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Abstract: In this paper we introduce some definitions which are therabhttombination of the definition of asymptotic equivalence
statistical convergence—statistical convergence of Musielak Orlicz function aneiitd In addition, we introduce asymptotically ideal
equivalent of double sequences and Musielak fuzzy real Bumnénd established some relations related to this conEgyatlly we
introduce the notion of Ceséaro Orlicz asymptotically @glént sequences of Musielak Orlicz function and estalthisir relationship
with other classes.
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1 Introduction The vector space of all double analytic sequences are
usually denoted by\?. A sequencex = (Xmn) is called

Throughoutw, x andA denote the classes of all, gai double entire sequence if
and analytic scalar valued single sequences, respectively
We write w? for the set of all complex double sequences
(xmn), Wherem,n € N, the set of positive integers. Then,
w? is a linear space under the coordinate wise addition |an|ﬁ — 0asm,n—s o.
and scalar multiplication.
Some initial works on double sequence spaces is
found in Bromwich []. Later on it was investigated by

Hardy [2], Moricz [3], Moricz and Rhoades], Basarir The vector space of all double entire sequences are
and Solankand], Tripathy et al., p]- [17] , Turkmenoglu  usually denoted by 2. Let the set of sequences with this
[18], Raj [19]- [25) and many others. property be denoted b§? and/"? is a metric space with

Let (xmn) be a double sequence of real or complexthe metric
numbers. Then the seri€g;, ,_; Xmn is called a double
series. The double serig$, ,_; Xmn give one space is said N
to be convergent if and only if the double sequence d(x,y):supn’n{|xmn—ymn|m:m,n:1,2,3,...}, (1.2)
(Swn)is convergent, where

Smn= 3t % (Mn=1,23,..). forallx = {Xmn}andy = {ymn} inr2. Let ¢ = {finite
sequences
A double sequence = (xmn)is said to be double
analytic if Consider a double sequenge= (xmn). The (m,n)h
) section X™"V of the sequence is defined by
SUPnn [Xmn| ™1 < o, xmnl — Em’ioxijdj forallmneN,
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00..00...
00..00.. wherex; = (X1, --Xin) € R" for eachi = 1,2, ---n.
If every Cauchy sequence kK converges to some € X,
S = thenX is said to be complete with respect to {he metric.
" . Any completep— metric space is said to bg— Banach

00..10.. metric space.
00..00.. Definition 2.4. Two non-negative sequences: (Xmn) and

with 1 in the(m, n)t" position and zero otherwise.

A double sequence& = (xmn) is called double gai

sequence if((m+n)! |xmn|)ﬁ — 0 asmn — c. The
double gai sequences will be denotedysy

2 Definitions and Preliminaries

Definition 2.1. [see [26,28]]An Orlicz function is a
function M : [0,00) — [0,0) which is continuous,
non-decreasing and convex with(0) = 0, M (x) > 0, for
x> 0 andM (x) — o asx — oo. If convexity of Orlicz
functionM is replaced b (x+y) < M (x) +M (y), then
this function is called modulus function. An Orlicz
functionM is said to satisfyA,— condition for all values
u, if there existK > 0 such thaM (2u) < KM (u),u > 0.

Lemma 2.2.[see R6,28]] Let M be an Orlicz function
which satisfiegl,— condition and let 6< d < 1. Then for
eacht > &, we haveM (t) < K&~*M (2) for some constant
K> 0.

Definition 2.3.[see R7]] Let n € N andX be a real vector
space of dimensiorm, wheren < m. A real valued
function dp(X1,...,%n) = [|(d1(X1,0),...,0n(X,0))|lp ON
X satisfying the following four conditions:
(i) 1](d1(x1,0),...,dn(*%n,0))|[p = O if and and only if
di(x1,0),...,dn(Xn,0) are linearly dependent,
(i) (d1(x1,0),...,dn(%,0))||p is invariant
permutation,
(iii) ||(adi(x1,0),...,adn(X%n,0))|p =
|af][(di(x1,0),...,0n(%n,0))||p, @ €R
(IV) dp ((X17y1)7 (X27YZ) e (XnaYn)) =
(dx (X1, X2, -+ Xn)P+0ly (Y1, Y2, - Yn)P) ¥P for 1< p<oo; (or)
(V) d((X1,¥1), (X2, ¥2), -+ (Xn, ¥n)) ==
SUp{dx(X]_,Xz, o 'Xn)a dY(YlaY& o yﬂ)} )
forxg, %o, - Xn € X,¥1,¥2,--Yn € Y is called thep product
metric of the Cartesian product nfmetric spaces is the
norm of then-vector of the norms of the subspaces.
A trivial example ofp product metric oh metric space
is thep norm space iX = R equipped with the following
Euclidean metric in the product space is fheorm:

[[(d1(X1,0), ..., 0n(%n,0))||e = sup(|det(dmn(Xmn,0))[) =
d11(X11,0) d12(X12,0) ... d1n(X1n,0)
da1(X21,0) d22(X22,0) ... d2n (X1n,0)

under

y = (Ymn) are asymptotically equivalent O if

Ymn

and it is denoted by = 0.

Definition 2.5. Let K be the subset o x N, the set of
natural numbers. Then the asymptotically densityKof
denoted by (K), is defined as

5(K) =limgeg [{mn <k l:mneK}|,
where the vertical bars denote the cardinality of the

enclosed set.

Definition 2.6. A number sequence= (Xmn) is said to be
statistically convergent to the number O if for each 0,
the set

K(g)= {mg k,n< ¢ (M+n)! [Xpn— OY™" > e}
has asympototic density zero
limie & [{m<k n<: ((men)! xmn—0) V™" > e} =0,

In this case we writ&t— limx = 0.
Definition 2.7. The two non-negative double sequences
X = (Xmn) andy = (ymn) are said to be asymptotically
double equivalent of multiple. provided that for every
>0,

Ymn

Iimk’gﬁ H(m,n) ‘m<kn<¢,

M—L‘Ze}lzo.

and simply asymptotically double statistical equivaldnt i
L = 1. Furthermore, letS; denote the set of all
sequencesx = (Xmn) and y = (ymn) such thatxis
asymptotically double equivalent toy

Definition 2.8. Let 6s = {(my,ns)} be a double lacunary
sequence; the two double sequences= (Xmn) and

y = (Ymn) are said to be asymptotically double lacunary
statistical equivalent of multiple provided that for every
>0,

m—L’st:o

Ymn

Iimr,s%s H(m, nels:

and simply asymptotically double lacunary statistical
equivalent ifL = 1.Furthermore, Ieég»S denote the set of

all sequences = (xmn) andy = (ymn) such that
x is asymptotically double lacunary equivalent to y

Definition 2.9. Let 6s = {(my,ns)} be a double lacunary

sup sequence; the two double sequences- (Xmn) and
. y = (Ymn) are said to be strong asymptotically double
n1 (Xn1,0) dn2 (Xn2,0) .. dnn (Xnn, 0) lacunary equivalent of multiple provided that
(@© 2016 NSP
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liMrspe 3 mnjeirs [ — L‘ =0, 3p (E) =liMrs s [{mne 0,0 € Rs:mneE}|.
that isx is equivalent toy and it is denoted b}’\lbr and Itis clear thatd, (E) < & (E).
simply strong asymptotically double lacunary equwalent

if L=1 In addition, let N'- denote the set of all Definition 2.14.Let M be an sequence of Orlicz functions

and6s = (my,ns) be a double lacunary sequence; the two

sequencesXx = (Xmn) and Y = (ym) such that double non-negative sequences: (Xmn) andy = (Ymn)
Definition 2.10. The double sequend®s = {(m,ng)} is 0 R if for eache > 0
called double lacunary sequence if there exist two
increasing of integers such that
m =0h =m -m_; - © as r — o« and
2B (e ol

Notations: mys = mymg,hr s = hhs and 6 is r$=% s |Mconeo GePs Ymn'
determined by
e = {(mn):m_1<m<mandn 1 <n<ngd.g = |@00,0).d06.0). doa-1.0)l) )|} =0
iy 0s = n> anddys = g Gs.
are finite sets of distinct positive integers. Given any Definition 2.15.Let M be an sequence of Orlicz functions
element o of P we denote byP (o) the sequence and6s= (m,ns) be a double lacunary sequence; the two
{Pap(0)} such thatPy(o) = 1 for aab € o and  double non-negative sequences: (xmn) andy = (Ymn)
Pap(0) = 0 otherwise. Further are said to be Cesaro strod—asymptotically double

x is asymptotically double lacunary equivalent to y are said to beg—statistical convergent summable to
. 1
N, =0,hs=nNs—nNg_1 — 0 ass— co. lim —
- . 2 . .
Definition 2.11. Let P denote the space whose elements!" this we writex” — 0 and itis denoted b§.
Ce® oo lacunary of multiple 0

that is Ps is the set of thoses whose support has -
cardinality at most, s and we get [XM’H (%0,0),d 2,0+, d (% 1’0))Hp} N
a 1/m4n
P={0=(¢) 0<P1< @< Bi1pr1ab Gy1pia b_} ab >y { ( m+n)! ym”,0> ,
*© m=1n=1 mn

< (a+L1b+1)gu}-
<(a+1,b+1)@p H( (x1,0),d (%2,0),---,d (Xn_1,0)|| ))} }

We define . : .
N denoted by (Xmn) = (Yymn) and simply Ceséaro Orlicz
Trs = 45 2mea 2neo,0eRs - asymptotically equivalent.
Now we define the following definitions: Definition 2.16.Let M be an sequence of Orlicz functions

Definition 2.12.Let M be an sequence of Orlicz functions @"d6rs = (M, ns) be a double lacunary sequence; the two
and6,s = (m, ns) be a double lacunary sequence; the two double non-negative sequences: (Xmn) andy = (Ymn)
non-negative double sequences: (Xmn) andy = (ymn) &€ said to be Cesaro stromg—asymptotically double

are said to be—summable td that is lacunaryl — of multiple O, provided that for every > 0
b 1/m+
(XG0 110 04,0),d (%2,0), -+, d (%0 1,0))],| = aber: 3 3 { | <(m+n)! Xﬂg’) m
| 1 z M=1n=1 Ymn
IMy 5300 —
@s o ned’oens H(d (X1,0),d (x2,0),--- ,d (Xn—1,0)|| ))} }) el.
« 1/mtn Simply Cesaro asymptotically-equivalent.
{ M (((m+ ! |2 0 > , Definition 2.17.Let M be an sequence of Orlicz functions
Ymn and6s = (my,ns) be a double lacunary sequence; the two
non-negative double sequences: (Xmn) andy = (Ymn)
H(d (4,0),d(x,0),---,d (%1, 0) ))} } are said to be double lacunary idept of multiple O
In this we write x> — 0 and the set of all strongly provided that
@—summable sequences is denotedday
N . . . 1 1/mtn
Definition 2.13.LetM be an sequence of Orlicz functions ~ lim —— { {M (((m+ N)! [Xmn, 0]) :
and6s = (my,ns) be a double lacunary sequence; thetwo @s rico neo'eRs

double non-negative sequences: (xmn) andy = (Ymn)
and letE C N x N is said to be the—density ofE. H(d (4,0),d(,0),-+-,d (%n-1,0) )} }
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Simply Cesaro asymptoticallg—equivalent.
Consequently for any > 0, we have

{r’lgmmimgoneageprs{ {M (((m+”)! ot {abeN- 1 {m<a n<b: K((ern)' ALYy )1/m+n
601015201 e 01)) =3} et aafmense|((imemfemaf)

y
Simply Cesaro asymptotically— g—equivalent. H(d (x,0),d (%2,0),---,d (Xn71,0)||p))} > 5}‘ > W}

Definition 2.18.Let M be an sequence of Orlicz functions 1/mtn

and@rs = (m,ns) be a double lacunary sequence; the two  c Jgpen: — Z Z ( m-n)! Xmn 0)

double non-negative sequenaes (Xmn) andy = (Ymn) are b4 Ymn ’

said to be asymptotically double lacunasy of multiple

0 € R, provided that for everg > 0 H(d (x1,0),d(x2,0) -+ ,d (Xn-1,0)] ))} } } el.

1 _ | [Xn Y/min - Hencel —equivalent.

n';ﬂ)w@ mneo,ochs: M { (m+n)! Y 0 > (b) Suppose tha¥l is finite andl —statistically equivalent.

SinceM is finite then there exists a real numier- 0 such

H(d (%,0),d (%2,0), - ,d (%1_1,0)] ))} H -0 thatsupM (t) < N. Moreover for anye > 0 we can write

Simply asymptoticallyp— equivalent. 1 a b e 1/mn

Definition 2.19.LetM be an sequence of Orlicz functions 5 > Z M ((m+ n)! Yo 0 ) ;

and6s = (my,ns) be a double lacunary sequence; the two m=1n mn

double non-negative sequenees (Xmn) andy = (ymn) are X X X <

said to be asymptotically double lacunapy of multiple ‘( 04,0),d(%,0),---,d -, )”p))}} -

0 € R, provided that for everg > 0 and for everyd > 0 N Xmn 0 1/m+n

— m+ n) |=— ,
1 X 1/m4n ab )
lim —{mneo,oeRs: M| | (m+n)! ﬂ‘,o) ,
{nsaw(prs {”‘ s <<( o (@000 (x:0).+- (3020 ))} >s}\+M

1(@0,0,d0,0), - d (x-1,0)],) ) | > ]| > 8} €

. ) Now applyinge — O, then the result follows.
Simply asymptotically — ¢— equivalent.

Theorem 3.2.Let M be an sequence of Orlicz functions
andfs = (m,ns) be a double lacunary sequence; the two
double sequences= (Xxmn) andy = (ymn) then the two

sequences and@s) be a non-decreasing sequence of

Theorem 3.1.Let M be an sequence of Orlicz functions positive real numbers such thek — ® asf,S— oo and
and6és = (m,ns) be a double lacunary sequence; the two (s < 1,8 for everyr,s € N. Then statistically equivalent
double sequences= (Xmn) andy = (ymn) then the two ’ (p—statlsgcla}lly equivalent. _

sequences are (a)—equivalent = | —statistically Proof. By definition of the sequencegs it follows that

3 Main Results

equivalent infrsﬁ > 1. Then there exists &> 0 such that
(b) I —statistically equivalent=- |—equivalent, ifM is o 1t
finite. w ST

Proof. Suppose thalt—equivalent and let > 0 be given suppose that two sequences are statistically equivalent th

we write for everye > 0 and sulfficiently large,s we have
1 a b Xmn 1/m4n X 1/m+n
— z Z M ((m+n)! —,0) , —|Kmneo,0€Rs: (M ((m+n)! —,O) ,
ab £, & Ymn s Ymn

(d(x2,0),d (%2,0) -+ ,d (Xy-1,0)]| ))] H:

)l/m+n

(d (x1,0),d (%2,0) -+ ,d (Xn_1,0)]| m H_

mn
—.0

(((m+ n)! §

mn

L/men lrs
) ’ IS @s

{m<an<b

m<an<b: K((m+n) Ximn ,0

Ymn’
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1
a|{me{1,2,--- ,It—o,ne{l,2,--- ;st—0,0€Ps:
S

>1/m+n
b)
Hmne 0,0 €Pgq/+mn:

|(@00,0).d0¢,0).-+.d (61-2,0)5) ) | > £}| <
1rtl M <<(m+n)! ?1,0

t I’S
1(d04,0).d0.0).-.d e-1.0)l,) ) | = |-

1
a|{rrbe{1,2,--- JIt—0o,n0e{l,2,---,s}—0,0€Ps:
S

Xmn
M <((m+ n)! Yo

mn

an70

M (((m+ n)! 3

mn

(™

)Wn |(@(,0),d0,0) -+ . d (x1-1,0) ))]z ©}]
) N

S -
[@s]+mn

o (menfd) ™"

)1/m+n
’ |(@00,0),d(%,0) -+ d (e 1,0)],) )] =M (@)}
|@00,0,d06,0).++.d(x-1,0)1,) )| = €}

{m<rn<s

mn

Hmne 0,0 €Pgq/+mn:
,0

Theorem 3.4.Let M be an sequence of Orlicz functions
) and6s = (my,ns) be a double lacunary sequence; the two
This completes the proof. double sequences= (Xmn) andy = (ymn) andm,n € Z
Theorem 3.3.Let M be an sequence of Orlicz functions then the two sequences are Cesaro equwaeat (O
and6;s = (my,ns) be a double lacunary sequence; the two quivalent
double sequences= (Xmn) andy = (ymn) andm,n € Z Proof. From the definition of sequenées) it follows that

: rs .
such thatgs < [@s] +mnsups [ﬁ;ﬂ” <o Then'th.e two INfiss—5. > 1. Then there exists> 0 such that
sequences ar@—statistically equivalent=- statistically

; rs 1+t
equivalent. — < —.

@s —
Then the following relation

[‘Prs]+mn

Proof. If su Rsg o, < then there existdl > 0 such

that [‘”(;]SfT” <N for aII r,s>1. Leta,bbe anintegers such
that@_1s1 <a,b < @s. Then for everye > 0 we have 1

1 X 1/m+n
— {m<a,n<b: K((ern)! Ll ) ,
ab Y

H(d(xl,O),d(xz,O), d (Xo_1,0)| ))] Hg

mn
—.0

M (((m+ n)! §

mn

1/m+n
)
@s meoneg,oeRs

(d(x1,0),d(x2,0) -+, d (X-1,0) ))}
s 1 a

1/m+n
X |\ /™ s rs Wbl“ 1 << e ) ’
(i mfiemo]) ™" o0 000.01 00 101,))

(@(1,0),d02,0) -+ d (x1-1,0),) ) | = M ()} .

— M (((m+n).
1
< [(Prs] +mn @s me{l,;'r}mane{1727~~sz}ma,aePrs [ (<
[@s]+mn @ 15 1

.0

ﬂ‘o

%: 0>1/m+n, (dx0.0.8(x20),++.dx-1.0)] ) )] <
Hm’n<¢(s M(((m+n)! %1,0)1/"‘*”’
[@00.0.800.0). - B s0ly))| M@} FEL S S |m <((m+n)! %:’0)1/”“’
- [(l’rs]imn[(gsir?n H(d(xl,o),d(xZ,O), d 02,0l ))}
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1 Z {M (((m+ nl. = @-—statistically equivalent.
-s}--0,0€Rs

@s moe{1,2;--r}--onge{1,2,- (c) If M satisfies the\,—condition, then

)l/m+n

Since the two sequences are Cesaro equivalentva
continuous letting, s — o we get

Xmn 0
Ymn'

(d(x1,0,d(x ,0),---,d(xn_1,0)l\p))}- p-equivalen{ ) [/\ﬁ,||(d(xl,0),d(x2,0), d(,_1,0)|| ]

. qo—statisticallyequivalerm[/\,a,H(d(xl,O),d(x 0),,d(%n_1.0) ]

Proof. Follows from the same technique of Theorem 3.1

1 X 1/m+n and Theorem 3.5.
— M ((m+ n)! ﬂ‘,OD ,
@s vieo neo,0€Ps Ymn

’ (d (x1,0),d (%,0) , - ,d(Xn7170)|Ip)} -0 4 Conclusion

we introduce the notion of Cesaro Orlicz asymptotically
Hence two sequences ape- equivalent. equivalent sequences of Musielak Orlicz function wyth
Theorem 3.5.Let M be an sequence of Orlicz functions S€quence spaces and establish their r6|at|0n3h|p withh othe
and6s = (m,ns) be a double lacunary sequence; the two classes.
double sequences= (Xmn) andy = (Ymn) andm,n € Z
then the two sequences are (a) Cesaro equivatent

statistcally equivalent Competing Interests
(b) If M satisfies the A,— condition and
(Xmn) € { 1(d(%1,0),d (x2,0), -+ ,d (Xn—1, ))Hp} The authors declare that there is no conflict of interests

such that the two sequences are statistically equivalerf@garding the publication of this research paper.
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