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Abstract: Recently many signal processing and pattern recognition schemes have been developed to process ship radiated noise signals
to improve the detection and recognition accuracy of surface ships. In this paper, we propose a new target recognition scheme for
surface ship recognition that the contributions concentrate on feature selection and object classification. In the recognition scheme, first
multiscale sample entropy (Multi-SampEn) method is applied to extract the discriminating features from ship radiatednoise signals
which has good performance in analysis of discrete signal ofcomplexity. Then, in order to alleviate the parameter selection problem
and enhance the generalization performance in Multi-SampEn, the two multilinear subspace learning (MSL) methods, i.e., multilinear
principal component analysis (MPCA) and uncorrelated multilinear discriminant analysis (UMLDA) are respectively adopted for
feature extraction and dimensionality reduction. Finallyusing the extracted features as the inputs, we construct twoindividual support
vector machines (SVM) classifiers with different penalty constants for different classes, resulting in MPCA-SVM and UMLDA-SVM
for surface ship recognition. The performance of the proposed scheme is demonstrated on real data which was collected bya towed
array sonar on East China Sea in 2013. Experimental results show that Multi-SampEn for the analysis of ship radiated noise signals
outperforms the other methods.
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1 Introduction

In the last twenty years, detection and recognition of
underwater targets from acoustic signals had attracted
much interest, which included discrimination between
targets and non-targets and classification in different
types of targets. However in the detection and recognition
processes, several factors, i.e., non-repeatability,
competing clutter caused by the biological sources,
surface and bottom reverberation effects, and lack of prior
knowledge about the shape and geometry of the targets,
make the processes a very complex problem.
Consequently, an efficient and robust detection and
recognition scheme for automatic target recognition
(ATR) is needed to solve this complex problem.

In the ATR, many signal processing schemes [1,2,3,
4,5,6,7] had been developed to extract signatures of
underwater targets from acoustic signal. In [5], hidden
Markov model-based (HMM) method was used for the
representation of the multiaspect of underwater targets.

The experiment results demonstrated that the adaptive
sensing procedure yielded significant improvements in
the performance of detection and recognition. Liu [6]
respectively used wavelet transform to extract statistical
features of ship radiated signals and person-by-person
optimization (PBPO) approach to select the separability
features of target. The selected features were efficient for
different target classification. In [8], a wavelet
packet-based classification scheme was developed to
discriminate mine-like and non-mine-like objects from
the acoustic backscattered signals. In this scheme, a
fourth-order linear predictive coding (LPC) model was
fitted to each sub-band signal and the coefficients were
extracted as features. Using the extracted features as the
inputs, some statistical classification methods, i.e.,
probabilistic neural networks (PNN) [9], back
propagation neural network (BPNN) [8,10], and support
vector machine (SVM) [11] were used as classifiers of
ship radiated noise signals.
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Fig. 1: The scheme of Multi-SampEn-based surface ship recognition.

Though many techniques of feature extraction and
classification had been developed, features for classifier
are remarkably overlapped due to the complicated
mechanism of ship radiated noise [9]. Moreover referring
[8,12] it showed that the classification performance
would not be improved as more features were added.
Consequently, in detection and recognition of underwater
targets, many feature selection schemes [8,12,13,14,15]
were adopted to choose the best set of features to
represent the data. In [8], a statistical feature selection
scheme was adopted to select an appropriate set of
features as the inputs of a two-layer back propagation
neural network. The classification results demonstrated
the excellent discrimination performance of targets and
non-targets. Tai et al. [12] designed a sophisticated filter
method for feature selection, in which it combined several
feature relevance measures to provide a more
comprehensive assessment of the features. The selected
features could be able to separate objects of different
classes on real synthetic aperture sonar imagery data set.

It had been observed that excellent feature extraction
and feature selection were indispensable for detection and
recognition of underwater targets. Consequently, as
described in Fig.1, in this paper we propose a
Multi-SampEn-based ATR scheme for surface ship
recognition, which mainly includes four steps: surface
ship detection, feature extraction, feature selection and
surface ship recognition. In first step, conventional
beam-forming [16] is used on sonar array signal for
detection of surface ships, which could enhance the
signal-to-noise ratio (SNR) of ship radiated noise signals
by phase compensation among the adjacent hydrophone.
After the detection of surface ships, the combined array
signals are forwarded to the subsequent steps. Then
Multi-SampEn method [17,18] is used to quantify
nonlinear dynamics of ship radiated noise signals which
could not be disclosed by other conventional methods [1,
2,3]. In Multi-SampEn method, sample entropy
(SampEn) proposed by Richman and Moorman et al. [19,
20] is excellent for the description of nonlinear
characteristics of time series, so it could capture the
important nonlinear features of ship radiated noise
signals. Furthermore in view of ship radiated noise
signals affected by some other factors (e.g., reverberation

and source noise), it is desirable to extend the single-scale
SampEn to a multiscale framework for more exact
description. Compared with the traditional definition of
SampEn, we could acquire more desirable complexity
measures of ship radiated noise signals. In next step,
multilinear subspace learning (MSL) method [21,22,23]
is adopted for feature extraction and dimensionality
reduction. Finally using the extracted features as the
inputs, we construct an individual SVM classifier [24],
resulting in Mutil-SampEn-SVM, to validate the
effectiveness of the proposed scheme in surface ship
recognition.

The remainder of the paper is organized as follows.
Section 2 describes the Multi-SampEn method and the
multilinear subspace learning (MSL) method,
respectively. The data set of ship radiated noise signals is
addressed in section 3. Section 4 provides the
experimental results. Finally, Section 5 ends this paper
with concluding comments.

2 Materials and methods

In the ocean environment, many factors caused by the
organisms in the water column, bottom and surface
reverberation of the sea and ocean noise etc., reduce the
SNR of ship radiated noise signals, and increase the
difficulty of underwater target recognition. Thus, in the
underwater target recognition, the primary task is to
process the data of ship radiated noise signals to isolate
the noise and enhance the discrimination measurement. In
this paper a Multi-SampEn method and MSL method are
respectively introduced to exploit ship radiated noise
signals for surface ship recognition.

2.1 Multiscale sample entropy (Multi-SampEn)

1) Sample entropy. In [19,20], Richman and Moorman et
al. proposed a modification of approximate entropy
(ApEn) algorithm named sample entropy (SampEn).
SampEn is a measure of the complexity and predictability
of a time series and thus can be used to describe the
nonlinear characteristics of ship radiated noise signals.
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Compared with ApEn algorithm there are two
improvements in SampEn algorithm.

a. The value of SampEn is very robust against the
values of the input parameters.

b. The probability measure is calculated directly as the
logarithm of conditional probability instead of the ratio of
the logarithmic sums, which could enhance the accuracy.

In the following content, we describe the procedure of
the SampEn algorithm in more detail.

First, given N data points of original signalx(i) i =
1,2, . . .N, the new seriesXm(i) with the dimension m is
then constructed by,

Xm(k) = [x(k),x(k+1),x(k+2), . . . ,x(k+m−1)], (1)

wherek= 1,2, ...N−m+1.
Second, the quantity of constructed sequences could

be calculated by,

Bm
i (r) =

1
N−mnum{d[X(i),X( j)]< r},

i = 1,2, . . .N−m+1,
(2)

whered[Xm(i),Xm( j)] is the Euclidean Distance between
the vectors withm dimensions, andr is the threshold.
Referred to [19], the input parameters ofm andr could be
fixed.

Finally the regularity parameter of SampEn is defined
as

SampEn(m, r) = lim
N→∞

{
− ln[Bm+1(r)/Bm(r)]

}
, (3)

whereBm(r) = (N−m+1)−1∑N−m+1
i=1 Bm

i (r).
2) Multiscale approach. In virtue of only supplying a

single index concerning the general behavior of the time
series by ApEn and SampEn, Costa et al. [25,26,27]
introduced the so-called multiscale entropy approach to
reveal the underlying dynamics of the generating system
and quantify the regularity of time series. Compared with
the traditional definition of entropy, it has the desirable
property of yielding higher complexity and is a more
meaningful measure of complexity by calculating entropy
over multiple scales.

Then we briefly describe the multiscale approach.
Based on N data points of original signalx(i)
(i = 1,2, . . .N) the consecutive coarse-grained time series
could be constructed by,

y(τ)j =
1
τ

jτ

∑
i=( j−1)τ+1

xi ,1≤ j ≤
N
τ
, (4)

whereτ is the scale factor. For scale 1, the coarse-grained
time series is the original time series. Then we calculate
the entropy for each one of the coarse-grained time series
{y(τ)}. Then the new coarse-grained seriesYm(i) with the
dimensionm is then constructed by,

Ym(k) = [y(τ)(k),y(τ)(k+1), . . .y(τ)(k+m−1)]. (5)

Finally by computing the SampEn of each new coarse-
grained series, we could obtain the Multi-SampEn-based
tensor for the description of ship radiated noise signals.

2.2 Multilinear subspace learning for
dimensionality reduction

Multilinear subspace learning (MSL) [23] is recently
proposed for dimensionality reduction of
multidimensional data directly from their tensorial
representations. Compared with the traditional linear
subspace learning, multilinear subspace learning is much
simpler and more efficient in representation of data, and
could save more information. In this section, we will
introduce two multilinear subspace learning methods, i.e.,
multilinear principal component analysis (MPCA) and
uncorrelated multilinear discriminant analysis (UMLDA).

1) Multilinear principal component analysis (MPCA).
In [21], Lu and Plataniotis et al. proposed a MPCA
framework for dimensionality reduction and feature
extraction of tensor object. The core of MPCA is the
determination of a multilinear projection for capturing
most of the original tensorial input variations that the
projected tensor objects are used for classification. Thus
the MPCA could be used for dimensionality reduction on
Multi-SampEn-based tensor.

Given a set ofM tensor objects{x1,x2, . . .xM} for
training, wherexm ∈ RI1×I2×···×IN that the values are in
tensor space RI1

⊗
RI2 . . .

⊗
RIN , MPCA intends to define

a multilinear transformation{Ũ
(n)

∈ RIn×Pn,n= 1, . . . ,N}
to map the original tensor space RI1

⊗
RI2 . . .

⊗
RIN into a

tensor subspace RP1
⊗

RP2 . . .
⊗

RPN

(Pn < In,n = 1, . . .N). The projected tensor of original
tensorxm is,

ym = xm×1 Ũ
(n)T

×2 Ũ
(n)T

. . .×N Ũ
(n)T

(6)

where{ym ∈ RP1
⊗

RP2 . . .
⊗

RPN} andm= 1, . . . ,M.
In order to capture most of the variations observed in

the original tensor objects, the total tensor scatter is
adopted to measure the variations. In other words, by
maximizing the total tensor scatterΨy, the N projection

matrices{Ũ
(n)

∈ RIn×Pn,n= 1, . . . ,N} are determined by

{Ũ
(n)
,n= 1, . . . ,N} = arg max

Ũ
(1)

,Ũ
(2)

,...,Ũ
(n)

Ψy. (7)

To solve (7), the MPCA utilizes an iterative procedure
that the more details please refer to the pseudocode of
MPCA algorithm in Fig.3 of [21].

2) Uncorrelated Multilinear Discriminant Analysis
(UMLDA). UMLDA [ 22] was proposed by Lu et al. for
feature extraction and dimensionality reduction. In
UMLDA, it could extract uncorrelated discriminative
features directly from tensorial data by solving a
tensor-to-vector projection (TVP). Thus we could adopt
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Table 1: Details of collection condition of ship radiated noise signals

Name of ship Depth of sea (m) Length of array (m)
Minimum distance between

Sea condition
sonar and ship (m)

Mingying 38 10 450 2 level
Huadong 38 10 1008 2 level
Shunlong 38 10 270 2 level
Henghai 38 10 424 2 level

Buena Esperanza 38 10 686 2 level
Gangtong 38 10 437 2 level

UMLDA for feature extraction and dimensionality
reduction on Multi-SampEn-based tensor.

Given a set of training tensor object samples
{x1,x2, . . . ,xM}, xm ∈ RI1×I2×...×IN , where M is the
number of training samples andIn is the n-mode
dimension of the tensor, the objective of UMLDA is to
find a TVP, which consist of a set ofP elementary
multilinear projections (EMP)

{u(n)p ∈ RIn×1,n= 1, . . . ,N}
P

p=1. Thus the original tensor

space RI1
⊗

RI2 . . .
⊗

RIN is mapped into a vector
subspace RP(P< ∏N

n=1 In) by,

ym= xm×N
n=1{u(n)

T

p ,n= 1, . . . ,N}P
p=1,m= 1, . . . ,M, (8)

whereym is the projected feature of the samplexm andP is
the number of projection vectors.

In UMLDA, in order to determine a set ofP EMPs

{u(n)
T

p ,n = 1, . . . ,N}P
p=1, it needs to maximize the scatter

ratio while producing features with zero correlation. Thus,
the objective function for thepth EMP is

{u(n)
T

p ,n= 1, . . . ,N} = argmaxFy
p

subject to
gT

pgq

‖gp‖‖gq‖
= δpq, p,q= 1, . . . ,P,

(9)

whereδpq is the Kronecker delta,gp is thepth coordinate
vector andFy

p is the classical Fisher’s discrimination
criterion (FDC), i.e., scatter ratio in linear discriminant
analysis (LDA) which is defined as,

Fy
p = Sy

Bp
/Sy

Wp
(10)

where Sy
Bp

and Sy
Wp

are respectively the between-class
scatter and the within-class scatter and are defined as,

Sy
Bp

=
C

∑
c=1

Nc(ycp
− yp)

2 (11)

Sy
Wp

=
M

∑
m=1

(ymp
− ycmp

)2 (12)

whereC is the number of classes,Nc is the number of
samples for classc, cm is the class label for themth
training sample, yp = (1/M)∑mymp = 0 and

ycp
= (1/Nc)∑m,cm=c ymp. Then, referring to [28] the

successive determination approach is adopted in UMLDA
to solve this problem. More details of the implementation
of UMLDA, please refer to the pseudocode in Fig.3 of
[22].

3 Ship radiated noise signal data set

The performance of the proposed classification scheme is
evaluated on real measured ship radiated noise signals
which are collected by towed array sonar. The towed
array sonar includes 6 hydrophones in which the interval
of each hydrophone is 2 m and the sampling frequency is
27 kHz.

More specifically, in the classification experiments,
we adopt ship radiated noise signals of six ships collected
by towed array sonar on East China Sea in 2013. In the
collection of ship radiated noise signals the towed array
sonar is located and then respectively collect ship radiated
noise signals of each ship which sails from far to near at
low speed. The details of collection conditions are
summarized in Table 1.
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Fig. 2: Ship radiated noise signals after CBF.

Furthermore, in order to improve SNR of ship
radiated noise signals a preprocessing step, i.e.,
conventional beam-forming (CBF) is adopted for the
array signals. The ship radiated noise signals after CBF
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Fig. 3: The mean SampEn values of different kinds of surface ships with m= 2 andr = 0.2 at different scales.

Table 2: Details of data set of ship radiated noise signals

Name of
Code

Number of Time of
ship sample sampling (s)

Mingying A 37 10
Huadong B 57 10
Shunlong C 59 10
Henghai D 53 10

Buena Esperanza E 25 10
Gangtong F 49 10

are depicted in Fig.2 that will be used in subsequent
feature extraction and classification. In the study, the long
data record of ship radiated noise signals is broken into
overlapped short segments. By randomly selecting a
stable segment of 10s data, we construct a data set of ship
radiated noise signals. Details of the data set are given in
Table 2, from which a little of imbalance in different
categories need to be noted.

4 Experiment results

In this section, Multi-SampEn was performed on
constructed data set of ship radiated noise signals. In
order to evaluate the performance of Multi-SampEn, two
experiments were conducted. Specifically complexity
analysis would generate multiple ”look” of the
complexity of ship radiated noise signals. Classification
experiment would present the performance of surface ship
recognition.

4.1 The complexity analysis of ship radiated
noise signals

In the complexity analysis, the SampEn values of ship
radiated noise signals are calculated at different scales,
i.e., τ = 1,5,10,15,20,25,30, and 40 withm = 2 andr =
0.2, and thus a 8-dimensional feature vector of ship
radiated noise signals is derived. As depicted in Fig.3, for
scale one, the mean SampEn values of different kinds of
surface ships are similar that are indistinguishable for
each surface ship. However, in some other scales the
separation among the mean SampEn values of different
kinds of surface ships is distinguishable. Therefore, in
this respect Multi-SampEn could achieve more
meaningful measure of the complexity of ship radiated
noise signals for surface ship recognition.

4.2 The classification experiment of ship
radiated noise signals

In order to verify the effectiveness of Multi-SampEn in
surface ship recognition, we constructed an individual
SVM classifier, resulting in Mutil-SampEn-SVM which
was trained by using the constructed data with the
SampEn values of each coarse-grained time series. To the
end, we tested the classification methods by classifying
six kinds of surface ships. In the experiment, in order to
efficiently achieve surface ship recognition the following
two issues were needed to solve:

1) To investigate the dimensionality reduction on
Multi-SampEn-based tensor;

2) To solve the problem of imbalance of samples in the
surface ship recognition experiment.
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In order to solve the two issues, MSL method and the
classifier with different penalty constants method were
respectively adopted.

Specifically, the SampEn values of ship radiated noise
signals were calculated at different scales with different
values of parameters, i.e.,τ = 1,5,10,15,20,25,30, m =
1, 2, 3, 4, 5, 6, 7, 8, 9, 10 andr = 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1, and then the calculated values of
Multi-SampEn were represented as 7×10×10 tensor. In
view of alleviating the parameter selection problem and
enhancing the generalization performance, in
Multi-SampEn-based surface ship recognition the two
multilinear subspace learning (MSL) methods, i.e.,
MPCA and UMLDA were respectively adopted for
feature extraction and dimensionality reduction from the
tensor. Using the extracted features as the inputs, we
constructed two individual SVM classifiers resulting in
MPCA-SVM and UMLDA-SVM. Finally we adopted the
10-fold cross-validation method to evaluate the accuracy
of the proposed scheme, where the MPCA-SVM and
UMLDA-SVM respectively achieved the classification
accuracy of 68.21% and 69.64%, and the mean
classification accuracy of 65.17% and 66.19%. As shown
in Table 3, the classification accuracy and the mean
classification accuracy of the proposed scheme were
remarkably higher than the Mutil-SampEn-SVM with the
optimal parameters. Besides in the proposed scheme it
alleviated the parameter selection problem and enhanced
the generalization performance in the surface ship
recognition.

Table 3: The rusults of different classification methods

Method
Total Accuracy (%)
/Mean Accuracy (%)

Mutil-SampEn-SVM
60.36/57.87

(optimal parameters)
Mutil-SampEn-SVM

50.36/47.33
(all parameters)
MPCA-SVM 68.21/65.17

UMLDA-SVM 69.64/66.19

In virtue of the imbalance of samples in SVM
classifier, we adopted the different penalty constants for
different classes in surface ship recognition [29]. As
shown in Table 4, the mean classification accuracy of the
proposed scheme obviously increased which showed the
proposed scheme was more significant for surface ship
recognition.

In order to provide a comprehensive evaluation, we
compared the performance of the proposed scheme with
SVM with other individual feature extractor, i.e., ApEn
[30], and SampEn [31], thus we constructed two
individual SVM classifiers, i.e., ApEn-SVM and
SampEn-SVM. Then the 10-fold cross-validation method

Table 4: The rusults of different classification methods with
different penalty constants

Method
Total Accuracy (%)
/Mean Accuracy (%)

ApEn-SVM 42.14/41.67
SampEn-SVM 44.29/44.01

Mutil-SampEn-SVM
56.79/56.14

(optimal parameters)
Mutil-SampEn-SVM

47.50/46.89
(all parameters)
MPCA-SVM 67.14/66.67

UMLDA-SVM 68.93/68.29

was adopted to assess the classification accuracy. From
Table 4, one could see that, the proposed scheme could
obtain much higher classification accuracy and mean
classification accuracy than any individual classifier,
which verified that the Multi-SampEn was much more
effective for the analysis of ship radiated noise signals in
surface ship recognition.

Table 5: The confusion matrix of the UMLDA-SVM

Predicted

A
ct

ua
l

A B C D E F
A 25 5 3 3 0 1
B 2 40 6 5 1 3
C 2 5 43 6 1 2
D 2 4 4 37 2 4
E 1 2 3 1 16 2
F 1 3 6 4 3 32

In Table 5 we listed the confusion matrices of the
recognition results by the UMLDA-SVM. As show in
Table 5, the UMLDA-SVM could achieve comparable
classification accuracy for different ships.

5 Discussions and conclusions

In this paper, we adopt an effective nonlinear analysis
method, i.e., Multi-SampEn, for the analysis of ship
radiated noise signals in surface ship recognition. The
method could measure the degree of complexity of ship
radiated noise signals on different scales. Compared with
other nonlinear analysis methods, e.g. ApEn, and
SampEn, Multi-SampEn could achieve more valuable
information from the hidden properties of ship radiated
noise signals.

To evaluate the performance of Multi-SampEn, the
complexity analysis and the classification experiments are
respectively carried out on data set of ship radiated noise
signals. In the complexity analysis, by the comparison of
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the mean value of Multi-SampEn, we find it could
achieve more meaningful measure of complexity and
yield consistent findings of ship radiated noise signals for
different ships.

In the classification experiments, firstly the calculated
Multi-SampEn values of ship radiated noise signals are
represented as third-order tensor. Then in order to
alleviate the parameter selection problem and enhance the
generalization performance in Multi-SampEn, two MSL
methods, i.e., MPCA and UMLDA are respectively
adopted for feature extraction and dimensionality
reduction from the tensor. Finally using the extracted
features as the inputs, we construct two individual SVM
classifiers with the different penalty constants for
different classes, resulting in MPCA-SVM and
UMLDA-SVM for surface ship recognition.
Experimental results show that the proposed scheme
respectively achieves the classification accuracy of
67.14% and 68.93%, and the mean classification accuracy
of 66.67% and 68.29%. The performance of surface ship
recognition outperforms the other methods.

For future work, we will further investigate proper
nonlinear analysis methods and develop more effective
classification methods for surface ship recognition.
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