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Abstract: Supervised classification is a well-known task in data-ngrand it is widely used in many real world domains. Classifier
are automatic prediction systems used to predict the cdded bf items described by a set of features. In many areisinitportant
to take into account some extra knowledge and constrairgddition to the one learnt or encoded by the classifier. s phper, we
propose an approach allowing to exploit the available darkaowledge with the predictions of a classifier. More prelgisve propose
to post-process the predictions of a classifier in orderke tato account some domain knowledge. This approach capgired with
any classifier be it probabilistic or not. We propose posiepssing criteria and methods to encode and exploit dift&iads of domain
knowledge. Finally, the paper provides extensive expanaiestudies on a representative set of benchmarks andficasen problems
including imbalanced datasets. We also provide a case stutlyo crucial problems in computer security which are isitvn detection
and alert correlation. Interestingly enough, the restits\sthat using only some available knowledge about theitrgidatasets or the
performances of the used classifiers can improve thesdfides<fficiency while fitting the available domain knowlgel

Keywords: Classifiers, Post-processing, Revision, Computer Sgcinttusion Detection System (IDS)

1 Introduction In this paper, with deal with a new and
complementary issue aiming to exploit any extra domain

In real world applications, many problems are dealt with knowledge by post-processing the classifier predictions.
as classification tasks or more generally as predictioindeed, in many applications it is important to take into
problems. Classification (also called supervisedaccount some extra knowledge, constraints or preferences
classification) is a well-known task in data-mining and of the users. In computer security for instance, an
machine learning. It consists in predicting the class of anoperator monitoring and checking the alerts raised by
object given its features. Examples of well-known intrusion detection systems$][ may want to select only
classifiers are decision tre&l, Bayesian networkg]_[g], 10% of most reliable alerts. The problem dealt with in
SVMs [15], kNN [1], etc. Classifiers are predictive this paper is the one of revising the predictions of a
models built either from expert knowledge or classifier in order to fit the user requirements. These latter
automatically learnt from empirical data. Most works in can be seen as constraints to satisfy and can refer to
classification deal either with learning efficient classifie €xpert knowledge on the addressed problem, preferences,
from data or combining multiple classifier@q. Many  etc. We addressed this problem originally i] [in a
related issues receive also much interest especiallgomputer security context and we dealt only with
regarding learning classifiers from imbalanced dataset®robabilistic classifiers. Moreover, in that work we
[12], classifier evaluation, reject and drift options3, proposed only two basic criteria to revise the predictions

non-exclusive or multiple class classification problems,of a classifier. In the following, we mention mostly
etc. classifiers but the proposed approach can apply as well on

any prediction or detection system as illustrated in our
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case study in computer security. exploit background and expert knowledge along with
classifiers focus on improving model learning and model
In this paper, we address the problem of selection. For example, in3§] the authors combine
post-processing the predictions of a classifier in order tabackground knowledge elicited from experts and
exploit any available domain knowledge. The main empirical data to better learn the structure of Bayesian
contributions of this paper are: networks.

1.We propose a formalization of the problem of As f " . babilisti lassif
post-processing the predictions of a classifier in order S for post-processing a probabllistic. classiher

to fit some extra knowledge. This problem is new in predictions, one can list the combination techniques

the supervised classification community and there iSWhere several classifiers are combined to exploit their
no formal definition for it mutual complementarities 3f]. Note that multiple

2.We propose new post-processing criteria. In particular,CIaSSIerr combination 24,34 is concerned with

we propose a criterion allowing to relabel the items aggregatin_g the prediqtions made by mu.ItipIe classifiers
where the classifier's confidence is low measured inbu:_ntbhiﬁreti 'i noo?rc])rr:wcvkpkowlzdginthatv:/ihuseclj foirﬁtr:e
terms of entropy. Another criterion is tailored for cost- co di t'a on. th e b 0 dS 3? 9 ¢ t.cassh €
sensitive classification problems and allows to Chooséored!ct!ons. are dose |a§$ thon Eé)rij_?f O]E’ |0nkw ere a
the items to relabel based on the classifier confidenc&€¢IClION 1S made only 1T the probabiiity of making a
and the miss-classification costs. good decision is hlghe( than a user defined thres_htﬂjd [
3We generalize and extend the post—processirﬁ‘me that the reject option relies only on the confidence of
procedure to any classifier and any prediction syste he. classifier when maklng predictions and the user
instead of only probabilistic-based ones defined thresholds. This corresponds to another type of
4 We carried out an extensive experimental studyexpert knowledge (the required conﬁdencga Ieve.l by.the
covering most of the problems dealt with in user). Note also that a lot of works dealt with calibrating
classification tasks. In particular, we evaluated onthe posterior lprobabmty est_lmateQQ] bUt. such WOI’k.S_
many benchmarks with different characteristics in aim to provide more reliable _posterior prob.ab|l'|ty
terms of features number. instances. number Ofdlstrlbut|ons for the items to classify without considerin
classes (namely binary and non binary classification"y  €Xpert kn_owledge. C_a!lbratlon IS Important for
problems). We also provide experimental results Onrankmg 'pred|ct|or'1$, CO'T‘b'”'“g multiple classifiers or
the class imbalance problem. when using the reject option.
5.We provide a case study on two typical computer — . -
security problems where it really makes sense to In many real world applications, typically a classifier
revise the predictions of a prediction/detection systemOr a prediction/detection model IS useq to c_Iassn‘y ltems
with the users’ domain knowledge, constraints andOf interest. For gxample, spam filters, intrusion det'e.cnon
preferences ’ systems 3], object, action and activity recognition
. i . _ systems in video analysis 3§ are well-known
This paper is organized as follows: In Section 2, we detection/prediction models and in such domains, the
present the motivations of this work and review the models are not necessarily learnt from training data. Then
related works. Section 3 gives insights into classifiers’if a user wants that his model complies to some specific
predictions while Section 4 presents the strategies tqequirements (for instance constraints or preferences)
post-process the predictions in presence of domainthen he cannotlearn a new model or tune the existing one.

knowledge. In Section 5 we present the post-processin@ur approach can well fit such needs and it is appropriate
criteria. In Section 6 we present our experimental studiesfor both machine learning-based classifiers and
In Section 7 we provide a case study in intrusion prediction/detection models.

detection and alert correlation areas. Finally, Section 8

concludes the paper.

2.1 Domain knowledge
2 Related works and motivations

The goal of our revision-based post-processing is to

. e . . exploit the available extra-knowledge in order to fit the
In supervised classification, many issues are still hOtuser's knowledge, constraints and preferences. In the

research topics and represent an active research field. F%Ilowing we provide some typical domain knowledge a

instance, a Io.t.of mteres’F.and effort is devoteq _for user may want to exploit over a classifier predictions:
designing efficient classifiers and for combining

classifiers to take advantage of their complementarities —i) Domain knowledge about the items to classify:
and strengths. Approaches trying to exploit some kinds of  Assume that we have objects to classify denoted,
domain knowledge mainly do it in a pre-processing step  0p,.., 0n. Then one may have information (in general
(for instance by choosing high quality training datasets,  or within a specific situation) that the amount of items
selecting good priors, etc.). Indeed, most works aiming to  of a classg; is greater thar; (namely, the probability
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p(ci)>p(cj)). For example, in anomaly detection example, spam filtering can be seen as a classification
problems B] which can be viewed as a classification problem since the problem consists in classifying any new
task, it is common to assume that the frequency ofmail in one of predefined classes (namedpam or
normal events is greater thaabnormalones. Then normal. In computer security, intrusion detection can
one may want to satisfy all the time or in particular also be seen as a classification task consisting in labeling
cases a constraint of the form the analyzed activities asithorizedor attack).
p(normaly>p(abnormal) where p(normal) (resp. Formally, a classification problem is defined by:
p(abnormal) denotes the frequency of items detected
asnormal(resp.abnorma).

—ii) A users requirements: In  many
prediction/detection applications, a user may want to
have a specific amount of instances in a given class.
For example, in computer securityd][ and video
surveillance applications 3B, human operators
monitoring the detected events are overwhelmed with
the huge numbers of anomalous events and they are
incapable to analyze them all. What is generally donea classifier is a function that associates a classDc
in practice is to limit the number of alerts. This with an objeta;a,..an. This latter is an instantiation of the
objective can be achieved by selecting among all theattributesA, Ay, .., An. The objective is to minimize a loss
predictions a user specified amount that they canor a miss-classification) function. Namely, a classifier
analyze. Such requirements represent applicatiomims to minimize the classification error rate. In
constraints or simple user preferences. cost-sensitive classification problems, the aim is to

minimize the overall miss-classification cost.

—A feature spaceA set of attributed\;, Ay,.., A, where
each variable\; is associated with a domaib which
can be discrete or continuous. The set of attribgs
Ao,.., A, are observable and describe the objects to
classify.

—A class spacelt consists of a discrete variab@ewith
a domainDc={cy,Cy,..,ck}. The valuescieDc are
called class instances or class labels.

In the following, we use the generic terdomain
knowledgeto designate the available knowledge of the
application domain under consideration as well as the3 2 Classifier outputs
specific constraints and preferences of the users.
Typically, one can have three types of domain knowledgec|assifiers are predictive models that can be grouped
that can be exploited to post-process the predictions of &:cording to the nature of their outputs mainly into three
classifier: categories:

—Knowledge about a single clas§his knowledge can ) .
be in the form of an amount or a frequency. For —Single class output:Such classifiers only output the
instance, a user may want to select exactly 100 top predicted class. An example of such classifiers is

instances of class; or select 2% of the items that ~ Standard decision trees7. Some prediction and

belong to a class;. deception systems such as intrusion detection systems
—Knowledge about the ranking over the classesthis are of this type. o .

case, a user may just want to have more or less —Ranking-based output:This kind of classifiers output

instances of class than class;. This knowledge can a ranking of the different class instances for the item

be expressed for example @gc)>p(c;j). One may to classify then one can select the first or theest
also want to have a complete ranking over the classes candidate classes.

p(ci)>p(cj)>..>p(ck). —Score-based outputit is the most informative output
—Knowledge about the class distributioThe third a classifier can provide allowing to predict and assess

kind of knowledge can be a precise distribution for all the classifier confidence regarding its predictions.

the predictions. Namely, for=1.k, we specify the Examples of probabilistic classifiers are Bayesian

frequencyp(c) of items that should be predicted in network classifiers.

classg;.

Knowledge about the class distribution is the most _ e .
exhaustive and accurate domain knowledge. In the4 Post-processing a classifier's predictions to
experimental studies, we provide experiments using theséit domain knowledge
three kinds of domain knowledge.

4.1 Post-processing strategies

3 Classification and classifiers As illustrated on Figuré, the objective is to design a post-

3.1 Classification processor to revise the predictions made by a classifier to
fit the set of requirements of the user.

Classification, also known as supervised learning, Assume thatwe have a set of items to classify denoted

consists in predicting the right class of an item. For 0={(aiaz..an)1, (a1dz..an)2 .. (a@2..an)m} where
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Revised following rule:
Input Predictions predictions .
a18..an c" = argmax-1 k(s) 1)
&82.-8n M—’ | Revision where the scores denotes the score associated by the
""""" classifier f to the itema;..a, for being in the clasg;.
a1ay..an s -
Knowledge Until now, we showed how the outputs of any classifier

Fig. 1: Post-processing a classifier’s predictions

a;ay..an is an instantiation of the attributégA,..An. The
classifierf will associate with each instance b;..an); a
class instancexeDc, denotedty="f ((azay..an)i). Without
loss of generality, let us assume that the classifier
outputs a vector of scoresi=(s1,%,..,%)i for each
instance to classify ajay..a,); (here, k denotes the
number of class instances, namédy|Dc|). The score
vector(sy, S, .., )i IS

i)A posterior probability distributiorin case of using a
probabilistic classifier. For instance, Bayesian
network classifiers9] associate with any object to
classify a posterior probability distribution
v=(p(ci|az..an), p(Czlas..an), .., p(ck|ai..an)). In the
k-NN classifier, the scores could be the proportion
of training items labeled; among thek selected items
while classifying the item in hand. Generally, the
score 5 can be interpreted as the confidence,

uncertainty or membership degree of the classifier that

the right class is;.

ii)A vector of zeros and oneis case of classifiers
outputting only class labels as predictions. For
example, a classifier predictingg will output the
vector (1,0,..,0) where the value 1 denotes the

predicted classes while the remaining zeros exclude
the corresponding classes. Well-known example of

classifiers outputting only class labels is standard
decision trees3?].

i) A probability distributionto encode the ranking such
that if ¢; is ranked befores; then p(ci)>p(c;). It is
easy to build a probability distributiopover the class
variable domairD¢ inducing the desired class ranking
[20].

Note that there are calibration techniqu2€|[that can be
used to scale and normalize any classifier outputs into a

can be encoded as vectors of scores. Let us now see how
to revise them to fit the user’s requirements.

4.2 Strategies for revising a classifier’s
predictions

Let us denote the set of objects to classifydqy.,0n with
oi=(azaz..an);. Let us also denote the set of predictions
made by the classifief by vi,...vm such thatf (0;)=vi
Similarly, let us usef; (resp.ri) to denote the class label
predicted byf (resp. the revision-based post-processor)
for the objecto,. Assume also that we have a set of
constraints 7 ={Kj,..Kw} representing the extra domain
knowledge and requirements to satisfy. In Secfidh we
showed that any constrailfc.’#" can be expressed in the
form pk (¢i)=a;€[0,1]. Then there are three situations to
be considered:

1.Case 1:VKie#, ps(ci)=a;. This means that all the
constraintd; (namelypk (ci)=a;) are already satisfied
by the classifieff (here,p;(ci) denotes the proportion
of items predicted in the class by the classifierf).
Then the post-processor just predicts the same thing as
the classifier, there is no relabeling of objects.

2.Case 2:3Kje.#, ps(ci)>ai. This situation happens
when the classifief classifies more objects in a class
¢ than required by the domain knowledge. To satisfy
the constrainK;, some of the objects predicted as
have to be relabeled in the other classgsvith k#i.
The question that rises now is which items to relabel?
This issue is dealt using selection criteria presented in
the following section.

3.Case 3:3K;e.7, pi(ci)<ai. This situation happens if
the classifierf has not predicted enough objects in
classc; meaning that some objects predicted byn
the other classes, with k#i have to be revised and
predicted by the post-processor in the classHere
again, the question is which items from the other
classes to relabel such that the constrdift is
satisfied? We provide selection criteria to deal with

issue in the following section.

probability distribution. Using normalized probability For Case 2and Case 3 many strategies can be adopted
distributions offers many advantages2(] for to select the objects to relabel while satisfying the set of
post-processing tasks such as prediction combination ionstraints’#”. The principles that our revision strategy

multiple classifier systems, cost-sensitive classificatio follows are:

classification with reject option, etc.

In this paper, we deal with post-processing the
predictions of a classifier where a predictioh for an
item &..a, is generally obtained according to the

—Minimize miss-classification costhis objective aims

to minimize the overall miss-classification cost while

satisfying the user’'s constraints. Such an objective
requires i) relabeling only miss-classified items by the
classifier and ii) relabel them in the right classes. In
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order to achieve such an objective, we propose fived Criteria for post-processing the predictions
criteria for selecting the items to relabel specifically
designed to minimize the miss-classification cost. In case a given constraig; is not satisfied (for instance,
—Minimize relabelings: This objective aims to ensure the proportion of items predicted by the classiffein ¢;
tractable computational complexity for the revision is less than required by the constraif) then we need to
operation. Indeed, there are many solutions allowingrelabel some items predicted lbyin the other classes and
to satisfy the set of input constraints. Our revision predict them in the target clasg. There are many
algorithm is designed to revise as few predictions asmethods to select the items to relabel. In the following,
possible such that the user constraints are satisfied. we propose five criteria aiming at minimizing
miss-classifications. The first three criteria are original
proposed in§] in a computer security application.
We use a heuristic algorithm to minimize the number of
relabelings. It deals with the classifier predictions
incrementally. It first satisfies the constralqtrequiring
the largest items in clasg, then it continues with the
following constraints in a decrementing order. Note that it
is enough to deal only with constraints @fase 3to
satisfy the set of constraint¥”. Moreover, in order to
minimize relabelings, an item predicted in the clgswill
not be relabeled if the corresponding constralft
requires more items ig; than predicted by the classifier
f. In Algorithm 1, the functionSelectltemg,Cr) allows

5.1 MCTC (Maximize Confidence in the Target
Class)

This criterion interprets the scoresi=(s;,%,..,%)i
associated with an objed; by the classifierf as the
confidence of f that the right class ofo; is
argmax(sy, s, .., %)i), namely the class corresponding to
the highest score. Let,...0m be the set of objects that
can be relabeled ig;. The selected objed; Using the
MCTCcriterion is defined as follows:

0j = argmax_1. m(V[i]j), (2)
wherevi]; is the scores of the target class in the vector
vj of the scores associated by the classifi¢w o;.

Algorithm 1 Post-processing algorithm

Input: 0={01,02,..,0m}
V= {v1,V2,...Vm}
K= {Ky,Ka,...Ku}

Output: Z={r1,r2,..,fm}

/I Objects to classify
/I Score vectors output bfy
/I Constraints to satisfy

/l Revised predictions ~EXample JAssume that we want to relabel one object

1 procedure POST-PROCES$, 7', X') amongo,, 02 andogs in the clasy.
%: gKF 0A dingSoft? lIGet cl der f label o1 92 9
. <« AscendingSoft7 et class order for relabelin

4 while SK£0 do 950 ? Classes| vi | V2 | V3

5: Cj < pop(SK) /IPick the highest class fro®K c1 1 4 0

6: B} fj /ISet of object predicted ig; by f e 6l 151 15

7 while |Rj|<aj do /IWhile constrainK; is not satisfied c 2 3 45

8: 0+ Selectltertw,Cr) /ISelect object to relabel 3 ! . !

9: r(0) + ¢ /IRelabelo in classc; Cq 1]1.15] 4
10: R+ #;U{r(0)} f(o) | ¢ | c3
11: O+« 0\o //Discardo from remaining items in7 ) . .
12: end while In this example, the objects, 0, andoz are predicted by
%Z; endﬁ%? U the classifierf respectively irc,, ¢; andcs. Since there is
15 reum % need to relabel one among them in the target dasthen

16: end procedure the criterionMCTC selects to relabel the objeot as the

score ofcy in v is the highest.

Intuitively, the MCTC criterion selects to relabel the
to select an object to relabel among the remainingPPiect where the target classhas the best score, itis the
candidates in¢’ using a criterionCr among the ones object Where'the confidence m is the highest that is
presented in the next section. It is clear that theSelected. Doing so, we have more chances that the
complexity of this algorithm is polynomial in the number S€lected object bWMICTCis in factin the class;.
objects to post-process thanks to the incremental
processing of items while satisfying the constraintszof L . .

Indeed, the costly operations are the sort function9-2 MCPC (Minimize Confidence in the
AscendingSofy (which is in the worst case i®(k?)  Predicted Class)

using a quick sort algorithm witk denoting the number

of classes) and the complexity of the two nestelile Here also the selection criterion interprets the scores
loops is less tharO(m?) with m denoting the number vi=(s;,S,..,S)i associated with an object; as the
objects to post-process. In fact, each iteration discands aconfidence of f that the right class ofg is
object and the functiorBelectlterq) implementing our argmax(si,S,..,S)i). Since the objects to select among
criteria is linear in the number of candidates. 01,..0m are considered as miss-classified, then another
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way to select the object to relabel is to select the onewhile all the other values have a zero probability.
classified with the lowest confidence. More formally,

where max(sy,..,S)j) denotes the highest score among

6j = argminj—1 m(max((sy, .., )j)), ®3)

the ones associated by the classifi¢o the objecb;.

Example 2.et the set of objects to relabel bg, 0, andos
and let the target class log.

Intuitively, this criterion allows to relabel the object ete
the classifierf is most uncertain (namely, less confident).

Gj = argminj_1_m(entropy(sy, ..,S);j), (5)

whereentropy((si, ..,sk)j):-z!‘:ls xlog(s). The entropy-
based criterioME aims to relabel the objects where the
classifier is most uncertain as it generally happens in case

of novel and outlier objects.

oL | 02 | 03 Example 4Assume that we have to choose amaigo;
Classes| v1 | o | v3 . .
T andog an object to be relabeled in the target clags
C1 . .

Co .6 15| .15 01 (0] 03
C3 2| .3 | .45 Classes V1 \) V3
C4 1115 4 1 1 4 0

fo) | c2|c | c3 c 6 | 15| 15

In this example, the criterioMlCPC selects to relabel Cs 2 3 | 45
the objecto, as its predicted class ¢ and it is predicted C“_ 1 ] 15| 4
with the lowest confidence (namely, .4). f(a) € | & | G

entropyv;) | 1.57 | 1.87 | 1.46

5.3 MPTCD (Minimize the Predicted-Target

In this example, the criterioME selects to relabel the

objecto, since the score vector, contains the greatest
Class Confidence Difference) entropy (uncertainty).
This criterion is a combination of the criterCTC and

MCPC and aims at minimizing the gap between the 5.5 MMCC (Minimize Miss-Classification Cost)
predicted class and the target one.

Gj = argminj—1_m(max((sy, --,S)j) — Vi)

Example d.et 01, 0, andog be the set of objects to relabel

and let the target class log.

(4)

This criterion allows to take into account both the scores
output by the classifief and the miss-classification costs.
Indeed, in some applications the cost of miss-classifying
an object and predicting it in a wrong clagg is more
costly than miss-classifying it and predicting it in anathe
wrong classcj. For instance, the cost of detecting an
attack while there is no attack has not the same cost as not
detecting any attack while there is actually one (s&8 [

O] 02 | O3 for cost-sensitive classification problems). The choice of
Classes| vi | V2 | Vs an object using the classifier's confidence and the
C1 1] 4]0 miss-classification costs can be done as follows:
C 6| .15 | .15
C3 2 3 .45 k
cs 1|15 4 Gj = argmini—1.m( ) shxcost(f(0j),c)), (6)
(o) | ¢ | c3 h=1

MPTCD will select to relabel the objeas since the
gap between the score of the predicted clasand the

target onec, is .05 which is the smallest gap. The gap is

interpreted here as a kind of confidence.

5.4 ME (Maximize the Entropy)

wherecost( f(0j), ) is the cost of miss-classification gf
in the class predicted by the classifigo;).

Example 39n order to illustrate theMMCC criterion, let

us assume that we deal with a cost-sensitive classification
problem where the miss-classification costs are given in
the following cost matrix.

C1 C2 C3 Csq

. L . . cg| 010 2 | 12
This criterion aims to select among the objects to relabel & 310210
the one where the classifiéris less confident in terms of G| 1] 4101
entropy. This measure allows to assess the amount of w5110 1]0

uncertainty in a probability distribution. The entropy is
maximal in case of uniform distributions and it is minimal Assume that we have to choose amanigo, andos
if there is a value with all the probability mass (hamely, 1) an object to relabel in the target class
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01 O 03
Classes| vi | v | v3 Table 2: MDP (NASA Metrics Data Program) datasets used in
c1 11 41 0 the experimental evaluation
Co 6 | .15 .15 Dataset # instances | # attributes | # classes
C3 2 3 | .45 cml 344 38 2
Ca 1|.15| 4 jml 9593 22 2
HE) & | | e kel 2096 22 2
costivi) | 7.2 | 6.3 | 1.5 ke3 200 40 2
. . mcl 9277 39 2
In this example, the criterioMMCC selects to relabel me2 127 40 >
the objectos since the mean cost of score vectglis the mwl 264 38 2
lowest. pcl 759 38 2
pc2 1585 37 2
. pc3 1125 38 2
6 Experimental setup pcd 1399 38 >
pc5 17001 39 2

6.1 Datasets

Table 1 gives the details of the used datasets. All these

datasets are publically available (from the well-known  Tne results of the evaluated classifiers on the MDP

UCI repository and the KEEL imbalanced dataset gatasets of Tabl2 are given in the appendix.
repository). Note that we selected different types of

. , , 6.2 Evaluated classifiers
Table 1: Datasets used in the experimental evaluation

Dataset #instances) # attributes| # classes In order to evaluate our post-processing approach, we
ngvngrkl)gse 462: 47%72 g carried out experiments on both probabilistic classifiers
column 2¢ 310 2 5 (namely' outputting probability dlst'rlbutlons) and ‘non
column 30 310 7 3 probabilistic ones (namely outputting only one single
AU 25000 46 6 class).
contraceptive 1473 10 3
balance 625 5 3
glass 214 10 7
yeast 1484 8 10 Table 3: Classifier details tested in the experimental studies
lymphography 148 18 4 Abrev. | Name Reference| Category
ecoli- 336 8 8 NB Naive Bayes [19 Probabilistic
thyroid 720 22 3 TAN | Tree [19] Probabilistic
Augmented
datasets with different characteristics. We selected BNK2 gg;/eeSiBaiyes [26] Probabilistic
multi-dimensional datasets with different sizes (# Network  built
instances), dimensions (# attributes) and classification with the K2
type problem (# classes). In particular, we selected some algorithm
imbalanced datasets especially because most classifiers c45 | pecision Tree (32 Non probabilistic
are unable to achieve good classification rates on rare C4.5
classes 17. In Table 1, the datasetscontraceptive, kNN k Nearest| [1] Non probabilistic
balance, glass, yeast, lymphography, eenldthyroid are Neighbor

imbalanced. Note that in Tablethe datasetsolumn 2c
and column 3care part of the UCIVertebral Column

dataset whileAU denotes the UCAutoUnivdataset. We evaluated as probabilistic classifiers the Naive
Bayes classifierNB, TAN° and BNK2° [19. These

Other datasets from the MDP repositbrgre also classifiers output posterior probability distributions fo
used to evaluate our approach on binary and imbalance§ach object to classify. Such outputs are directly used by

classification problems. our post-processor when relabeling objects. As for non
probabilistic classifiers, we used a C4.5 decision 8% [
! https://archive.ics.uci.edu/ml/datasets.html and akNN classifier where only class labels are predicted.
2 http://sci2s.ugr.es/keelimbalanced.php Note that it is possible to obtain somehow probability
8 A dataset is said imbalanced if some classes are under
represented. 5 Tree Augmented Naive Bayes.
4 http://nasa-softwaredefectdatasets.wikispaces.com/ 6 Bayesian Network built with the K2 algorithm.
(© 2016 NSP
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distributions from decision trees arldNNs but in this

Table 4: Results ofN B classifier evaluation on the datasets of Table

L. Datasef NB MCTC MCPC MPTCD| ME MMCC | MMCC
work, we use only class label predictions. Cost
spam- | 79.224% 79.33% | 78.77%| 77.80%| 76.61%]| 76% | 0.207
base (80.42%) (79,46%) (81.83%) (77.63%) (82.13%) (0.178)
dbworlq 89.069 84.37%| 87.50%] 96.68%| 85.94%] 90.62%| 0.109
6.3 Domain knowledge (87.50%) (90.63%)) (96.87%) (90.62%) (90.62%) (0.093)
column| 77.74% 49.67%| 49.67%| 73.22%| 73.22%] 80.64%]| 0.226
) o ) 2c (65.80%) (68.06%) (80.96%) (79.67%) (80.96%) (0.190)
Since it is difficult to show the interest of our approach on ~column| 83.22 48.70%| 48.06%| 83.54%| 82.90%| 80.64%  0.168
a specific application domain with real constraints, we _3¢ — g%légl;/ﬂ 517796%33;/ éi3555“;/°/“ gfszoj/ 55823-758“;/“ 80;11855)
first chose to perform experimental studies on widely " | (@5.629) (52.36%) (54.819%) (54.76%) (54.819%) (0.452)
used benchmarks for evaluating classifiers. In our contra-| 49.69% 50.98%| 50.03%| 55.24%| 51.66%| 51.32%| 0.503
experiments, we used datasets to build and evaluate thngelp“"e m— 23541:;50;/“ 2541;:3%;/ g%j/“ é%oﬁloj/ g%j/“ éob‘;f)
agr . alance . (] . (] . (] . (] . (0] . (] .
classifiers on them. As domain knowledge, we use (70.24%) (71.68%) (90.08%4) (90.08%)) (90.40%) (0.09)
different kinds of knowledge obtained only from training ~dlass | 47.19% 46.73%| 44.39%| 47.19%| 50% 53.74%| 0.528
datasets (47.66%) (45.79%)) (48.59%j)) (50.46%)) (54.20%)) (0.458)
: yeast 57.61% 53.50% | 54.04%| 57.47%| 57.07%| 58.35% | 0.424
. e . (57.88%)) (58.15%])) (58.69%j)) (57.74%)) (58.55%)) (0.415)
—Training Dataset Distribution (TDD): Here, we use  —mrrogsas 77 00%| 77 029% | 83 10%| 8175%] B2.43% | 0.162
as domain knowledge the frequencies of the different graphy (82.34%)) (83.78%)) (84.45%) (83.78%) (84.45%)) (0.155)
| in the trainin taset. L@tbe the trainin ecoll | 85419 77.67%| 77.38%| 83.92%| 80.95%| 85.11%]| 0.146
gasses dF a : gda aseh Letbe the training (80.35%) (81.25%) (86.30%) (85.41%) (86.90%) (0.131)
ataset and lepp(ci) denote the frequency of items —gyr5iaro5% | 92.44%| 96.52%| 94.86%| 96.38%| 95.41%| 0.05
labeled agi in 2. The knowledge we exploit here is (94.72%)) (96.66%)) (95.83%) (95.41%) (96.94%)) (0.031)

2 ={Ki,..,Kq} such that each constraili requires
that pk(ci)=pp(ci), namely the amount of objects
labeled inc; after the post-processing step should be

equal to the amount of objects in the classn the ~ €ach column. In each cell, we give the results of revising
training dataset. As it will be shown in the obtained With TDD knowledge and the results of revising with
results, revising only with this available information MCR knowledge between brackets. Note that for the

allows to improve the classification rate using most MMCC criterion, we provide results obtained using a

classifiers. cost-matrix generated randomly. We provide results in
—Miss-Classification Rates (MCR):The domain terms of PCC, average classification cost without
knowledge we exploit here is relative to the Post-processing (in the last column) and average
miss-classification rates (namely, miss-classificationclassification cost after post-processing (between
rates over all or some of the classes). Such rates arBrackets). For imbalanced datasets, the costs of
obtained by evaluating the classifier on the training m!ss-class!fy!ng rare c_:lasses are more important than
dataset. It is easy to encode these rates as constrainfdiss-classifying majority ones. Finally, the results are

composing.# and exploit them for post-processing obtained through a 10-fold cross-validation on the
predictions. Here again, the used knowledge istraining datasets. The results of Tadlshow three main

available and it allows to improve the classifiers trends:

performances on most datasets.

6.4 Post-processing with knowledge on training

datasets
6.4.1 Evaluation of probabilistic classifiers

Table 4 provides the results of the Naive Bay®B
classifier on the datasets of Talile

The experiments of Tablé are done by revising the
predictions of theNB classifier with the distributions

(TDD) of the training datasets and the miss-classification

rate of only one class dfiB on the training datasets. The
first six result columns of Tablé denote respectively the

PCC (Percentage of Correct Classification: It represents
the proportion of correctly classified instances among all

the classified instances) obtained with tN& classifier
without any post-processing (columNB) while the

remaining columns denote the results of post-processing
the NB predictions using the criterion in the header of

—The first trend is that on most the datasets using the
MCR knowledge performs better than the classifier
alone and better than the classifier with the
post-processor exploiting the TDD knowledge.

Indeed, revising with the MCR knowledge
outperforms  post-processing with the TDD
knowledge with a gain in the PCC reaching

sometimes 19% (see the resultd\d classifier on the
column 2cdataset in Tabld). Regarding theVIMCC
criterion, the revision decreases the miss-classification
cost significantly meaning that the relabelings succeed
in revising the labels of miss-classified instances of
classes with high costs.

—The second trend is that on most the datasets the
criteria. ME and MMCC perform better than the
MCTC, MCPC and MPTCD both when using TDD
knowledge or the MCR knowledge. This result shows
that when revising, thdME and MMCC criteria are
better for selecting items to relabel among those
miss-classified by theNB classifier. For theME
criterion, this is generally the case for outliers and

(@© 2016 NSP
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. - . Table 6: Results 0oBNK2 classifier evaluation on the datasets of Table
items containing some novelty (for instance, novel - "o vete | MoPC | MPTCDI ME MMCC | MMCC

values in some attributes). Indeed, tR& classifier Cost

and more generally probabilistic ones, will return seam-| 89.8% 89.74%]| 86.91%] 89.74%]| 89.74%] 89.93%] 0.102
. . A L . ase (89.91%) (89.74%) (89.95%) (89.95%) (89.98%j) (0.100)
uniform posterior distributions making these items —g i s0629 8593% | 823791 875% | 875% | 90.62% | 0.0938

favorite candidates for the relabeling as their entropy (89.06%4) (87.5%)| (92.18%) (92.18%) (92.18%) (0.078)

i i i i i i column| 76.45% 80.64% | 70.32%| 80.96%| 80.96% | 81.29%]| 0.2355
is maximal. As for theMMCC criterion, it gives (BL.20%) (75,259 (816190 (B1.61%6) (820%) (©.171)

priority to relabel items with low posterior probability —cowumn|72.83% 70.32%] 70.64% 75.8% | 76.12%] 76.12% 0.2517
but taking into account the miss-classification cost. 3c (73.229%) (72.25%) (76.45%) (75.8%)| (76.77%) (0.232)

: - AU 54.92% 37.4% | 37.11%| 54.22%]| 53.56% | 54.94%| 0.4508
—T'hellr.‘nprovements made by post-processing are more (54.26%) (53.66%) (54 07%) (54.08%) (55.1304) (0.449)
significant on the datasets where B alone has not  —conwra-| 51.129 50.91%| 50.78%| 50.91%] 50.71%]| 51.06%| 0.4888

good classification rate as on tiA&J, contraceptive, Eeftive S— glé?’zij/ (6580'1263;2/0 (7512-3%70;/ (75115,%2;/0 (721-2‘:35;/ 80-2‘;8352)
H B alance . (] . (] . (] . (] . (] . (] .

glass and yeast datasets. This result is somehow (729%) | (71.84%) (73.129%) (73.129%) (75.2%)| (0.248)
natural since it is hard for the post-processor tO glass | 73.36% 66.35%| 50.81% | 71.02%| 70.56%| 71.06%| 0.2664
perform better than the base classifier if this latter (73.83%) (71.49%) (74.76%) (73.83%) (74.29%) (0.257)
yeast 56.73% 56.33% | 53.36% | 56.46%| 56.19%| 56.87%| 0.4327

already performs well on a dataset. (56.8%)| (55.25%)) (56.8%)| (56.53%) (57.07%]) (0.429)
) lymphot 85.81% 85.13%| 83.1% 87.16%| 86.48% | 85.81%| 0.1419

Table 5 provides the results of theTAN graphy (85.13%) (85.13%)) (86.48%4) (86.48%) (86.48%) (0.135)

(Tree_Augmented Naive Bayes) classifier on the datasets ecoli 81.25% 78.86% | 75.89% | 81.54%| 81.84%| 82.73%| 0.1875
(81.54%)) (80.35%)) (82.44%q) (82.44%9) (83.33%) (0.166)

of Tablel. thyroid| 96.66% 96.52%| 96.38%| 96.38%| 96.66% | 97.22%| 0.0334
(96.66%) (96.66%)) (97.36%)) (97.0894) (97.91%) (0.021)

Table 5: Results ofT AN classifier evaluation on the datasets of Table
Datasef TAN MCTC MCPC | MPTCD| ME MMCC | MMCC
Cost H
spam- | 93.08% 93.04% | 93.04% | 92.78%| 92.78% | 93.26%| 0.0692 trend.s. and conclusions of the results 8 and TAN
base (93.159%) (91.78%) (93.35%) (93.35%) (93.84%) (0.062) Classifiers of Tabld and5.
dbworld 79.68% 78.12%| 78.12%| 78.12%| 78.12%| 81.25%| 0.2032
(81.25%)) (73.43%) (82.81%4) (82.81%9) (82.819%9) (0.172)
column| 80.64% 80.64%| 80.64% | 81.93%| 81.93% | 81.29%| 0.1936

2c (80.96%) (80.96%) (82.25%) (82.25%) (81.93%) (0.181) . o -
columnl 78.06% 76.77% | 76.12%| 77.41%| 76.77%| 80% 02192 6.4.2 Evaluation of non probabilistic classifiers
3c (78.7%)| (77.09%) (79.03%)) (79.67%) (80.64%) (0.194)
AU 59.71% 59.15% | 49.77%| 59.74%| 59.16% | 61.28% | 0.4029

(59.77%) (59.39%) (60.18%) (59.729%) (61.6%)| (0.384) . . .
contra ST 66¥% 5145% | S098% | 505705 5139%| Siscvl o4s3a Ve use in the following experiments a standard C4.5

ceptive (51.73%) (51.3294) (52.61%) (52.41%) (52.47%) (0.475) decision tree classifiel3pP] and akNN classifier [l]. As

balance 71.68% 65.92% | 64.96% | 72.32%| 72.48%| 72.64%| 0.2832 for doma|n knowledge, we use Only the Class |abe|s
(72%) | (71.04%) (72.48%) (72.64%) (73.44%) (0.266) . - .

glass | 75.23% 71.02% | 60.74%| 7T1.49%| 72.42%]| 76.17%| 02477 Predicted by these classifiers. Tallgresp. TableS) gives

(75.23%) (74.76%) (75.7%)| (76.17%) (76.63%) (0.234) the results of C4.5 (resgNN) on the datasets of Table

yeast | 58.15% 57.47%)| 55.86%| 57.95%| 57.34%| 57.68%| 0.4185

(58.229%) (58.01%) (58.49%) (58.36%) (58.55%)) (0.415)

Tymphol 87.16% 87.16% | 85.81%| 86.48%)]| 86.48%| 87.16%| 0.1284

graphy (87.16%)) (86.48%)) (87.16%)) (87.16%)) (87.83%) (0.122)

ecoli 80.05% 80.35%| 80.05% | 81.25%| 80.95%| 80.35% | 0.1995 Table 7: Results of theC4.5 classifier evaluation on the datasets of Tdble
(80.65%) (80.35%) (81.54%) (80.65%) (80.95%) (0.191)  pataset C4.5 | MCTC | MCPC | MPTCD| ME MMCC | MMCC

thyroid| 96.8%| 96.8% | 96.52%]| 96.8% | 96.66%| 96.94%]| 0.032 Cost
(97.08%) (96.52%) (97.08%) (97.36%) (97.5%)| (0.025) ~spam- | 92.97% 92.91%| 92.97%| 92.91%| 92.91%| 93.28%]| 0.0703

base (92.97%)) (92.78%) (93%) | (93.04%) (93.529%) (0.065)
dbworld 71.87% 62.5% | 64.06%| 65.63%| 62.5% | 84.37%]| 0.2813
(70.31%)) (70.31%) (71.87%)) (71.87%) (85.94%) (0.141)
The results of the Tablg are similar to those of Table ~“column| 81.61% 80.64%| 78.06%| 82.58% | 82.58%| 83.22%] 0.1839

; e 2c (83.2294) (78.7%)| (83.2294) (83.22%) (84.84%) (0.152)
4. HOWEVGF, glven thaﬂ-AN CIaSSIerr IS already more column| 81.61% 75.48% | 49.67%| 76.77%| 71.61%| 82.90% | 0.1839
effective thanNB on most datasets and as it is better 3c (81.93%) (80.96%) (81.29%4) (80.64%) (83.23%)) (0.168)

before the use of post-processing then the post-processinght 64.25% 64.08%| 63.96%| 64.35%| 64.37%| 64.1% | 0.3575

B : ol (64.329%) (64.18%) (65.3%)| (65.58%) (65.22%) (0.348)
.results are notas S!gnlflcant_as the |mpfo_vemef1ts _Obtalne“contra- 53.76% 52.95% | 52.81% | 54.31%| 53.9% 54.79%| 0.4624
in Table 4. Regarding the different revision criteria and  ceptive (53.83%) (54.03%) (54.37%) (54.1%)| (55.4%)| (0.446)
the kind of knowledge we revise with, the results of the balancs 78.56% 75.68%| 75.52%| 76.8% | 76.32% | 80.96%] 0.2144

. N (77.44%) (77.44%) (80.64%) (79.5299) (81.92%4) (0.181)
Table 5 allow us to draw the same conclusions as the glass | 677595 64.05% | 66.35%| 67.75% | 64.48%| 69.16%] 03225

trends drawn from Tablé. (67.28%) (67.75%) (69.16%4) (68.69%) (70.56%) (0.294)

i i yeast 55.86% 55.86% | 55.72% | 55.79%| 55.86% | 56.06% | 0.4414
In Table 6, we provide the results of the Bayesian 55.00%) (56,1390 (55.06K) (56.0600) (£6.74%) (0.43%)

network classifier BNK2 learnt using the K2 14 lymphol 80.4%| 80.4% | 80.4% | 80.08%]| 80.4% | 80.41%]| 0.196

algorithm. This evaluation is done on the datasets of Table graphy (80.4%)| (80.4%)| (81.08%) (81.75%) (82.43%) (0.176)

1 ecoll | 84.22% 84.22%| 83.03%| 84.22%| 83.33%| 84.52%]| 0.1578

: _ (84.52%4) (83.92%) (84.5294) (84.82%) (85.42%) (0.146)

From the results of Table§ one can notice that the ~thyroid| 98.61% 98.61%| 98.61%| 98.47%| 98.33%| 98.75%| 0.0139

results of the probabilistic classifiBNK2 share the main (98.75%) (98.47%) (98.75%) (98.61%) (98.89%) (0.011)
(© 2016 NSP
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TheC4.5 classifier is well-known and it is recognized 7 Case study: Exploiting domain knowledge
among the most efficient ones in the literature. On thejn computer security
datasets of Tabl&, one can notice that compared to the

results of probabilistic classifie®dB, TAN and BNK2,  This section provides a realistic application needing to
CA5 classifier provides better performances on mostyost-process the predictions of classifiers and

datasets. Regarding the post-processing, one can dragétection/prediction systems with domain knowledge and
almost the same conclusions as those drawn from thgser's constraints in the computer security field.

results of the probabilistic classifiers, namely i) on most
the datasets, the revision improves the PCC (for example,

the PCC is improved by 14% on thdbworld dataset 7 1 |ntrusion detection and aler rrelation
using theMMCC criterion), ii) revision with the MCR ) trusion detection and alert correlatio

knowledge provides better results than post-processingpe objective of computer security is to protect the

based on TDD knowledge and iii) tHdMCC criterion  gystem against any attempt to violate the security policy.
provides better results than the other criteria. Two kinds of solutions are generally used to ensure the
confidentiality, integrity and availability of informatio

e . and services of an information system:
As for the results of th&NN classifier given in Table y

8, the results are slightly mixed in comparison with the —Prevention solutions: Like fire-walls, ciphering
probabilistic classifierslB, TAN andBNK2 and those of technologies, access control, etc., such solutions aim
C4.5 decision tree. Indeed, on some datasets, there is a to prevent the violation of the security policy.
slight deterioration in the PCC while on others, there are —Detection solutionsBecause there is no guarantee
slight improvements. But on the majority of datasets, the  that the used prevention solutions provide a complete
use of MCR knowledge in post-processing provides better ~ security, there is need to use tools to detect the
results than when using the TDD knowledge and the intrusions and attacks that overcome the prevention
MMCC criterion provides the best results. security tools. Examples of detection tools are
intrusion detection systems (IDSs for shadd})guch
as Snort IDS, alert correlation 28][18] and activity
monitoring R7][ 23].

Intrusion detection consists in analyzing the activities
(ex. network traffic, log files, etc.) to detect in real-tinte 0

DTét‘b'e Si&e,j“'ts ‘,\),fé'}ééNN C,\'/laé;‘gef e‘ﬁgﬁg‘é” 0&216 datals\ﬂe,f:ggabﬁmc offline any attempt to violate the security policy. IDSs act
alase Cost ~ @s burglar alarms and they are either misuse-b&&af

spam- | 90.76% 90.39% | 90.39%| 90.39% | 90.39%| 91.05%| 0.0924 anomaly-based 30] or a combination of both the

base (90.39%4) (90.39%) (91.13%) (91.11%) (91.59%) (0.084) ; ; ;
dbworld 79.68% 78.12% | 67.18%| 81.25%] 79.68%| 81.25%] 0.2032 approaches n order to exploit their mutual
(78.12%) (68.75%) (82.81%) (82.81%) (84.38%) (0.156) COMplementaritiesd7].

column| 81.61% 81.29%| 81.29%| 81.29%| 81.29%]| 81.93%] 0.1839

2c (82.25%) (81.93%) (82.58%4) (82.58%) (82.9%)| (0.171) ; o ;
column| 78.38% 77.74%| 74.51%| 77.74%| 78.06%| 79.35% | 0.2162 Cqmputer security practitioners often dep!oy multiple
3c (79.03%) (77.41%) (80%) | (79.68%) (80.97%4) (0.190) Security products and solutions in order to increase the

AU 41-11%?411-111;@ ?411-0210;/3 ?411-15;@ ?31-4133%; ?411-1520@ (()6558138(?) detection rates by exploiing their  mutual

. q . 0, . q . . q . H H H
contra-| 43199 40.19% | 42.07 105 43179 | 43310 43.00%] 0569, Complementarities. For instance, misuse-based IDSs are
ceptive (42.979%) (43.1%)| (44.73%) (43.85%) (44.12%) (0.559) Often combined with anomaly-based ones in order to
balance 87.36% 85.6% 77.4% 87.68% | 86.88% | 88.8% 0.1264 detect both Old and novel attacks and anomalles |t |S

(87.2%)| (86.7294) (89.62%)) (87.52%)) (90.24%) (0.0978) . h I . | )
glass | 70.00%% 47.66%| 67.75%| 71.03%| 69.15%] 715% | 02991 Important to note that all exiting anomaly-based
(50%) | (70.09%) (71.96%) (70.56%) (72.9%)| (0.271) approaches have a major drawback consisting in very
yeast 52.29% 47.16% | 45.88%| 52.22%| 51.88%| 52.63% | 0.4771 H H 3

(49.700) (51.81%) (53 49%) (52.20%) (85.7%)| (0.473) high false alarm' rates. The_;e systems build profiles and
lympho 80.4%| 79.05%] 77.7% | 80.4% | 80.4% | 81.76%] 0.196 models_ of Iegltlme_lte_ activities and detect .at.t.aCkS by
graFIJhy (80.4%)| (79.72%) (81.76%) (81.08%) (83.78%) (0.162) computing the deviations of the analyzed activities from
ecoli | 80.35% 66.66%| 77.08%| 80.06%| 79.46%| 79.76% | 0.1965 P : .

(78.2794) (80.3594) (81.25%) (80.35%) (82.14%) (0.178) normal activity profiles. In the I|ter§1ture, most
thyroid| 90% | 87.77%| 87.5% | 90.13%| 89.86%| 91.25%| 0.1 anomaly-based IDSs are novelty or outlier approaches
(90.41%) (89.86%) (92.63%) (91.94%) (93.19%) (0.068) [3(][35] adapted for the intrusion detection problem.

Moreover, all modern IDSs (even the factonetwork
Snort IDS are well-known to trigger large amounts of
alerts most of which are redundant and false ones. This
, fproblem is due to several reasons such as bad parameter
The conclusions that can be dray\(n_from the_z.results Ofsettings and inappropriate IDS tuning, et86]] As a
Tab!e? and Table8 on non probabilistic cIaSS|f|er's'are consequence, huge amounts of alerts are daily reported
basically the same as the three trends characterizing the

evaluation of Tabled, 5 and6. 7 http://snort.org/
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making the task of the security administrators —In alert correlation, the security operators are faced
time-consuming and inefficient. In order to cope with continuously to very large volumes of alerts generated
such quantities of alerts, alert correlation approaches ar by the IDSs. Since it is impossible to analyze and

used L7][16]. manually check all the triggered alerts, security
operators often prefer to select a subset of alerts

Alert correlation [L7][16] consists in analyzing the according to operators’ availability and the
alerts triggered by one or multiple IDSs and other security ~ dangerousness of the attacks. Typically, this is a
tools in order to provide ayntheticand high-levelview post-processing task of the predictions IDSs to fit the
of the interesting malicious events targeting the constraints of the security operators. In this case, the

information system. The input data for alert correlation  security operator may want to select only the 1000
tools is gathered from various sources such as IDSs, mostdangerous or most likely attacks among all those
fire-walls, web server logs, etc. Correlating alerts regubrt generated by the IDSs. In this case, the knowledge
by multiple analyzers and sources has several advantages requiring to post-process the predictions of the
such as exploiting the complementarities of multiple  detection systems is the constraints and preferences of

analyzers. The main objectives of alert correlation are: the security operators. This task is similar in some
. L sense to prioritizing alerts (ranking the triggered alerts
1Alert reduction and Redundant alerts elimination: according to user specified criteri@]).

The objective of alert correlation here is to eliminate
redundant alerts by aggregating or fusing similar  In the above scenarios, it is clear that it really makes
alerts [L7]. In fact, IDSs often trigger large amounts sense to post-process the predictions of security tools
of redundant alerts due to the multiplicity of IDSs and which can be non probabilistic (outputting only symbolic
the repetitiveness of some malicious events suchinformation like alerts that can be though of as classes) or
scans, floodings, etc. probabilistic (for instance, when the detection is based on
2 Multi-step attack detectionMost IDSs report only a probabilistic model as in SPADE syst&min order to
elementary malicious events while several attacksevaluate our post-processing approach, we carried out
perform through multiple steps where each step carexperimentations similar to the ones of the experimental
be reported by an alert. Detecting multi-step attacksstudy Section but they are done on real and representative
requires analyzing the relationships and connectionglata from intrusion detection in Web attacks and alert
between several alertg][ 11][29]. correlation.
3.Alert filtering and prioritization: Among the huge
amount of triggered alerts, security administrators
must select a subset of alerts according to their7_2 Experiments on the intrusion detection
dangerousness and the  contexts.  Alerts
filtering/prioritization aims at presenting to the problem
administrators only the alerts they want to anal@e[
In order to evaluate our post-processing approach on real
In the literature, alert correlation approaches are ofteryataset, we use the Webtraffic dataset of Ta®lelt
grouped into similarity-based approach&g|[ predefined  contains real network traffic data collected on a university
attack scenarios 2f], pre and post-conditions of campus. 18 days of network traffic were collected and the
individual attacks 16] and statistical approache$(][22].  volume of collected data is 100 Giga bytes. The raw data
is preprocessed into connection records described by
We illustrate here the need to post-processingrelevant features as described irlO] For our
prediction or detection systems outputs in order to fit theexperimentations, only 15 Giga bytes of traffic were used.
user knowledge and requirements. The normal traffic is real and includes inbound and
outbound http connections captured with TCPDump

—In intrusion detection, a typical domain knowledge ) . )
requiring to revise the predictions and decisions of a?rg';f]er'[zvﬁh'fmtizﬁ a;trzckzn?or?]gswtr;:gatﬁghggs ;enﬂoweﬁfd

detection system (here an IDS for instance) is that
security operators may know for example that the‘redocumented Web attacks databases (several source codes

can not be successful attacks against a the Web serv%gcskcg'ﬁ;s\‘/gf\}:ﬁjjsa;tt?;tkes ?gg g#ggﬂye%\?gipmhese
given that there is no Web server in the monitored 9 ) '

network. Here the domain knowledge requires to _penial of Service (DOS)submerge the server with
relabel for example the alerts saying that a Web attack  requests (attacks by flooding) or provoke the services
is currently undergoing as normal activity for  stop or deceleration (attacks by buffer-overflow, errors

instance. This same scenario is also encountered for  of decoding and interpretation of data, bad allowance,
attacks targeting systems and versions that are not etc.)

present or running in the network. In this case, it is
knowledge about application domain that allows to 8 http://sourceforge.net/projects/snortspade/
revise the predictions of the IDS. 9 http://www.i-pi.com/HTTP-attacks-JoCN-2006/
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—Scans of vulnerabilities (SOV)search possible classifiers where the dataset Webtraffic is modified and
breaches and errors of con- figuration in the Webconsider only two classedNfrmal and Attack in the
applications in order to exploit them for malevolent rows tagged @assesThe conclusions that can be drawn
ends. from the results of TabldO are basically the same as

—Unauthorized Accesses (UAjeach the system or those drawn form the results of the previous experimental
reveal information with unauthorized ways. The evaluation Section. It particular, one can observe real
unauthorized access to the system is carried out witimprovements of the PCC achieved by all the revision
command injections, Shell codes, etc. The criteria over the four evaluated classifiers. Note that in
unauthorized access to the data can be done with SQthis section, we use only the MCR knowledge.
injection, Cross Scripting Site, Directory Climbing,
etc. In order to have more insights into the results

(namely, which classes are improved), Taklds12, 13
and 14 provide the PCC rates on both tiNormal and
Attackclasses oNB, TAN, BNK2 andC4.5 classifiers on

Table 9: Webtraffic dataset
[ Training dataset | Test dataset | the dataset of Tablg0.
Class |  # ] % [ # ] % |
Normal connections| 55911 56.29% | 61378 | 88.875%
Vulnerability scans| 30979 31.19% 4456 6.45% ) = .
Flooding | 12375 | 12.46% | 3159 457% Table 11: Result details of theNB classifier on Webtraffic
Buffer overflow 9 0.009% 15 0.022% datatset
URL decoding error 36 0.036% 21 0.03% .
Directory Climbing 4 0.004% 1 0.001% Class Wlt_hc_)u MCTC| MCPC | MPTCDO ME MMCC
Values misinterpretation| 2 0.002% 2 0.003% revisior
Cmssssgf Serping |9 o & | ook Normal| 97.57% 97.59% 97.59%| 98.07%| 98.21% 97.93%
(] . 0
Command ianection 0 0% 9 0.013% Attack | 99.71% 91.05% 91.05%)| 99.71%| 99.79% 99.71%
Total | 99316 | 100% | 69061 | 100% | PCC 97.81% 96.87% 96.87%)| 98.25%| 98.39% 98.13%

Note that the testing dataset involves new attacks
which do not appear in training dataset. Indeed, in order
to evaluate the efficiency to detect new attacks which is arpe 12: Result details of tha AN classifier on the Webtraffic
serious issue in IDSs, the testing data set of Webtraffiqyztaset
includes normal reahttp connections as well as known  ~5ss | Without MCTC | MCPC | MPTCD ME MMCC
attacks and new ones (attacks in bold in Te)le revisiof
_ o - Normal| 99.94% 99.4194 99.41%]| 99.29%| 99.29% 99.63%
Table10provides the results of probabilistic classifiers —Agack 1 65.13% 82.219% 82.21%| 89.89%| 89.89% 91.2%
NB, TAN andBNK2 and non probabilistic classifi€4.5 PCC 96.09% 97.519% 97.51%]| 98.25%| 98.25% 98.7%
decision tree on the dataset of TaBle

Table 10: Results of the classifiers on the Webtraffic dataset

Classifierwithou{ MCTC| MCPC| MPTCD ME MMCC| MMCC

Revision Cost Table 13: Result details of th8NK?2 classifier on the Webtraffic
NB 93.80% 97.94% 89.2504 97.9194 97.77% 97.98% 0.061 dataset
ALL (98.06%) (97.95%) (98.35%) (98.18%) (98.18%) (0.018) )
TAN | 97.43%] 98.05% 96.16% 98.510] 97.8294 98.75%] 0026 Class | Without MCTC| MCPC | MPTCD ME | MMCC
ALL (98.7%) (98.02%)(98.66%) (98.58%) (99.28%) (0.007) revisior
m@ 94.5% ?5‘47;7 ?&2762% )(99758232{) )?;éﬁy?;{) )?gfgg )?60557) Normal| 99.94% 99.94% 99.94%]| 99.94%)| 99.94% 99.94%

. (1) . 0 . 0 . 0 . 0 .

C45 | 93.33% 93329 87.04% 93.33% 93.33% 93.35% 0.067 Attack | 94.27% 95.62% 95.62%| 94.32%)| 95.62% 99.79%
ALL (93.37%) (92.88%) (93.39%) (93.39%) (99.18%) (0.008) PCC 99.31% 99.46% 99.46%| 99.32%| 99.48% 99.93%
NB 97.819] 95.699%] 95.69% 96.87% 96.87% 97.84% 0.022
2classds (96.87%) (96.87%) (98.25%) (98.39%) (98.13%) (0.018)
TAN | 96.09% 94.76% 94.7604 97.519% 97.519% 98.45% 0.039 .
2classds (97.51%) (97.51%) (98.25%) (98.25%) (98.7%) (0.013) One can notice !n th_e reSl_,l'tS of Tableg 12, 13and
BNK2 | 99.31% 98.75% 98.75% 99.46% 99.46% 99.61% 0.007 14 that there are significant improvements in the attack
2classes (99.46%) (99.46%) (99.32%) (99.48%) (99.93%)(0.001) - {etection rate. Indeed, despite the fact that the Webtraffic
C45 | 93.3% | 99.50% B87.0294 99.50% 99.50% 97.5% | 0.067 e ' .
2classds (99.79%) (93.1%) (99.8%) (99.8%) (98.5%) (0.015) dataset is imbalanced and contains several new attacks

(which are not included in the training data), the attack
detection rate has been significantly enhanced. For
In Table10, we first provide (in the rows taggeklL) instance, in Tablel4 the C4.5 classifier detected only
the results oNB, TAN, BNK2 andC4.5 classifiers onthe 41.36% of the attacks while after the post-processing,
dataset of Tabld0 and we provide the results of these 99.14% of the attacks were detected udifig criterion.

(@© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 4, 1619-1635 (2016)vww.naturalspublishing.com/Journals.asp NS P 1631

Table 14: Result details of theC4.5 decision tree on the Table 15: Training and testing datasets distributions of the aleatagbt
; [ Trainingset [  Testingset |
Webtraffic da_taset Sid  Snort alert name | # ] % | # ] % |
Class | Without MCTC| MCPC | MPTCD ME MMCC=T5sT—WEBMISC 1cQ Webfront] 87 | 0.18% 6 | 0,01%

revisio HTTP DOS
Normal| 99.77% 99.78% 99.7% | 99.88%| 99.88% 99.8304 2002 WEB-PHP remote includ¢ 50 0,10% | 231 | 0,47%
th
Aftack | 41.36% 99.89% 40.05%] 99.14%| 99.14% 87.78% 5559 ‘weB-pHP viewtopic.phd 5169 | 10,42% | 1580 | 3,20%
PCC 93.3% | 99.79% 93.1% | 99.8% | 99.8% | 98.5% access

1012  WEB-IIS fpcount attempt 3 0,01% 10 0,02%
1256  WEB-IIS CodeRed v2| 2 | 0,004% 3 0,01%

root.exe access
1497  WEB-MISC cross sitel 5602 | 11,30% | 7347 | 14,90%

: . scripting attempt
Regarding the detection of new attacks (namely those ,,35  \wes.CLIENT  Microsoft| 145 | 020% | 53 | 011%

that do not appear in the training data set), the obtained wmf metafile access
results are some how similar to the results on other 183! Q’t‘{eEnEq‘;\t’“SC ligsaw dos| 659 | 1,33% | 153 | 031%
intrusion .d.etection benchmarks using decisions trees andgsa WEB-MISC weblogichomcay 3412 | 6,88% | 3885 | 7.88%
NB classifiers that can be found for instance4h More jsp view source...
precisely, the detection rates on most intrusion detection
benchmarks are often high for known attacks and normal
R R s Table 16: Results of the classifiers on the alerts dataset

activities anq very |nsuff|C|ent'for novel and rare attacks. ClassifierWithoul MCTC | MCPE | MPTCD. ME MMGG! MMCC
In our experiments, the detection rate of some new attacks Revisioh Cost
has been improved but it is not equivalent to the NB 90.17% 2(37.770/ )2(37.270/ ?9.7% )5(39.950/ )(90.260/ )?.0983)
H H 90.24%) (90.2%) (90.36%) (90.37%0) (90.41%) (0.096
improvements achieved on some known attgcks. Inde?ed,TAN O o s e T
since the new attacks are novel, their posterior (90.87%) (90.46%) (90.88%) (90.79%) (90.92%) (0.091)
probabilities are very low (in general, new attacks are too BNK2 | 90.5% ?97(-)937; )?9768292% )?&15% )?:(5159% )?:(57735% )?(-)089:2)

. . . . . . 0 . 0 . 0, . 0, . 0, .
different from known attacks), hence the revision criteria—=z 5910794 568690 86.829¢ 90.19% 90129 91169 0.0893

do not recover them in this case. (91.17%) (91.14%) (91.2%) (91.129%)(91.2%) (0.088)
KNN | 91.04% 87.13% 87.06% 90.81% 90.78% 91.17% 0.089
(91.1%) (90.93%)(91.15%) (91.04%) (91.28%)(0.087)

7.3 Experiments on the alert correlation

problem _
draw the same conclusions except the fact that the only

In this experiment, we used a dataset built on real alerglightimprovements are achieved on the attack rates.
log files produced by Snort IDS monitoring a university
campus network. These alert logs represent three months
activity. Th's data consists in alerts generated bY Sndgt ID Table 17: Result details of th&IB classifier on the alerts dataset
gathered in IDMER? format then preprocessed into CSV' ~1ass | Without MCTC| MCPC | MPTCO ME MMCC
(Comma Separated VaIues). In these experiments, we use revisiorl
the datasets'of TablEs obtained from real IDMEF alertg Normal| 95.92% 95.94% 95.93%| 95.97%| 95.97% 95.97%
reported during thr_ee months by the Snort IDS. We firSt—Attack 1 77.14% 77.34% 77.22%| 77.71%| 77.75% 77.9%
preprpcessed .th'e first month of collected alerts in order e 90.87% 90.94% 90.9% | 91.06%| 91.07% 91.11%
to build the training data set and preprocessed the second
month to build the testing set. Takl® provides details on
the attacks we used in our experimentations.

Among the attacks detected by Snort IDS, we selected
9 Web-based attacks to predict on the basis of the alerts
that often precede/prepare these attacks. All these gttacklable 18: Result details of th& AN classifier on the alerts dataset
are associated with a high severity level and are targeting Class | Without MCTC| MCPC | MPTCO ME MMCC
either Web servers or related web-based applications. revisio
Such attacks may result in arbitrary code execution and Normal| 98.29% 98.29% 98.29%)| 98.28%)| 98.29% 98.29%
full control of the targeted system. Interested readers can Attack | 72.48% 72.81% 71.27%| 72.84%| 72.5% | 72.98%
refer to Snort IDS signature database for additional PCC | 91.34% 91.43% 91.02%| 91.44%]| 91.35% 91.48%
information and references on these attacks.

The results of Tablel6 allow to draw the same ) ]
conclusion as the results of theB, TAN, BNK2 andC4.5 In Table21, we provide the results of post-processing

classifiers on the Webtraffic dataset. Similarly, the resultthe non probabilistic C4.5 decision tree classifier
details given in Tabled7, 18, 19 and 20 allow also to  Predictions with different thresholds. In each column, we

give the results of the selecting only a proportix¥ of
10 IDMEF stands for the Intrusion Detection Message the predictions made by the C4.5 decision tree as attacks
Exchange Formahttp://www.ietf.org/rfc/rfc4765.txt using the revision criteria presented in this paper.
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Table 19: Result details of theBNK2 classifier on the alerts ke sense especially if the data objects to be classified
dataset = can be uncertain. In5|] the authors also dealt with
Class :’;’:{tg‘i’: MCTC| MCPC | MPTCD ME | MMCC  aya|yation criteria for probabilistic classifiers but didtn
Normal| 96.78% 96.78% 96.72%| 96.72%  96.72% 96.74%  2ddress the lissue of revising the predictions. Their
Attack | 75.42% 74.979% 74.54%| 75.85%  75.85% 76.45% objective was to define alternative and more informative
BPCC | 91.03% 90.91% 90.75%| 91.1% | 91.1% | 91.28%  €valuation criteria in case where the prediction of the
classifier is probability distribution over the set of class

instead of just only one class.

Table 20: Result details of th€4.5 decision tree on the alerts

dataset The selection criteria proposed in this paper are based
Class | Withouf MCTC| MCPC | MPTCD ME MMCC on natural ideas and aim at minimizing
revisio miss-classifications while fitting all the considered

Normal| 98.57% 98.59% 98.59%) 98.59% 98.58% 98.59%  domain knowledge. Note that the criteNéCTC, MCPC
Attack | 73.03% 73.32% 73.21%| 73.42%| 73.17% 7342%  gnd MPTCD are originally proposed in6] within a
PCC | 91.69% 91.79% 91.76%]| 91.82%| 91.74% 91.82% computer security application. In this paper, two more
efficient criteria are proposed and the five criteria are
evaluated on widely used benchmarks in the classification
community. The obtained experimental results are
appealing and very encouraging singethe proposed
approach guarantees that the post-processed
predictions fit well the domain knowledge constraints
and i) does not deteriorate the prediction system
classification rates but may even improve it

Table 21: Result of theC4.5 decision tree on the alerts dataset
with different thresholds.
Threshold | 2% 5% 10% 20% 100%
MCTC 43.59% 77.38% 88.69% 94.34% 98.16%
MCPC 9.62% | 63.75% 81.88% 90.94% 40.6%
MPTCD 42.86% 76.86% 88.72% 94.34% 98.19%
ME 42.86% 76.86% 88.72% 94.34% 98.19%
MMCC 36.23% 74.42% 87.23% 93.61% 97.95%

Algorithm 1 proposed to post-process the classifier
predictions gives priority to minimizing the number of
relabelings to guarantee a better post-processing time
complexity. This of course affects the miss-classification

a small proportion of predictions detecting attacks byra.te's.'A bet.ter compromise bethen complex!ty and
C4.5, the majority of selected items after post—processind}g”n'r.n'?'ng miss-classifications requires to reconsider th
are indeed attacks. For example, when we select just 109gredictions of items even those predicted in the target
of the predictions classified attacks by C4.5, all theClass (currently, the algorithm don't reconsider items
revision criteria select over than 80% of attacks. Note thafPrédicted in the target class if the corresponding
the same experiment is carried out using the Naive BayeS§ONStraint#i requires more items iq).

classifier and we obtained similar results.

As it can be seen in Tabl, even when we just pick

To sum up, the contributions of the paper are:

) . ) 1.Proposing a unifying encoding for classifiers and
8 Discussions and concluding remarks prediction models outputs in general. It also provides
a unifying encoding of different types of domain
This paper dealt with a novel and important issue in  knowledge such as generic information about the
classification. More precisely, it addressed the problem of  objects to classify, user preferences and constraints.
exploiting the available domain knowledge in order to 2.Proposing a polynomial post-processing algorithm to
achieve two objectives: i) improve the classifier efficiency  revise the predictions of a classifier guaranteeing
and ii) fit the user requirements. This issue is addressed as revised predictions in full agreement with the domain
a general problem and it can be encountered in many knowledge.
applications, typically where users have specific domain 3.Different criteria are proposed to select among the
constraints that their detection/prediction models sthoul items to relabel the ones that best allow to achieve the
satisfy. post-processing objectives.
4. Extensive experimental studies are carried out
In [2], the authors proposed a method for classifying  showing that the proposed post-processing approach
data items with some uncertain observations using a can achieve significant improvements especially on
possibilistic decision trees. Then, they proposed a method datasets where the classifiers have poor efficiency as
to evaluate the classifier taking into account the onimbalanced datasets.
uncertainty of the predictions. Clearly, our work is 5.A case study on two typical computer security
complementary since we allow revising the outputs of a  problems is provided. In these problems it really
classifier to fit the user requirements. Indeed, using makes sense to revise the predictions of a
possibilistic decision trees as first-level classifierdyful prediction/detection system with the users’ domain
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knowledge, constraints and preferences. In particular,

Table 23: Results of the C4.5 classifier evaluation on MDP datasetableP

L. Datas¢t C4.5 MCTC MCPC MPTCD| ME MMCC | Cost
we showed that exploiting some background —cMI | 85.46%| 83.13%| 83.13%| 83.13%| 83.13%| 85.46% 0.1454
knowledge allows to improve the attack detection (86.33%) (79.36%) (87.2%)| (87.2%)| (87.79%) (0.122)
tes JM1 79.93% | 77.52%| 77.52% | 76.85% | 76.85% | 81.66%| 0.200
rates. (81.48%) (79.13%) (80.51%) (80.52%) (81.74%) (0.182)
. . . . KC1 84.16% | 81.77%| 81.77%| 81.77% | 81.77% | 84.44%| 0.158
It is important to point out that our approach is (84.25%) (83.68%) (84.49%) (84.49%) (84.73%) (0.152)
designed as a plug-in to be combined with any prediction KC3 | 805% | /8% | /8% | 78% | 78% | 82% | 0.195
- - it 6 (82.5%)| (80.5%)| (82.5%)| (82.5%)| (84%) | (0.16)
model be it a probgblllsuc or non probabilistic classifier e 59359550 D058 S 6 S5 T 5335 T 0 506
or even any detection or prediction model (such as spam (99.4%)| (99.4%)| (99.4%)| (99.44%) (99.39%) (0.006)
filters, IDSs B], etc.). In particular, this approach can be ~MC2 | 62.99%| 57.48%| 57.48%| 57.48%| 57.48%| 64.56%| 0.370
e . . . (66.14%)) (66.14%j) (62.99%)) (62.99%)) (66.14%) (0.338)
adapted for the classification with reject optiar8] to W1 | 89.30%| 86.36%| 86.36% | 86.36% 56.36%] ©8.63%]| 0.106
make alternative predictions instead of just rejectingesom (90.539%) (90.53%) (92.05%) (92.05%) (90.53%)) (0.094)
items. Other future works will deal with this issue in PCL | 90.9% | 88.93%] 88.93%| 88.93%| 88.93% 91.17%] 0.09
) I ltiol |assifi (92.09%)) (92.09%)) (91.3%)| (91.3%)| (91.43%) (0.085)
regression problems, multiple classifier systems and-scz——og73%( 97.98%| 97.98%| 97.98% 97.98% | 98.67%] 0.012
consider this problem in real-time contexts. (98.86%) (98.67%) (98.99%) (98.99%) (98.99%) (0.010)
PC3 85.77% | 84.17%| 84.17% | 84.17%| 84.17%| 86.66% | 0.142
(86.13%)) (85.86%j) (87.82%j)) (87.82%j)) (87.55%)) (0.124)
PC4 89.56% | 89.7% 89.7% 89.7% 89.7% 88.56% | 0.104
; (89.84%j) (88.27%) (89.84%j)) (89.84%)) (88.92%) (0.110)
9Appendlx PC5 97.35% | 97.24% | 97.24% | 97.24%| 97.24%| 97.15%| 0.026
(97.38%)) (97.29%) (97.38%j)) (97.38%j)) (97.34%) (0.026)
9.1 Evaluation on binary classification
problems of datasets of Tak?e
References

In the following, we provide in Tabl@2 and Table23 the
results of evaluating thlB classifier and C4.5 decision
tree classifier on the MDP datasets of Tahle

Table 22: Results of the NB classifier evaluation on MDP datasets ofeTab

Datasét NB MCTC | MCPC | MPTCD| ME MMCC | Cost
CM1 | 82.26%| 83.72% ] 74.41%| 82.55% | 82.55%| 82.26%| 0.1774
(86.04%) (80.52%) (87.2%)| (87.2%)| (87.79%) (0.122)
JML | 81.41%| 74.02%]| 79.65%| 74.02%| 74.02% | 73.85%| 0.186
(81.59%) (81.21%) (81.5%)| (81.5%)| (81.13%) (0.188)
KC1 | 82.44%| 81.77%| 77.81%| BL.77%] 81.77%| 82.44%] 0.176
(82.9194) (81.77%) (83.68%) (83.68%) (84.3%)| (0.157)
KC3 | 785% | 77% 67% % 1% 79% 0215
(82%) | (75.5%)| (83%) | (83%) | (84%) | (0.16)
MCI | 94.11%| 98.85%| 92.13%| 98.7% | 98.7% | 98.84%] 0.059
(98.87%) (93.16%) (98.92%) (98.92%) (98.98%) (0.010)
MC2 | 73.22%| 66.9206| 54.33%| 66.92%| 66.92%| 66.92%] 0.268
(74.44%) (70.68%)) (74.01%) (74.01%) (73.229%) (0.268)
MWI | 81.81%)| 83.33%| 79.16%| 86.36%| 86.36%| 87.87%] 0.182
(87.129%) (78.4%)| (87.12%) (87.12%) (89.01%) (0.109)
PC1 | 88.27%)| 88.4% | 87.48%| 89.4506| 89.45% | 89.72%] 0.117
(89.3294) (87.08%) (91.17%) (91.17%) (91.43%) (0.085)
PCZ | 95.45%| 98.1% | 86.68%| 98.23% | 98.23%| 98.54%] 0.045
(98.67%) (82.96%) (98.8%)| (98.8%)| (98.8%)| (0.012)
PC3 | 35.82%] 76% 64.71%| 83.28% | 83.28%| 83.55% | 0.642
(77.24%) (54.04%)) (82.75%) (82.75%) (85.33%) (0.146)
PC4 | 86.91%)] 85.99%| 84.7% | 85.99% | 85.09%| 86.7% | 0.131
(86.34%) (84.84%)) (87.77%) (87.77%) (87.84%) (0.122)
PC5 | 96.3% | 96.48%| 93.79%| 96.64% | 96.64%| 96.44% | 0.037
(96.7694) (95.18%) (97.01%) (97.01%) (96.96%) (0.030)

9.2 Conclusion

The conclusions that can be drawn from the results of
Table 22 and Table23 using a probabilistic and a non
probabilistic classifiers on the MDP datasets confirm the
main trends characterizing the evaluations of Taldles
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