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Abstract: In this paper, we generalized the notions of Pawlak’s rouglireory to a topological model where the set approximation
are defined using the topological notigropen sets. Also, we study some of their basic propertiesaofldk’s rough set model.
Moreover, several important measures, related to the nedeimsuch as accuracy measure and quality of approximateprasented.

Keywords: Rough set, lower and upper approximations, Pawlak’s roejmsdel,x-open sets, accuracy measure.

1 Introduction data in complete information systems. The
indiscernibility relation is reflexive, symmetric and
transitive. The set of all indiscernible objects is called a
lementary set or equivalent class. Any set of objects,
eing an union of some elementary sets is referred to as
risp set, otherwise is called rough set. A rough set can be

Rough set theory, introduced by Pawlal],[is a
mathematical approach to deal with vagueness an
uncertainty of imprecise data. In this approach, vaguenes
is expressed by a boundary region of a set. Pawlak roug N . .
set theory is an extension of the set theory for study andi€Scribed by a pair of crisp sets, called the lower and
analyzes various types of data—p]. There are many UPPErapproximations. _
applications of rough set theory especially in artificial ~ Rough set theory is a recent approach for reasoning
intelligence fields such as machine learning, pattern@bout data. This theory depends basically on certain
recognition, decision analysis, cognitive sciences,topological structure and has achieved great success in
intelligent decision making and process contré+]3. ~ many fields of real life applications. The concept of
Some of rough set applications are to approximate arfopological rough set by Wiweget{] is one of the most
arbitrary an universe by two definable subsets calledmportant topological generalizations of rough sets.
lower and upper approximations, and to reduce theAbu-Donia and Salamalp] discussed generalization of
number of the set of attributes in data sets. Suppose, wEawlak’s rough approximation spaces by usinfj-open
are given an information syste8= (U, A), whereU is a sets. M.A. Abd Allah and A.S. Nawad f] n'groduced the
nonempty, finite set of objects and is called the universeconcept of*-open sets. H.M. Abu-Donia, M.A. Abd
andA is a nonempty, finite set of attributes. Setwill ~ Allah and A.S. Nawar 17] generalized the notions of
contain two disjoint sets of attributes, called condition Pawlak’s rough set theory to a topological model where
and decision attributes and the system is denoteg by the set approximations are defined using the topological
(U, C, D) whereC is called condition attribute anB is ~ notion ¢/“-open sets. O. Tantawy, M.A. Abd Allah and
called decision attribute. With every attributec A we  A.S. Nawar L8] introduced the concept of-open sets.
associate a s&f, of its values, called the domain af In rough set theory, the accuracy measure is an
Classical rough set philosophy is based on animportant numerical characterization that quantifies the
assumption that every object in the universe of discoursémprecision of a rough set caused by its boundary region.
is associated with some information. Objects In our study, we reduce the boundary region of assét
characterized by the same information are indiscernibld®awlak’s approximation space kyboundary ofA. Also,
with the available information about them. The we extend exterior oA which contains the elements that
indiscernibility relation generated in this way is the don’tbelong toA by x-exterior ofA.
mathematical basis for the rough set theory. Classical In this paper, we investigate some important and basic
rough set theory has used successfully in the analysis asues of generalized rough sets inducedybgpen sets
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and topological preliminaries. The rest of the paper is Ifthe lower and upperapproximation are identical (i.e.,
organized as follows; Section 2 shows the basic conceptR(A) = R(A)), then setA is definable, otherwise, sétis

of x-open sets and rough set theory preliminaries. Theundefinable inX. There are four types of undefinable sets
main aim ofx-open generalizations is given in Section 3. in X:

Conclusions are presented in Section 4. (1) If R(A) # @ andR(A) £ X, thenA is called roughly
R-definable,

(2) If R(A) = p andR(A) # X, thenAis called internally
R-undefinable,

We shall recall some concepts about some near open setf3) If R(A) # @ andR(A) = X, thenAiis called externally

2 Preliminaries

which are essential for our present study. R-undefinable,
Definition 2.1 A subsetA of a topological spaceX( 1) is (4) If R(A) = @ andR(A) = X, thenAis called totally
called semiopen [L9] if A C cl(int(A)) and semi-closed if R-undefinable.

int(cl(A)) € A. The class of semi-open subsets ¥ft) is  \we denote the set of all rou i
. ghlr-definable (resp.
denoted bySO(X). For a subse of a topological space  jytemally R-undefinable, externallyR-undefinable and

(X, 1), the semiclosure ofA, denoted byscl(A) is the g )
intersection of all semtlosed subsets of containingA. ?G%"{X)Razgﬁafg&t;lf) sets bRD(X) (resp. 1UD(X),

Dually, the seminterior of A, denoted bysint(A) is the
union of all semiopen subsets of contained iPA.

Definition 2.2 A subsetA of a topological space{ T)is 3 Generalizations ofx-open sets toy-rough
calledx-open [Lg if AD U, U € SGC(X) = sint(A) D U. sets

The class of(-open subsets oK 1) is denoted by O(X).

Definition 2.3[18] Let A be a subset of topological space \ye introduce the following definitions:

(X, 7), then we have: Definition 3.1 Let X be a finite non-empty universe. The

(i) The union of allx-open sets contained ivis called  pair (X, Reri) is called asemi-approximation space where

the x-interior of A and is denoted byint(A). Rsri is a general binary relation used to get a subbase for
(i) The intersection of ally-closed sets containingis & topologyr onX.
called thex-closure ofA and is denoted bycl(A). Definition 3.2 Let (X, Rsemi) be a semi-approximation

Motivation for rough set theory has come from the need>Pace thersemi-lower (respse.mi—up.per) approximation
af any non-empty subsétof X is defined as:

to represent subsets of an universe in terms of equivalenc
classes of a partition of that universe. The partition (i) Ry (A) = U{G € SO(X) : G C A},

characterizes a topological space, called approximationgiy R..«(A) = ({F € C(X):F D A

spaceK = (X, R), whereX is a set called the universe and (1) Reemi (A) = N{ () F A}

Ris an equivalence relatiod]. The equivalence classes Definition 3.3 Let (X, Rem) be a semi-approximation

of R are also known as the granules, atoms, elementargpace andA C X. Then there are memberships
sets or blocks. We will useR, C X to denote the ¢, €, €. and€eni, Say, strong, weaksemi-strong and
equivalence class containixge X. In the approximation  semi-weak memberships respectively which are defined
space K = (X, R), we consider two operators as follows:

RA = {x € X : Re n A # ¢} and .

R(A) = {x € X : R, C A}, called the upper approximation (1) X Aiff x€R(A),

and the lower approximation @& C X respectively. Also  (2) X € Aiff x € R(A),

let POSR(A) = R(A) denote the positive region o4, (3) X Egari Alff X € Rerii (A),
NEGRr(A) = X — R(A) denote the negative region &f = A 5
and BNr(A) = R(A) — R(A) denote the borderline (4) X Esemi Alff X € Reemi(A).
(boundary) region oA. Definition 3.4 Let (X, Remi) be a semi-approximation

The degree of completeness can also be characterizeghace andA C X. The semi-accuracy measure oh
by the accuracy measure, in whidl|represents the defined as follows:

cardinality of a subseA C X as follows:

IR(A)| NReeri (A) B (A)] where A+ @.

Nr(A) = ﬁ, whereA # @. |Reemi (A) |
o Definition 3.5 Let (X, Rem) be a semi-approximation
The accuracy measurg(A) is tried to express the degree gpace, the subsatC X is called:
of completeness of knowledge. ObviouslgOr(A) < 1, T .
for everyRandA C X; if nr(A) =1, Ais crisp with respect ~ (1)_ Roughly Reni-definable, if Reni(A) # ¢ and
to R; if Nr(A) < 1, Ais rough with respect t&. Reemi (A) # X,
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(2)_Internally Reemi-undefinable, if Ry (A) = @ and (1) The internal edge o, EdgA) = A—R(A),

e (A) # X, _ . (2) Thesemi-internal edge oA, SEdgA) = A— Rei (A),
(3)ﬁExt<(aLr)1aill3>/(Rm—undefmable, I"Reeni () 7 ¢ and (3) Thex-internal edge oA, XEdgA) = A— R, (A),
semi - 9 _ —
(4)_Totally Remi-undefinable, if Reyi(A) = @ and  (4) The external edge @f, EdJA) = R(A) — A,
Reemi (A) = X. (5) Thesemi-external edge oA, SEAg(A) = Reemi (A) — A,

We denote the set of all roughBeeri-definable (resp.  (6) Thex-external edge oA, xEdg(A) = Ry(A) — A,

internally Remi-undefinable, externalliReni-undefinable  (7) The boundary oA, b(A) = R(A) — R(A),
and totally Remi-undefinable) sets bySRD(X) (resp. o

SUD(X), SEUD(X) andSTUD(X)). (8) Thesemi-boundary oA, SB(A) = Reemi (A) — R (A),
In this section, we generalize and investigate the (9) Thex-boundary ofA, xb(A) = Rx(A) Ry (A),

concept ofsemi-approximation space tp-approximation  (10) The exterior o\, ext(A) = X — R(A),

space._AIs_o, we introduce the concepts pflower (11) Thesemi-exterior ofA, Sext(A) = X — Reni (A),

approximation andy-upper approximation and study , —_

their properties. (12) Thex-exterior ofA, xext(A) = X — Ry (A),

Definition 3.6 Let X be a finite non-empty universe. The (13)R(A) — R (A),
pair (X,Ry) is called a x-approximation space wheRy,  (14)R(A) — Rx (A),
is a general binary relation used to get a subbase for ?15)R

topology T on X which generates the clag®O(X) of all
X-open sets. (16)R( ) Ry (A),

Example 3.1 Let X = {a,b,c,d} be an universe and (17)Remi(A) —R(A),
R = {(ac).(ad),(b.c),(b.d),(c,0).(c.d),(d.c),(d,d)}  (18)Reem(A)— R, (A),
is a binary relation defined oXithus #=bR=cR=dR= 19)Reri (A) — Ro (A
{c, d}. Then the topology associated with this relation |s( ) Reari ) Ry (A);

={X, ¢.{c,d}} and xOX)={X.¢{c}.{d}.{c.d}.{acd, (20)Ry(A)—
{b,c,d}}. So(X,Ry) is a x-approximation space. (21) Ry ( )_ (A)
Definition 3.7 Let (X,Ry) be ax-approximation space (22)R_ .(A)— R(A),
then x-lower (resp x-upper) approximation of any (23)R, (A) — R(A)
non-empty subsek of X is defined as: =X ’
(24) Ry (A) — Reemi (A).-

() Ry(A) = U{G € XO(X) : GC A}, Remark 3.1 The study of x-approximation space is a

(i) Ry(A) =n{F € XC(X) : F D A}. generalization for the study of approximation spaces
(Graph 3.1).

Theorem 3.1For any topological spaceX( 1) generated The elements of the regionR, (A) — R(A)] will be

by a binary relatiorR on X, we have R(A) C Ry (A) C defined well inA, while those elements were undefinable

R(A) CACRy(A) € Remi(A) CR(A). in Pawlak’s approximation spaces. Also, the elements of
the regionR(A) — Ry (A)] do not belong ta\, while these

Proof elements were not well defined in Pawlak’s

approximation spaces.
RA)=U{GeT:GCA CU{Ge0(X):GCA}

=Raeni(A) CU{G € XO(X) : GC A} =Ry (A) CA,
i.e,R(A) C Remi(A) C R, (A) C A Also,
RA) =N{Fet®:FDAIDN{FeX(X):F DA}

=Reemi (A) D N{F € XC(X) : F DA} =Ry (A) D A,
i.e,R(A) D Reemi (A) 2 Ry (A) D A Consequently

R(A) € Rni (A) € Ry (A) € AC Ry (A) € Reemi (A) Fig. 1: Graph 3.1

CRA).1R

> = =

In our study, we reduce the boundary regionfoin
Definition 3.8 Let (X,Ry) be a x-approximation space Pawlak’s approximation space kyboundary ofA. Also,
andA C X. According to the relatiomnt(A) C sint(A) C we extend exterior oA which contains the elements that
Xint(A) C A C xcl(A) C scl(A) C cl(A), the universex  don’tbelong toA by x-exterior ofA.
can be divided into 24 regions with respect to #nyg X Proposition 3.1 For any x-approximation spaceX,Ry)
as follows: the following hold for anyA C X:
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(1) b(A) = Edg/A) UEd(A),
(2) Xb(A) = XEdgA) U XEdg(A). NRy (A) = EX EAi‘ where A# @.
Proof. (2) It follows from
_ _ Example 3.3 Let X = {a,b,c,d,e} be an universe and
Xb(A) =Ry (A) = Ry (A) = (Ry(A) = A) U (A= Ry (A)) R = {(aa),(b,0),(b.d),(c.b),(c,c).(cd),(ce).(db),
(d.c),(d.d),(d,e). (eb),(e.c).(ed),(e.e)) is a binary

= XEdgA) U xEdgA).H

Proposition 3.2 For any x-approximation spacex,Ry)
the following hold for anyA C X:

(1) R(A) — Ry(A) = EdgA) U XEdg(A),
(2)Ry(A) —R(A) = XEdgA) UEdgA).
Proof.
(1) R(A) =Ry (A) = (R(A) —A)U(A—Ry(A))
=EdgA) U XEdgA).
(2) Ry(A) —R(A) = (Ry(A) = A)U(A—R(A))

= xEdg(A) UEdgA).®
Proposition 3.3 For any x-approximation spacex,Ry)
the following hold for anyA C X:

(1) EdgA) = XEdgA) U (R, (A) —R(A)),
(2) Edg(A) = xEdg(A) U (R(A) — Ry (A)).
Proof. Obviousll

Definition 3.9Let (X, Ry ) be ax-approximation space and
A C X. Then there are membershipg and€y, say, x-
strong andy-weak memberships respectively which are
defined as follows:

(1) x g, Aiff x€ Ry(A),
(2) x Ex Aiff x € Ry(A).
Remark 3.2 According to Definition 3.9x-lower andy-

upper approximations of a subs&tC X can be written
as:

(DR (A) =
(2)Ry(A) =

Remark 3.3 Let (X,Ry) be ax-approximation space and
A C X. Then we have:

(1)Xe A= X Egmi i A= XEy A
(2)xeXA:>xesem.A:>xeA.

{xeA:rxg, A}
{xe A:x€y A}

The converse of Remark 3.3 may not be true in general

as seen in the following example.

Example 3.2In Example 3.1. Let = {c}, we havec €, A
butc ¢ A Let A={b, c, d, we haveb €, Abut
b¢ A Let A={b}, we havea € Abuta gésem. A LetA
={a, ¢}, we haved e Abutd ¢, A

Definition 3.10 Let (X,Ry) be ax-approximation space

and A C X. The x-accuracy measure ok defined as
follows:

relation defined oiX thus & = {a} bR={c,d} and R=
dR=eR={b, c, d, g. Then the topology associated with
this relation ist = {X, ¢,{a},{c,d},{a,c,d,{b,c,d, &} and
X0(X) = { X, ofa}{c}{d} {ac {ad {cd{acd,
{b,c,d},{c,d,&,{a,b,c,d,{a,c,d,¢,{b,c,d,g}. So(X,Ry)

is a x-approximation space. In this example, we can
deduce the following table showing the degree of
accuracy measurengr(A), semi-accuracy measure
NRen (A) @nd x-accuracy measurgr, (A) for some
subsets oK.

Table 3.1Comparison between some type of accuracy measures
andx-accuracy measure.

ACX | NRA) | NRew (A) | NR(A)
&b 13 12 172
{a, ¢} 1/5 1/5 1/2
b, o 0 0 173
b, dr 0 0 173
ca 72 172 172
{d e 0 0 173
{fab,g | 155 1/5 172
{ab g | 13 173 173
bcd | 12 3/4 3/4
{c.dg | 12 3/4 3/4
fa,b,c.d | 35 a5 a5
{abde | 15 3 12

We see from Table 3.1 that the degree of exactness of
the subsef = {b, ¢, d} by using accuracy measure equal
to 50%, by usingsemi-accuracy measure equal to 75%.
Also, the subse = {a, b, ¢ by usingsemi-accuracy
measure equal to 20% and by usigeaccuracy measure
equal to 50%. Consequentliraccuracy measure is better
than accuracy anskmi-accuracy measures in this case.

We investigate x-rough equality and x-rough
inclusion based on rough equality and rough inclusion
which introduced by Pawlak and Novotny &, B].

Definition 3.11 Let (X,Ry) be ax-approximation space
andA, B C X. Then we say thah andB are:

(i) x-roughly bottom equaltA~yB) iff Ry (A) = BX(B),
(i) x-roughly top equalsA=B) iff R, (A) = Ry(B),

(iiiy x-roughly equal§A ~ B) iff (A~xB) and(A=yB).

Example 3.4In Example 3.2, the subsefs} and{a, b}
are x-roughly bottom equal, bufa,b,d,¢ and{a,c,d,e
are x-roughly top equal.

One can easily show thaty is an equivalence relation
on P(X) (Power set oK), hence the paifP(X),~y) is an
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approximation space. The relatiesy, is called ax-rough
equality of they-approximation spacex, Ry ).

Definition 3.12 Let (X,Ry) be ax-approximation space.
We define the equivalence relati&y on the seP(X) by:

(A,B) e Ey if x—int(A) = x—int(B) andx —cl(A) = x—cl(B)

The equivalence relatioBy is precisely the same as
~yx, whereR, (A) = x—int(A) andRy (A) = xcl(A)
Remark 3.4 For any subsef of X, the equivalence class
of the relation £y or Ey) containingA is denoted byA|~,
or [AJg, and is defined as follows:

[Al~, ={DCX:R,(D)=R

Ry (A) andRy(D) = Ry(A)}.

Definition 3.13 Let (X,Ry) be ax-approximation space
andA, B C X. Then we say that:

(i) A is x-roughly bottom included inB (Ag B)
iff Ry(A) CRy(B), g

(i) A is_x—rougrlly top included iB (ACyB)
iff Ry(A) S Ry(B),

(iii) Ais x-roughlyincluded irB (A§ B) iff (AC B)
and(ACyB). g o

Example 3.5In Example 3.2{a, c} is x-roughly bottom
included in{a, c, d. Also {a, b, c, & is x-roughly top
included in{a, c, d, @.
In the following definition we introduced a new
concept ofy-rough set.
Definition 3.14 For anyx-approximation spacex,Ry), a
subset of X is called:
(1) Ry—definable -exact) ifRy (A) = R,
Xb(A) =,
(2) X-rough ifRy (A) # Ry (A) or Xb(A) # ¢.
Example 3.6Let (X, Ry) be ax-approximation space as in
Example 3.2. The s€ib,c,d,g is x-exact while{a,b,d,é
is x-rough.
Definition 3.15Let (X,Ry) be ax-approximation space,
the subsef C X is called:
(1) RoughlyRy-definable, ifR, (A) # @ andRy (A) # X,
(2) InternallyRy-undefinable, iR, (A) = ¢ and
Ry (A) # X,
(3) ExternallyRy-undefinable, iR, (A) # ¢ and
ﬁX (A) =X,
(4) Totally Ry-undefinable, iR, (A) = @ andRy (A) = X.
We denote the set of all roughi,-definable (resp.
internally Ry-undefinable, externalliR,-undefinable and
totally Ry-undefinable) sets byRD(X) (resp.xIUD(X),
XEUD(X) andx TUD(X)).
Remark 3.5For anyx-approximation spacex,Ry). The
following are hold:

(A) or

(1) XRD(X) 2 SRD(X) D RD(X),

(2) XIUD(X) C SIUD(X) C IUD(X),
(3) XEUD(X) C SEUD(X) C EUD(X),
(4) XTUD(X) € STUD(X) C TUD(X).

Lemma 3.1For anyx-approximation spaceX,Ry), and
for all x,y € X, the conditiorx € Ry ({y}) andy € Ry ({x})
impliesRy ({x}) = Ry({y}).

Proof. Sincexcl({y}) is ax-closed set containingwhile
xcl({x}) is the smallesty-closed set containing, thus
xcl({x}) € xd({y}). HenceRy({x}) € Ry({y}). The
opposite inclusion follows by symmetrycl({y}) C
xcl({x}). HenceRy ({y}) € Ry({x}), which complete the
proof.

Lemma 3.2 Let (X,Ry) be a x-approximation space,
which satisfied that, every x-open subsetA of X is
X-closed, theny € Ry ({x}) implies x € Ry ({y})for all
X,y € X.

Proof. If x ¢ Ry({y}), then there exists g-open setG
containingx such that G N {y} = ¢ which implies that
{y} € (X \G), but X \G) is a x-closed set and also is a
X-open set does not containimgthus X \G) N {x} = .
Hencey ¢ Ry ({x}).l

Proposition 3.4Let (X,Ry) be ax-approximation space,
and everyx-open subsef of X is x-closed. Then the
family of sets{Ry ({x}) : x € A} is a partition of the seX.

Proof. If x,y,z € A and z € Ry({x}) N Ry({y}), then
z € Ry({x})) and z € Ry({y}). Thus by Lemma 3.2,
x € Ry({z}) andy € Ry ({z}) and by Lemma 3.1, we have
Ry({x}) = Ry({z}) and Ry({y}) = Rx({z}). Therefore
Ry({x}) = Ry({y})) = Ry({z}). Hence either
Ry({x}) = Ry({y}) or Ry({x}) NRy({y}) = ¢. The
proof is completel

The following proposition investigates some properties
of x-approximation spaces.

Proposition 3.5Let (X,Ry) be ax-approximation space
andA, B C X. Then we have:

(i) Ry (A) CACRy(A),
(i) Ry (@) =Ry (@) = @, R, (X) =Ry (X) =X,
CRy(B).

(iii) If AC Bthen R, (A) C R, (B) andRy(A)
Proof.
() Let x € Ry(A) which means that

x € U{G € xO(X),G C A}. Then there exists
Gop € xO(X) such thak € Gy C A. Thusx € A. Hence
Ry(A) C A Also, let x € A and by definition of
Ry(A) = N{F € xC(X),A C F}, thenx € F for all
F € XC(X). HenceA C Ry (A).

(ii) Follows directly.

(iii) Let x € Ry (A), by definition of x-lower approxima-
tion of A, we havexe U {G e xO(X), GC A} but
A C B, thusG C Bandx € G, thenx € R (B). Also, let
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X ¢ Ry(B) this means that ¢ N{F € xC(X),BC F}
then, there exists € xC(X), B C F andx ¢ F which
means that, there exisise xC(X), AC B C F and
x ¢ F which impliesx ¢ N{F € xC(X),AC F}, thus
x ¢ Ry(A). ThereforeRy (A) C Ry (B).

Proposition 3.6Let (X,Ry) be ax-approximation space
andA, B C X. Then

() Ry(X\A) = X\Ry(A),

(i)) Ry (X\A) = X\Ry(A),
(i) Ry (Ry(A)) =Ry (A),
(iv) Ry (Rx(A)) =Ry (A),

(V) Ry (Ry(A)) SRy (Ry(A)),
(Vi) Ry (Rx(A)) € Ry(Ry(A))-
Proof.

(i) Let x € Ry (X\A) which is equivalent to
x € U{G € xO(X),G C X\A}. So there exists
Go € xO(X) such thatx € Go € X\A. Then there
existsG§ such thatA C Gj andx ¢ G§, Gg € xC(X).
Thus, x ¢ Ry(A). So x € X\Ry(A). Therefore
Ry (X\A) = X\Ry(A).
(i) Similar to (i).
(iii) Since R, (A) = U{G € xO(X),G C A}. This implies
thatRy (Ry(A)) = U{G € XxO(X),G C Ry (A) C A}
=U{G € XO(X),G C A} =Ry (A).
() Ry(Ry(A)) = Ry(X\Ry(X\A)) = X\Ry (Ry(X\A)).
From (i), (ii) and (iii), we get
Ry (Ry (A)) = X\Ry (X\A) = X\ (X\(Ry(A)))
=Ry(A).

(v) Since R,(A) C Ry(R,(A)) and by (i) we have
Ry(Ry(A)) =Ry (A), thenRy (Ry (A)) € Ry (Ry (A)).
(iv) Since R, (Ry(A)) € Ry(A) and by (iv), we have
Ry (Ry(A)) = Ry(A), thenR, (Ry(A)) C Ry (Ry (A)).

o

Proposition 3.7 Let (X,Ry) be ax-approximation space
andA, B C X. Then

(i) Ry(AUB) D R (
(i) Ry(AUB) =Ry (
(i) R, (ANB) = R, (A)
(iv) Ry(ANB (

[s9)
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— == =
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= 22X =

2
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93]

- = L

>

Proof.

(i) Since we haveA C AUB and B C AUB. Then
R/ (A) < BX(AU B) andR, (B) C Ry (AUB) by (iii) in
Proposition 3.5, then

R((AUB) D R, (A)UR(B).

(ii), (iii) and (iv) Similar to (i). ®

Theorem 3.3 Let (X, Ry) be ax-approximation space and
A, B C X. Then the following are hold.

(i) Ry (cl(A)UB) = cl(A) URy(B),
(ii) R, (int(A) NB) = int(A) R, (B).

Proof.

(i) By Proposition 3.5(i) and Proposition 3.7(ii), we have
cl(A) C Ry(cl(A)). Then clA) U Ry(B) C
Ry (cl(A)) URy(B) C Ry(cl(A) UB). On the other
hand, since ¢A) UB C cl(A) URy(B) and the union
of a x-open set and a closed set xsclosed, then
Ry (cl(A) UB) C Ry(cl(A)) URy(B) = cl(A) URy(B).
ThereforeRy (cl(A) UB) = cl(A) URy(B).

(inSince the intersection of an open sett(A) and a
Xx-open setR,(B) is x-open, int(A) N R, (B) =
R, (int(A) N Ry (B)) C Ry(int(A) N B). On the other
hand, by using  Proposition 3.7 (i),
Ry(int(A) N B) <C Ry(int(A) N Ry(B)
int(A) N Ry(B). Therefore, R,(int(A) N B)
int(A)NR,(B).1

N

Lemma 3.3Let (X,Ry) be ax-approximation space. Then
(Rx(A))® =R (A°) forall A C X,

Lemma 3.4Let (X,Ry) be ax-approximation space and
A, BC X. If Ais open, thelAN Ry (B) C Ry (ANB).
Proposition 3.8Let (X,Ry) be ax-approximation space
andA, B C X. Then

(DRy(A-B)C

C Ry(A)
(ARy(A-B)2

Ry(B),
(A) —Ry(B).

BX LA
Ry(A) —Ry(B)
Proof.
(1) SinceA— B = ANBS, then
Ry(A—B) = Ry(ANB®) = R (A) NR,(E°).
Thus by Lemma 3.3, we have
Ry(A—B) =Ry (A)N(Rx(B))* = Ry(A) —Ry(B)
- Bx(A) - Bx(B)'

ThereforeR, (A—B)C Ry (A) — BX(B).

(2) SinceRy(A) — Ry (B) = Ry(A) N (Ry(B))C, then by
Lemma 3.3, we haveRy(A) — Ry(B) = Ry(A)
NR,(B¢). Hence by Lemma 3.4, we have
Ry (A) — Ry(B) = Ry(A) NR,(B°) C Ry(ANR, (EY))

- =Ry (AN (Ry(B))®) = Ry(A—Ry(B))
thus,Ry(A—B) D Ry(A) — Ry(B).H

Definition 3.16 Let (X,Ry) be ax- approximation space,
then a subseA of X is said to bex-dense (respx-Co-
dense) ifRy (A) = X (respRy (A) = @).

Definition 3.17 Let (X,Ry) be ax-approximation space
andA C X. ThenAis called simply residual (resp. simply
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nowhere dense) if Ry(A®) =
(respif Ry(Ry(A)) = ¢).
Proposition 3.9Let (X,Ry) be ax-approximation space

X o R

and A C X. If A is simply nowhere dense, then
AC Ry (Ry(A))".
Proof. Since A is simply nowhere dense, then

Ry(Ry(A)) =
Then we have (R, (Ry(A)))° =
AC Ry (Ry(A))°.m

Proposition 3.10Let (X, Ry) be ax-approximation space

andA C X. Then the set&\ N Ry (A%) andA°N Ry (A) are
simply residual.

Proof. Since
Ry (ANRy(A%))

X D ATherefore,

= BX (A) N BX (ﬁ)( (AC))
=Ry (A) NRy(A%) =Ry (A) N (R (A))° = .

ThusR, (AN Ry (A°%)) = pand hencANRy (A®) is simply
reS|duaI similarly,

BX (AC N RX (A)) B ( C) N BX (ﬁX (A))
= (Ry(A)*NRy (A) = o.
ThusR, (A°NRy(A)) = @ and hencé°NRy(A) is simply

residual ®l

Proposition 3.11Let (X,Ry) be ax-approximation space

andA C X. Then(ANRy(A%)) U (A°NRy(A)) = xb(A).

Proof. Since(ANRy (A%)) U (A°NRy(A))

= [((ANRy(A%) UAS) N(ANRy (A%) URy(A)]

= [(AUA) N (A UR (A%)] N [(AURy (A)) N (Ry (A°)

U Ry(A))] = [XNRy (A)] N [Ry (A) N X] = Ry (A°) Ry (A)

=Ry (A)N(Ry (A)f =Ry (A) =Ry (A). Then(ANR(A°))
U(ASNRy(A)) = Ry(A) — R (A) = Xb(A).m

Proposition 3.12Let (X,Ry) be ax-approximation space

andA C X. Then the boundary of simply open set is simply

nowhere dense.
Proof. Let A be a simply open set. Then

A=Ry(A) =R, (A). Hence
Ry (Ry (Xb(A))) = Ry[ Ry(Rx(A) NRy(A?))]
=Ry (Ry(A) NRy(A%))
C Ry (Ry(A)) NRy(Ry (A%))

=Ry (A) Ry (A%) = .

Let A be a simply open set. Theh = Ry(A) = R, (A).
Hence

Ry (Ry(xb(A))) =

ThusRy (FX(Xb(A))) = @. Then the boundary of simply
open set is simply nowhere deniik.

@. By taken the complement for both sides.

Proposition 3.13Let (X,Ry) be ax-approximation space
and A C X. ThenA is simply open set if and only if
Xb(A) = o.
Proof. Let A be a simply open set. Theh = Ry (A) =
Ry (A). Thereforexb(A) = ¢. Conversely, ifYb(A) = ¢.
ThereforeA = Ry (A) = R, (A). ThusA is x-exact set and
henceA is simply open sel

We introduce the following example to show the
importance ofy-open sets.

Example 3.7 Let X = {xg,%2,X3,X4,Xs5} be five amino
acids (AAs). The (AAs) are described in terms of five
attributes:

a; = Relative mutability,a, = Partition energyas =
Polarity,as = A periodic indices for beta-proteins, aagl=
A parameter of charge transfer capability (&0]). Table
3.2 shows all quantitative attributes of five AAs.

Table 3.2Quantitative attributes of five amino acids.

a1 Y] ag 4 | 3
xp | 100 | 0.1 0 111 0
Xo | 20 | -1.42 | 1.48| 1.05| O
x3 | 106 | 0.78 | 49.7| 1.41| 1
X4 | 102 083 499| 14 | 1
x5 | 41 | -2.12 1 035| 06 | O

Table 3.3 Right neighborhood of five reflexive relations.
K %Ry xR X«Rs XcRa XRs

X1 | {xa,%3,%a) {X1, %3, %4} X {X1,%2,X3, X4} X

X2 X {X1, %2, X3, X4} X {X1, X2, X3, X4 } X

X3 X1,X3, X4 {x3,%4 X3, X4 X3, X4 X3, X4}

X4 X1,X3,%4 {x3,%4 X3, %4 X3, %4 X3, %}

X5 | {X1,X3,Xa,Xs5} X X X X

We consider five reflexive relations of defined as
follow: R¢ = {(X,xj) € X x X :%(a) — Xj(a) < %,
i,j,k=1,2,--- 5} Where ox represents the standard
deviation of the quantitative attributeg, k=1, 2, 3, 4, 5.
The right neighborhoods for all elements
X = {x1,%2,X3,X4, X5} With respect to the relations
R k=1, 2,3, 4,5 are shown in Table 3.3.

We find the intersection of all right neighborhoods of

of

all elements k = 1,2,3.45 as the following:
xR = I’jl(Xle) = {X1,%3,%a},

XR= 1 (6R) = {X1,%, %3, %4},

xR = 1 (R = (%},

XiR= r?<X4Rk>={X3,x4},and

xsR= ﬂ (x5Rk) {X1,X3,X4,X5}.

Con3|der{x1R xR, x3R, xR, xsR} as a base for a
topologyt on X, then we have
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T={X, @, {X3,Xa}, {X1,X3,%a}, {X1,X2,%3,Xa }, [5] B. Walczak, D.L. Massart, Tutorial Rough sets theory,
{X1,X3,%X4,X%s5}}, and xO(X) = { X, @, {Xa}, {Xa}, Chemometr. Intell. Lab. Syst. 47 (1999) 1-16.
{Xa,Xa}, {X1,X3,Xa},{X2,X3,Xa }, {Xa,Xa, X5}, {X1,%2,X3,X4}, [6]S. Calegari, D. Ciucci, Granular computing applied to
{X1,X3,X4, X5}, {X2,X3,X4,X5} }. ontologies, Int. J. Approx. Reason. 51 (2010) 391-409.

For any concepA C X (collection of Amino Acid),  [71K.Y. Huang, Ting-Hua Chang, Ting-Cheng Chang,
this concept is determined kiyt;(A) and cl;(A) which Determination of the threshold valy&of variable precision

defines its boundary. The accuracy increases by the rough set by fuzzy algorithms, Int. J. Approx. Reason. 52 (7)
decreases of the boundary region. Clearly the accuracY (2011) 1056-1072.
measure by using the suggested clasg-apen sets in 8] J.J. Alpigini, J.F. Peters, A. Skowron and N. Zhong, Roug

. : set elements, Rough sets and Current trends in compuring,
g:gf;ﬂ;%{;gta than the accuracy measure by using any 51 Int. conf. Malvern, PA, USA, Proc. Springer (2002) 12-

16.
[9] J. Kelley, General Topology, Van Nostrand Company, 1955
: [10] J.J. Li, Topological Methods on the Theory of Covering
4 Conclusion Generalized Rough Sets Pattern Recognition and Atrtificial

Intelligence 17 (1) (2004) 7-10.

In this paper, we used the class gqfopen sets to [11]A.S. Salama, Topological solution of missing attribut
introduce a new type of approximations named values problem inincomplete information tables, Informi. S
X-approximation space. Also, by usingapproximation 180 (2010) 631-639.
we can obtain 24 dissimilar granules of the universe of[12] Y.Y. Yao, Three-way decisions with probabilistic rdugets,
discourse. The class gf-open sets used in our approach  Inform. Sci. 180 (3) (2010) 341-353.
is the largest granulation based @ami-open sets in [13] Y.Y. Yao, Generalized rough set models, Rough Sets in
topological spaces. This made the accuracy measures is Knowledge Discovery, physica-verlag, Hidelberg, 1998, pp
higher than the use of any type of near open sets such as, 286-318. _
semi-open sets. Some important properties of the classicall4] A- Wiweger, On topological rough sets, Bull. Pol. Acad.
Pawlak’s rough sets are generalized. Also, we defined th? Math. 37 (1989) 89-93. o
concept of rough membership function usipgpen sets. 15] H.M. Abu-anla,_A.S. Salama, Ge_nerallzatlon of Pavidak
It is a generalization of classical rough membership °U9h approximation spaces by usid§-open sets, Int. J.

. . Approx. Reason., 53 (2012) 1094-1105.
function of Pawlak rough sets. The generalized rough[ls] MA. Abd Allah and A S. Nawar,y’-closed sets in

membershlp function can be use.d to analyze .V\./hmh topological spaces, "Wulfenia’ Journal Vol. 21, No. 9 (2D14
decision should be made according to a conditional aq9;_401

attribute in decision information system. inglL7IF-M. Abu-Donia, M.A. Abd Allah and AS. Nawar,
The difference between our approach and the original New generalization of rough set approximations and its

approach is the use of the classes resulted from the sppjications , European Journal of Scientific Research, 130

general relation without any conditions as a sub-base fora (2015), 360-375.

general topological structure which has rich results[18] O. Tantawy, M.A. Abd Allah and A.S. Naway-closed sets

compared with the quasi discrete topology of Pawlak in in topological spaces, submitted.

which every open sets is closed and is limited in applying[19] N.Levine “Semi-open sets and semi-continuity in

recent near topological concepts in the approximation topological spaces” Amer. Math. Monthly, 70 (1963),

process. 36-41.
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