co-author of 21 papers in international
conference including AI and computer security.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Related works and motivations
	Classification and classifiers
	Post-processing a classifier's predictions to fit domain knowledge
	Criteria for post-processing the predictions
	Experimental setup
	Case study: Exploiting domain knowledge in computer security
	Discussions and concluding remarks
	Appendix

