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Abstract: In this paper we introduce some definitions which are the natural combination of the definition of asymptotic equivalence,
statistical convergence,φ−statistical convergence of Musielak Orlicz function and ideal. In addition, we introduce asymptotically ideal
equivalent of double sequences and Musielak fuzzy real numbers and established some relations related to this concept.Finally we
introduce the notion of Cesáro Orlicz asymptotically equivalent sequences of Musielak Orlicz function and establishtheir relationship
with other classes.
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1 Introduction

Throughoutw,χ andΛ denote the classes of all, gai
and analytic scalar valued single sequences, respectively.
We write w2 for the set of all complex double sequences
(xmn), wherem,n ∈ N, the set of positive integers. Then,
w2 is a linear space under the coordinate wise addition
and scalar multiplication.

Some initial works on double sequence spaces is
found in Bromwich [1]. Later on it was investigated by
Hardy [2], Moricz [3], Moricz and Rhoades [4], Basarir
and Solankan [5], Tripathy et al., [6]- [17] , Turkmenoglu
[18], Raj [19]- [25] and many others.

Let (xmn) be a double sequence of real or complex
numbers. Then the series∑∞

m,n=1xmn is called a double
series. The double series∑∞

m,n=1xmn give one space is said
to be convergent if and only if the double sequence
(Smn)is convergent, where

Smn= ∑m,n
i, j=1xi j (m,n= 1,2,3, ...) .

A double sequencex = (xmn)is said to be double
analytic if

supm,n |xmn|
1

m+n < ∞.

The vector space of all double analytic sequences are
usually denoted byΛ2. A sequencex = (xmn) is called
double entire sequence if

|xmn|
1

m+n → 0 asm,n→ ∞.

The vector space of all double entire sequences are
usually denoted byΓ 2. Let the set of sequences with this
property be denoted byΛ2 andΓ 2 is a metric space with
the metric

d(x,y)=supm,n

{

|xmn−ymn|
1

m+n :m,n:1,2,3, ...
}

, (1.1)

forall x = {xmn}andy = {ymn} inΓ 2. Let φ = {finite
sequences}.

Consider a double sequencex = (xmn). The (m,n)th

section x[m,n] of the sequence is defined by
x[m,n] = ∑m,n

i, j=0xi j δi j for all m,n∈N,
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0 0 ...0 0 ...
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



















with 1 in the(m,n)th position and zero otherwise.

A double sequencex = (xmn) is called double gai

sequence if((m+n)! |xmn|)
1

m+n → 0 as m,n → ∞. The
double gai sequences will be denoted byχ2.

2 Definitions and Preliminaries

Definition 2.1. [see [26,28]]An Orlicz function is a
function M : [0,∞) → [0,∞) which is continuous,
non-decreasing and convex withM (0) = 0, M (x)> 0, for
x > 0 andM (x) → ∞ as x → ∞. If convexity of Orlicz
functionM is replaced byM (x+ y)≤ M (x)+M (y) , then
this function is called modulus function. An Orlicz
functionM is said to satisfy∆2− condition for all values
u, if there existsK > 0 such thatM (2u)≤ KM (u) ,u≥ 0.

Lemma 2.2. [see [26,28]] Let M be an Orlicz function
which satisfies∆2− condition and let 0< δ < 1. Then for
eacht ≥ δ , we haveM (t)< Kδ−1M (2) for some constant
K > 0.

Definition 2.3. [see [27]] Let n∈ N andX be a real vector
space of dimensionm, where n ≤ m. A real valued
function dp(x1, . . . ,xn) = ‖(d1(x1,0), . . . ,dn(xn,0))‖p on
X satisfying the following four conditions:
(i) ‖(d1(x1,0), . . . ,dn(xn,0))‖p = 0 if and and only if
d1(x1,0), . . . ,dn(xn,0) are linearly dependent,
(ii) ‖(d1(x1,0), . . . ,dn(xn,0))‖p is invariant under
permutation,
(iii) ‖(αd1(x1,0), . . . ,αdn(xn,0))‖p =

|α| ‖(d1(x1,0), . . . ,dn(xn,0))‖p, α ∈R

(iv) dp ((x1,y1),(x2,y2) · · · (xn,yn)) =

(dX(x1,x2, · · ·xn)
p+dY(y1,y2, · · ·yn)

p)1/p for 1≤p<∞; (or)
(v) d ((x1,y1),(x2,y2), · · · (xn,yn)) :=

sup{dX(x1,x2, · · ·xn),dY(y1,y2, · · ·yn)} ,
for x1,x2, · · ·xn ∈X,y1,y2, · · ·yn ∈Y is called thep product
metric of the Cartesian product ofn metric spaces is thep
norm of then-vector of the norms of then subspaces.

A trivial example ofp product metric ofn metric space
is thep norm space isX = R equipped with the following
Euclidean metric in the product space is thep norm:

‖(d1(x1,0), . . . ,dn(xn,0))‖E = sup(|det(dmn(xmn,0))|) =

sup








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
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∣
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∣

∣

∣

∣

∣

d11(x11,0) d12(x12,0) ... d1n(x1n,0)
d21(x21,0) d22(x22,0) ... d2n(x1n,0)

.

.

.
dn1(xn1,0) dn2(xn2,0) ... dnn(xnn,0)
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∣
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∣
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∣

∣

∣

∣
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




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

wherexi = (xi1, · · ·xin) ∈ R
n for eachi = 1,2, · · ·n.

If every Cauchy sequence inX converges to someL ∈ X,
thenX is said to be complete with respect to thep− metric.
Any completep− metric space is said to bep− Banach
metric space.

Definition 2.4.Two non-negative sequencesx= (xmn) and
y= (ymn) are asymptotically equivalent 0 if

limmn
xmn
ymn

= 0

and it is denoted byx≡ 0.

Definition 2.5. Let K be the subset ofN×N, the set of
natural numbers. Then the asymptotically density ofK,
denoted byδ (K) , is defined as

δ (K) = limk,ℓ
1
kℓ |{m,n≤ k, ℓ : m,n∈ K}| ,

where the vertical bars denote the cardinality of the
enclosed set.

Definition 2.6.A number sequencex= (xmn) is said to be
statistically convergent to the number 0 if for eachε > 0,
the set

K (ε) =
{

m≤ k,n≤ ℓ : (m+n)! |xmn−0|1/m+n ≥ ε
}

has asympototic density zero

limkℓ
1
kℓ

∣

∣

∣

{

m≤k,n≤ℓ :((m+n)! |xmn−0|)1/m+n ≥ ε
}∣

∣

∣=0.

In this case we writeSt− limx= 0.

Definition 2.7. The two non-negative double sequences
x = (xmn) and y = (ymn) are said to be asymptotically
double equivalent of multipleL provided that for every
ε > 0,

limk,ℓ
1

k,ℓ

∣

∣

∣

{

(m,n) : m≤ k,n≤ ℓ,
∣

∣

∣

xmn
ymn

−L
∣

∣

∣≥ ε
}∣

∣

∣= 0.

and simply asymptotically double statistical equivalent if
L = 1. Furthermore, letSL

θrs
denote the set of all

sequencesx = (xmn) and y = (ymn) such that x is
asymptotically double equivalent to y.

Definition 2.8. Let θrs = {(mr ,ns)} be a double lacunary
sequence; the two double sequencesx = (xmn) and
y = (ymn) are said to be asymptotically double lacunary
statistical equivalent of multipleL provided that for every
ε > 0,

limr,s
1

hr,s

∣

∣

∣

{

(m,n) ∈ Ir,s :
∣

∣

∣

xmn
ymn

−L
∣

∣

∣≥ ε
}∣

∣

∣= 0

and simply asymptotically double lacunary statistical
equivalent ifL = 1.Furthermore, letSL

θrs
denote the set of

all sequencesx= (xmn) andy= (ymn) such that
x is asymptotically double lacunary equivalent to y.

Definition 2.9. Let θrs = {(mr ,ns)} be a double lacunary
sequence; the two double sequencesx = (xmn) and
y = (ymn) are said to be strong asymptotically double
lacunary equivalent of multipleL provided that
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limr,s
1

hr,s
∑(m,n)∈Ir,s

∣

∣

∣

xmn
ymn

−L
∣

∣

∣= 0,

that isx is equivalent toy and it is denoted byNL
θrs

and
simply strong asymptotically double lacunary equivalent
if L = 1. In addition, let NL

θrs
denote the set of all

sequences x = (xmn) and y = (ymn) such that
x is asymptotically double lacunary equivalent to y.

Definition 2.10.The double sequenceθrs = {(mr ,ns)} is
called double lacunary sequence if there exist two
increasing of integers such that
m◦ = 0,hr = mr − mr−1 → ∞ as r → ∞ and
n◦ = 0, h̄s= ns−ns−1 → ∞ ass→ ∞.

Notations: mr,s = mrms,hr,s = hr h̄s and θrs is
determined by
Irs = {(m,n) : mr−1 < m≤ mr and ns−1 < n≤ ns} ,qr =

mr
mr−1

, q̄s =
ns

ns−1
andqrs = qr q̄s.

Definition 2.11. Let P denote the space whose elements
are finite sets of distinct positive integers. Given any
element σ of P, we denote byP(σ) the sequence
{Pab(σ)} such that Pab(σ) = 1 for a,b ∈ σ and
Pab(σ) = 0 otherwise. Further

Prs = {σ ∈ P : ∑∞
a=1∑∞

b=1Pab(σ)≤ r,s}

that is Prs is the set of thoseσ whose support has
cardinality at mostr,sand we get

Φ =
{

φ = (φab) : 0< φ11 ≤ φab ≤ φa+1,b+1 a,b φa+1,b+1

≤ (a+1,b+1)φab} .

We define

τrs =
1

φrs
∑m∈σ ∑n∈σ ,σ∈Prs .

Now we define the following definitions:
Definition 2.12.Let M be an sequence of Orlicz functions
andθrs = (mr ,ns) be a double lacunary sequence; the two
non-negative double sequencesx = (xmn) and y = (ymn)
are said to beφ−summable tō0 that is

[

χ2
M,‖(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0))‖p

]

=

limr,s→∞
1

φrs
∑

m∈σ
∑

n∈σ ,σ∈Prs

{[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

= 0
}

.

In this we write χ2 → 0 and the set of all strongly
φ−summable sequences is denoted by[φ ] .
Definition 2.13.Let M be an sequence of Orlicz functions
andθrs = (mr ,ns) be a double lacunary sequence; the two
double non-negative sequencesx = (xmn) and y = (ymn)
and letE ⊆ N×N is said to be theφ−density ofE.

δφ (E) = limr,s→∞
1

φrs
|{m,n∈ σ ,σ ∈ Prs : m,n∈ E}| .

It is clear thatδφ (E)≤ δ (E) .

Definition 2.14.Let M be an sequence of Orlicz functions
andθrs = (mr ,ns) be a double lacunary sequence; the two
double non-negative sequencesx = (xmn) and y = (ymn)
are said to beφ−statistical convergent summable to
0̄∈R if for eachε > 0

lim
r,s→∞

1
φrs

∣

∣

∣

∣

∣

∑
m∈σ

∑
n∈σ ,σ∈Prs

{[

M

((

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)

1/m+n,

∥

∥

∥
(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]}∣

∣

∣
= 0

In this we writeχ2 → 0 and it is denoted byStφ .

Definition 2.15.Let M be an sequence of Orlicz functions
andθrs = (mr ,ns) be a double lacunary sequence; the two
double non-negative sequencesx = (xmn) and y = (ymn)
are said to be Cesáro strongM−asymptotically double
lacunary of multiple 0

[

χ2
M,‖(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0))‖p

]

=

lim
a,b→∞

1
ab

a

∑
m=1

b

∑
n=1

{[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

= 0
}

.

denoted by(xmn) ∼= (ymn) and simply Cesáro Orlicz
asymptotically equivalent.

Definition 2.16.Let M be an sequence of Orlicz functions
andθrs = (mr ,ns) be a double lacunary sequence; the two
double non-negative sequencesx = (xmn) and y = (ymn)
are said to be Cesáro strongM−asymptotically double
lacunaryI− of multiple 0, provided that for everyδ > 0

(

a,b∈ N :
a

∑
m=1

b

∑
n=1

{[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

≥ δ
})

∈ I .

Simply Cesáro asymptoticallyI−equivalent.

Definition 2.17.Let M be an sequence of Orlicz functions
andθrs = (mr ,ns) be a double lacunary sequence; the two
non-negative double sequencesx = (xmn) and y = (ymn)
are said to be double lacunary idealφ− of multiple 0,
provided that

lim
r,s→∞

1
φrs

∑
m∈σ

∑
n∈σ ,σ∈Prs

{[

M
(

((m+n)! |xmn,0|)
1/m+n ,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

)]

= 0
}

.
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Simply Cesáro asymptoticallyφ−equivalent.
{

lim
r,s→∞

1
φrs

∑
m∈σ

∑
n∈σ ,σ∈Prs

{[

M
(

((m+n)! |xmn,0|)
1/m+n ,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

≥ δ
}}

∈ I .

Simply Cesáro asymptoticallyI −φ−equivalent.
Definition 2.18.Let M be an sequence of Orlicz functions
andθrs = (mr ,ns) be a double lacunary sequence; the two
double non-negativesequencesx=(xmn) andy=(ymn) are
said to be asymptotically double lacunaryφ− of multiple
0∈ R, provided that for everyε > 0

lim
r,s→∞

1
φrs

∣

∣

∣

∣

∣

{

m,n∈σ,σ ∈Prs :

[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

≥ ε
}∣

∣

∣= 0.

Simply asymptoticallyφ− equivalent.
Definition 2.19.Let M be an sequence of Orlicz functions
andθrs = (mr ,ns) be a double lacunary sequence; the two
double non-negativesequencesx=(xmn) andy=(ymn) are
said to be asymptotically double lacunaryφ− of multiple
0∈ R, provided that for everyε > 0 and for everyδ > 0
{

lim
r,s→∞

1
φrs

∣

∣

∣

∣

∣

{

m,n∈σ,σ ∈Prs :

[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

≥ε
}∣

∣

∣≥δ
}

∈I .

Simply asymptoticallyI −φ− equivalent.

3 Main Results

Theorem 3.1.Let M be an sequence of Orlicz functions
andθrs = (mr ,ns) be a double lacunary sequence; the two
double sequencesx = (xmn) and y = (ymn) then the two
sequences are (a)I−equivalent =⇒ I−statistically
equivalent
(b) I−statistically equivalent=⇒ I−equivalent, ifM is
finite.
Proof. Suppose thatI−equivalent and letε > 0 be given
we write

1
ab

a

∑
m=1

b

∑
n=1

{[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]}

≥

M (ε)
ab

∣

∣

∣

∣

∣

{

m≤ a,n≤ b :

[(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

≥ ε
}∣

∣

∣ .

Consequently for anyγ > 0, we have

{

a,b∈N :
1
ab

∣

∣

∣

∣

∣

{

m≤a,n≤b:

[(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0),d (x2,0),· · ·,d (xn−1,0)‖p

))]

≥ε
}∣

∣

∣≥
γ

M (ε)

}

⊆

{

a,b∈N :
1
ab

a

∑
m=1

b

∑
n=1

{[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥
(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]}

≥ γ
}

∈ I .

HenceI−equivalent.
(b) Suppose thatM is finite andI−statistically equivalent.
SinceM is finite then there exists a real numberN> 0 such
thatsuptM (t)≤ N. Moreover for anyε > 0 we can write

1
ab

a

∑
m=1

b

∑
n=1

{[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]}

≤

N
ab

∣

∣

∣

∣

∣

{

m≤ a,n≤ b :

[(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0),d (x2,0),· · ·,d (xn−1,0)‖p

))]

≥ε
}∣

∣

∣+M (ε) .

Now applyingε → 0, then the result follows.

Theorem 3.2.Let M be an sequence of Orlicz functions
andθrs = (mr ,ns) be a double lacunary sequence; the two
double sequencesx = (xmn) andy = (ymn) then the two
sequences and(φrs) be a non-decreasing sequence of
positive real numbers such thatφrs → ∞ as r,s→ ∞ and
φrs ≤ r,s for every r,s∈ N. Then statistically equivalent
=⇒ φ−statistically equivalent.

Proof. By definition of the sequencesφrs it follows that
in frs rs

rs−φrs
≥ 1. Then there exists at > 0 such that

rs
φrs

≤ 1+t
t

suppose that two sequences are statistically equivalent then
for everyε > 0 and sufficiently larger,s we have

1
φrs

∣

∣

∣

∣

∣

{

m,n∈σ ,σ ∈Prs :

[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

≥ ε
}∣

∣

∣=

1
rs

rs
φrs

∣

∣

∣

∣

∣

{

m≤ a,n≤ b :

[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

≥ ε
}∣

∣

∣−
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1
φrs

|{m∈{1,2, · · · , r}−σ ,n∈{1,2, · · · ,s}−σ ,σ ∈Prs :
[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

≥ ε
}∣

∣

∣≤

1+ t
t

1
rs

∣

∣

∣

∣

∣

{

m≤ r,n≤ s :

[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥
(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

≥ ε
}∣

∣

∣
−

1
φrs

|{m0∈{1,2, · · · , r}−σ ,n0∈{1,2, · · · ,s}−σ ,σ ∈Prs :
[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

≥ ε
}∣

∣

∣ .

This completes the proof.

Theorem 3.3.Let M be an sequence of Orlicz functions
andθrs = (mr ,ns) be a double lacunary sequence; the two
double sequencesx = (xmn) andy = (ymn) andm,n ∈ Z

such thatφrs ≤ [φrs]+mn,suprs
[φrs]+mn
φr−1s−1

< ∞ Then the two
sequences areφ−statistically equivalent=⇒ statistically
equivalent.

Proof. If suprs
[φrs]+mn
φr−1s−1

< ∞, then there existsN > 0 such

that [φrs]+mn
φrs−1 <N for all r,s≥ 1. Let a,b be an integers such

thatφr−1,s−1 < a,b≤ φrs. Then for everyε > 0 we have

1
ab

∣

∣

∣

∣

∣

{

m≤ a,n≤ b :

[(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

≥ ε
}∣

∣

∣≤

1
ab

∣

∣

∣

∣

∣

{

m≤ a,n≤ b :

[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

≥ M (ε)
}∣

∣

∣

≤
1

[φrs]+mn
[φrs]+mn
φr−1s−1

∣

∣

∣

∣

∣

{

m,n≤ φrs :

[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥
(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

≥ M (ε)
}∣

∣

∣

≤
1

[φrs]+mn
[φrs]+mn
φr−1s−1

∣

∣

∣

∣

∣

{

m,n∈σ,σ ∈P|φrs|+mn:

[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

≥ M (ε)
}∣

∣

∣

≤
N

[φrs]+mn

∣

∣

∣

∣

∣

{

m,n∈σ,σ ∈P|φrs|+mn:

[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

≥ M (ε)
}∣

∣

∣ .

Theorem 3.4.Let M be an sequence of Orlicz functions
andθrs = (mr ,ns) be a double lacunary sequence; the two
double sequencesx = (xmn) andy = (ymn) andm,n ∈ Z

then the two sequences are Cesáro equivalent=⇒ φ−
equivalent
Proof. From the definition of sequence(φrs) it follows that
in frs rs

rs−φrs
≥ 1. Then there existst > 0 such that

rs
φrs

≤
1+ t

t
.

Then the following relation

1
φrs

∑
m∈σ

∑
n∈σ ,σ∈Prs

[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥
(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

=

rs
φrs

1
rs

a

∑
m=1

b

∑
n=1

[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

−

1
φrs

∑
m∈{1,2,···r}···σ

∑
n∈{1,2,···s}···σ ,σ∈Prs

[

M
((

(m+n)!.

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,
∥

∥

∥(d(x1,0),d(x2,0),· · ·,d(xn−1,0)‖p

))]

≤

1+ t
t

1
rs

r

∑
m=1

s

∑
n=1

[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

−

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
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1
φrs

∑
m0∈{1,2,···r}···σ

∑
n0∈{1,2,···s}···σ ,σ∈Prs

[

M
((

(m+n)!.

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,
∥

∥

∥(d(x1,0),d(x2,0),· · ·,d(xn−1,0)‖p

))]

.

Since the two sequences are Cesáro equivalent andM is
continuous lettingr,s→ ∞ we get

1
φrs

∑
m∈σ

∑
n∈σ ,σ∈Prs

[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

)]

→ 0.

Hence two sequences areφ− equivalent.

Theorem 3.5.Let M be an sequence of Orlicz functions
andθrs = (mr ,ns) be a double lacunary sequence; the two
double sequencesx = (xmn) andy = (ymn) andm,n ∈ Z

then the two sequences are (a) Cesáro equivalent=⇒
statistcally equivalent
(b) If M satisfies the ∆2− condition and

(xmn) ∈
[

Λ2
M,‖(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0))‖p

]

such that the two sequences are statistically equivalent
=⇒ Cesáro equivalent

Proof. (a) Suppose that two sequences are Cesáro
equivalent. Then for everyε > 0 we have

1
ab

∣

∣

∣

∣

∣

{

m≤ a,n≤ b :

[(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥
(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

≥ ε
}∣

∣

∣
≤

1
ab

∣

∣

∣

∣

∣

{

m≤ a,n≤ b :

[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

≥ M (ε)
}∣

∣

∣≤

1
ab

a

∑
m=1

b

∑
n=1

[

M

(

(

(m+n)!

∣

∣

∣

∣

xmn

ymn
,0

∣

∣

∣

∣

)1/m+n

,

∥

∥

∥(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0)‖p

))]

.

This completes the proof.

Proof. (b) Follows from the same technique of Theorem
3.1 and Theorem 3.4.

Theorem 3.6.Let M be an sequence of Orlicz functions
andθrs = (mr ,ns) be a double lacunary sequence; the two
double sequencesx = (xmn) andy = (ymn) andm,n ∈ Z

then the two sequences are (a)φ− equivalent
=⇒ φ−statistcally equivalent
(b) If M satisfies the ∆2− condition and

(xmn) ∈
[

Λ2
M,‖(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0))‖p

]

such that the two sequences are statistically equivalent

=⇒ φ−statistically equivalent.
(c) If M satisfies the∆2−condition, then

φ -equivalent
⋂

[

Λ2
M,‖(d(x1,0),d(x2,0),...,d(xn−1,0))‖p

]

=

φ -statistically equivalent
⋂

[

Λ2
M,‖(d(x1,0),d(x2,0),...,d(xn−1,0))‖p

]

.

Proof. Follows from the same technique of Theorem 3.1
and Theorem 3.5.

4 Conclusion

we introduce the notion of Cesáro Orlicz asymptotically
equivalent sequences of Musielak Orlicz function withχ2

sequence spaces and establish their relationship with other
classes.
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