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Abstract: In this paper, we analytically solved the Bloch equations ofInxGa1−x As excitonic two level QD semiconductor system. In
addition, we calculated the atomic occupation probabilitiesρ11, ρ22, the atomic inversion and the purity for some special values of the
total dephasing rateγ2 and the Rabi frequencyΩ0

R. Hence, we studied the effects of the total dephasing rateγ2 and the Rabi frequency

Ω0
R on the atomic occupation probabilitiesρ11, ρ22, the atomic inversion, and the purity.
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1 Introduction

Quantum information processing [1] such as quantum
communication [2] and quantum computation [3] holds
promise for the solution of many intractable problems in
information technology. One of the promising candidates
for the implementation of the quantum information
processing devices is a semiconductor quantum dot (QD)
system. Semiconductor quantum dots (QDs) serve as
attractive platform for quantum information science and
technology. Because of flexibility in controlling number
of carriers and spins in atom-like density-of-states and of
well-suppressed interaction of quantized electrons and
holes with environmental degree of freedom.[4,5,6]
Semiconductor quantum dots confine electrons and holes
in discrete energy levels a few nanometers in size.[8]
These properties have driven speculation that quantum
dots may provide physical realization of qubits. Proposed
implementations using quantum dots include the presence
versus absence of an electron in a certain dot level,[9,10,
11] the spin-up versus spin-down state of an electron,[7,
12,13,14] or the presence of an electron or a hole in one
dot versus another dot.[15,16,17,18] The growth of
compositionally uniform alloy crystals is promising for
variety of applications because lattic parameters as well
as electrical and optical properties can be controlled by
composition. Among them,InxGa1−xAs bulk crystals are
expected as substrates of laser diodes with emitting
wavelength of 1.3µm.

Here, we focus on quantum computation based on
excitonic two-level system in anInxGa1−xAs quantum dot.

This article is organized as follows: in section (2) we
solved the Bloch equations analytically, in section (3) we
presented the atomic inversion, in section (4) we calculated
the purity. Conclusions are summarized at the end of the
paper.

2 The optical Bloch equations

We study the InxGa1−xAs excitonic two level QD
semiconductor system. The experimental measurements
on the photocurrent inInxGa1−xAs excitonic two level
systems [19] my be understood within the following
optical Bloch equations of the two level system [20]:

dρ11

dt
= −iΩ0

R cos(ωLt)(ρ21−ρ12)+ γ1ρ22, (1)

dρ22

dt
= +iΩ0

R cos(ωLt)(ρ21−ρ12)− γ1ρ22, (2)

dρ12

dt
= iω21ρ12+ iΩ0

R cos(ωLt)(ρ11−ρ22)− γ2ρ12, (3)

dρ21

dt
= −iω21ρ12− iΩ0

R cos(ωLt)(ρ11−ρ22)− γ2ρ21, (4)

where ρ11 and ρ22 are the corresponding number
occupations of the two levels,ωL is the laser frequency,
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Ω0
R is the Rabi frequency, defined as

ΩR =
d ·E

h̄
= Ω0

R cos(ωLt), (5)

where d is the conduction-valence dipole matrix
element,γ1 and γ2 represent the recombination rate and
the total dephasing rate, respectively.

We solve the Bloch equations analytically :
Firstly:
We can write the Bloch equations as the form:

dρ(t)
dt

= A(t)ρ(t)+B(t), (6)

where

A(t) =









−γ1
2 iΩ0

R cos(ωLt) −iΩ0
R cos(ωLt) γ1

2
iΩ0

R cos(ωLt) iω21− γ2 0 −iΩ0
R cos(ωLt)

−iΩ0
R cos(ωLt) 0 −iω21− γ2 iΩ0

R cos(ωLt)
γ1
2 −iΩ0

R cos(ωLt) iΩ0
R cos(ωLt)

−γ1
2









,

B(t) =









γ1
2
0
0

− γ1
2









andρ(t) =







ρ11(t)
ρ12(t)
ρ21(t)
ρ22(t)






. (7)

Secondly:
We construct the general solution of the homogeneous

system

dρ(t)
dt

= A(t)ρ(t), (8)

Note that the matrixA(t) of the system is symmetric,
therefore, the fundamental matrix of the system is given
by

Φ(t) = exp





t
∫

0

A(τ)dτ





= exp

















−γ1
2 t −i

Ω0
R

ωL
sin(ωLt) i

Ω0
R

ωL
sin(ωLt) γ1

2 t

−i
Ω0

R
ωL

sin(ωLt) (iω21− γ2)t 0 i
Ω0

R
ωL

sin(ωLt)

i
Ω0

R
ωL

sin(ωLt) 0 −(iω21+ γ2)t −i
Ω0

R
ωL

sin(ωLt)

γ1
2 t i

Ω0
R

ωL
sin(ωLt) −i

Ω0
R

ωL
sin(ωLt)

−γ1
2 t

















,(9)

Now we perform the necessary transformations with
the matrix exponential to write the general solution of the
homogeneous system.

We find the eigenvalues of the matrix

(

t
∫

0
A(τ)dτ

)

(λi

, i = 1,2,3,4)

λ1 = 0,

λ2 =
1

3ω2
L

{

−t ω2
L(2γ2− γ1)−

K1

K4
+K4

}

,

λ3 =
1

12ω2
L

{

−4t ω2
L(2γ2+ γ1)

+ 2(1+i
√

3)K1
K4

+2i(i+
√

3)K4

}

,

λ4 = λ̄3 (the complex conjugate ofλ3). (10)

Where

K1 = 12Ω02

R ω2
L sin[t ωL]

2− t2ω4
L(γ

2
1

−2γ1γ2+ γ2
2 −3ω2

21),

K2 = −18Ω02

R sin[t ωL]
2+ t2ω2

L(γ
2
1

−2γ1γ2+ γ2
2 +9ω2

21),

K3 = (γ1− γ2)[18t Ω02

R ω4
L sin[t ωL]

2

−9t3ω2
21ω6

L −3t3ω6
Lγ2

1 ]+ t3ω6
L(γ

3
2 − γ3

1),

K4 = K3+
3
√

t ω8
L(γ1− γ2)2+K2

2 +K3
1. (11)

For each eigenvalueλi , we determine the
corresponding eigenvectors.

Hence, we get the transition matrix of the matrix
(

t
∫

0
A(τ)dτ

)

, and denoted byH, the Jordan formJ of the

matrix A(τ) is a diagonal matrix with the eigenvaluesλi
on the diagonal:

J = H−1





t
∫

0

A(τ)dτ



H

=







λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4






. (12)

Then

Φ(t) = H exp(J)H−1
. (13)

Thus, the general solution of the homogeneous system
is given by

X0 = Φ(t)C. (14)

Thirdly:
We find a particular solution X1(t) of the

nonhomogeneous system equation(6) such that

ρ(t) = X0+X1

= Φ(t)C+X1. (15)

In accordance with the method of variation of
parameters (Lagrange method), we replace the constant
vectorC with the vector functionC(t).

ρ(t) = Φ(t)C(t) (16)

Substituting this equation(16) into the nonhomogeneous
system equation(6), we find the unknown vectorC(t):

B(t) = Φ(t)Ć(t). (17)
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The derivative of this function is given by the relation

Ć(t) = Φ−1(t)B(t) (18)

So

C(t) =
∫ t

0
Φ−1(τ)B(τ)dτ (19)

Hence, we get the general solution of the
nonhomogeneous system equation(6)

3 The atomic inversion

The atomic population inversion,〈σz〉 = ρz = ρ11− ρ22,
can be considered as one of the simplest important
quantities, it is defined as ”the difference between the
probabilities of finding the atom in its exited state and in
its ground state”.

4 The purity

-The evolution of the purityPS(t) is given by

PS(t) = 1−TrS(ρ2
S (t))

= ρ2
11+2|ρ12|2+ρ2

22 (20)

whereρS(t) is the reduced density matrix of the system
which is defined byρS(t) = TrF ρ(t).

Present calculations are performed by using the optical
Bloch equations withγ1 corresponding [19] to a lifetime of
1ns.

In the numerical results we consider
(ω21 = 1,Ω0

R = 1). In Fig. 1, we investigate the effect of
the total dephasing rateγ2, on the atomic occupation
probabilitiesρ11, ρ22, the atomic inversion and the purity.
We show that when the total dephasing rateγ2 = 1, the
occupation probability of the lower level starts from
maximum,ρ11 = 1, then it decreases until it reaches its
minimum value. Once the dephasing rate has decreased,
γ2 = 0.5, the minimum value ofρ11 decreases, and when
γ2 = 0.1 the minimum value ofρ11 decreases even more.
However, when the total dephasing rateγ2 = 1, the
occupation probability of the upper level starts from
minimum, ρ22 = 0, then it increases until it reaches its
maximum value. Once the dephasing rate has increased,
γ2 = 0.5, the maximum value ofρ22 increases, and when
γ2 = 0.1 the maximum value ofρ22 increases even more.
Hence, the decreasing total dephasing rateγ2 causes both
the minimum value ofρ11 to decrease and the maximum
value of ρ22 to increase relatedly. Also, when the total
dephasing rateγ2 = 1, the atomic inversion starts from
maximum value,〈σz〉 = 1, then it decreases until it
reaches its minimum value, after that the atomic inversion
decreases to〈σz〉 = 0.2 with small osculations. When
γ2 = 0.5, the minimum value of the atomic inversion
decreases until it reaches〈σz〉= 0 , and whenγ2 = 0.1 the
minimum value of the atomic inversion decreases also
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Fig. 1: Figures of the case in whichω21 = 1,Ω0
R = 1, where dot,

bold solid and grey curves correspond, respectively, to thetotal
dephasing rateγ2 (1,0.5 and 0.1t ≡ ωLt
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Fig. 2: Figures of the case in whichω21 = 1,γ2 = 1 where dot,
bold solid and blue curves correspond, respectively, to theRabi
frequencyΩ0

R (1,5 and 10t ≡ ωLt

until it reaches〈σz〉 = −0.2. We find that the increase of
the purity is remarkably related with the increase of the
time. The purity increases also remarkably, when the total
dephasing rateγ2 decreases. This means that the effect of
the field is very weak. This clearly shows the effect of the
total dephasing rateγ2.

In Fig. 2, we investigate the effect of the Rabi
frequencyΩ0

R, on the atomic occupation probabilitiesρ11,

ρ22, the atomic inversion and the purity. WhenΩ0
R = 1,

the atomic occupation probabilitiesρ11, ρ22, and the
atomic inversion have regular oscillations. When the Rabi
frequencyΩ0

R increases, it is noticed that, in the interval
0 ≤ ωLt ≤ 6, they have irregular oscillations. After that,
in the interval 6≤ ωLt ≤ ∞, they have regular and
periodic oscillations with a larger phase. However, when
the Rabi frequencyΩ0

R increases, the purity decreases
with small osculations. This clearly shows the effect of
the Rabi frequencyΩ0

R.

5 Conclusion

In this paper, we calculated the atomic occupation
probabilitiesρ11, ρ22, the atomic inversion and the purity
for some special values of the total dephasing rateγ2 and
the Rabi frequencyΩ0

R. It is obviouse that when the total
dephasing rateγ2 decreases, both of the minimum value
of ρ11 and the atomic inversion decrease, while both of
the maximum value ofρ22 and the purity increase
remarkably. When the Rabi frequencyΩ0

R increases, the
oscillations ofρ11, ρ22 and the atomic inversion become
irregular at first. Then they gradually become more
regular in shape and larger in phase. The purity, on the
other hand, decreases with small osculations. From the
above-mentioned we concluded that the changes of the
total dephasing rateγ2 and the Rabi frequencyΩ0

R have
remarkable effects on the atomic occupation probabilities
ρ11, ρ22, the atomic inversion and the purity.
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