Appl. Math. Inf. Sci.10, No. 4, 1565-1570 (2016) %N =) 1565

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100435

Computer Construction and Enumeration of All Tp and
All Hyperconnected Ty Topologies on Finite Sets

A. S Farrag, A. A. Nasef? and R. Mareay®*

1 Department of Mathematics, Faculty of Science, Sohag Wsitye Sohag, Egypt
2 Department of Physics and Engineering Mathematics, BaofiEngineering, Kafrelsheikh University, Kafr El-SheikB516, Egypt
3 Department of Mathematics, Faculty of Science, Kafreldhelniversity, Kafr EI-Sheikh 33516, Egypt

Received: 13 Dec. 2013, Revised: 21 Aug. 2015, Accepted: 22 2015
Published online: 1 Jul. 2016

Abstract: There are many axioms on the principal topological spaces. af the interesting axioms are tfig and hyperconnected
topological spaces. There is a well-known and straightfmdacorrespondence (cf2]j between the topologies on finite 9% of

n points and reflexive transitive relations (preorders) oos¢hsets. This paper generalizes this result, charactettieeprincipal
hyperconnectedp-topologies on a nonempty s¥tand gives their number on a s§t. It mainly describes algorithms for construction
and enumeration of all weaker and strictly weaRgrand nTp-topologieson onX,. The algorithms are written in fortran 77 and
implemented on pentiuri 400 system.
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1 Introduction proper subsets of it. In a principal spacg 1) the S-open
set and the minimal open set are identical andStasis

The ultratopology on a seK is the strictly weaker i.e., the basis consists only 8fopen sets is the minimal
topology onX than the discrete topolody on X and the  basis fort. In [3], Farrag gave formulas for the numbers
infratopology onX is the strictly finer topology oX than  of the topologies,hyperconnected afidtopologies on a
the indiscrete topologl on X. In [6] Frohich defined the finite setX, of n points. In ] Evan et al. established a
ultratopology on a seX to be a strictly weaker topology correspondence between all topologies on aXgedf n
than the discrete topolody on X. The ultratopologies on points and all preorders aX,. In [7] Jason and Stephen
X are divided into two classes the principal and gave the number of all preorder relations on agetnd
nonprincipal ultratopologies oK. In [9] Mashhour and  so the number of all topologies of. In [4,5], Farrag and
Farrag showed that the principal ultratopology on aXéet Sewisy described algorithms for construction and
is the topology having the minimal basis enumeration of topoloigies on a s&t. Many authors deal
Byz = {{x}.{y.z} : xe X—{z}}, wherey andz are two  with problem of the number of topologies &j as [B,13]
distinct points ofX and denoted byy,. In [14] Steiner  and others. Fuzzy topological spaces and algorithms for
defined a minimal open set in a topological sp&er)to comparison of Fuzzy sets are described ¥ 1].
be the open set containing the poiand contained in
each open set containing The first author defined a
principal topology on a seX to be the topology orX 2 On the Tp and hyper connected Tp-topologies
having the minimal bases that consist only of open sets
minimal at eactx € X. It is proved that a topologyona  Throughout this paper the topologyon a nonempty set
setX is principal iff arbitrary intersections of members of X is an excluding topology if there is a poipte X such
T are members of. that p ¢ U{G: G € T — {X}}: or equivalently if X is

In [9]Mashhour et al., defined th&open set in a minimal at some of its points. Such family of topologies
topological spacéX, 1) to be the open set which cannot will be denoted by E-topologies. It is a particular
be written as a union of distinct open sets which aretopology if there is a pointp € X such that
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pen{G:Ge 1—{0}} in such topologiexX may and

(2.1) and introduce two equivalent easy but main and

may not be minimal at any of its points. Such family of important results as follows:

topologies will be denoted byp-topologies. Uy will
denote the minimal open set at the poifibr eachx € X.
We denote a hyperconnected topologyhiopology and
write nR for non R or notR whereR is Tg,E,h, p or Eh
andEh means botte andh. If Q is a family of topologies
on a finite se¥, of n points, therN,(Q) will denote the
number of theQ-topologies onX,. If T is a topology on
Xnthen Ny(7)(Q) is the number of all weaker
Q-topologies onX, thant. Theorem 2.1. [5] Let (X, 1)

and (X,7*) be principal spaces an be the minimal
basis fort. Then,t* is strictly weaker tharm iff there are
two distinct pointsy, z € X satisfying the conditions.

1)y ¢ UZ!
2)z € Uy andx ¢ Uz imply thaty € Uy,
3)x € Uy andy ¢ Uy imply thatx € Uy,

and ™ = 1N Dy, = 1y, having the minimal basis
Byz - {Ux,UyUUZ : UX S B - {Uz}}

If we add the conditioty UU; # X to the conditions

Theorem 2.6. The topologyt* on a nonempty seX is
a strictly weaker principal topology than a principit
topology 1 on X iff there are two distinct pointg,z € X
such that:

Ly & Uz,
2)z € Uy implies thaty € Uy,
3)x € Uy implies thatx € Uy,

such thatt* = 1y, = TN Dy, and its minimal basis iy, =
{Ux,UyUU; : xe X —{z}}.
And we have the following two corollaries.

Corollary 1.Thetopology 1y is Tg iff z¢ Uy,
Corollary 2.The topology 1y, isnTp iff z€ Uy,

whereUy € T is the minimal open set gt

Theorem 2.7. A principal To-topological spacéX, 1) is h
iff there is a point p € X such that
N{GeT1:G#0} ={p}.

of Theorem 2.1, then one can obtain all strictly weaker nonpy o5 | N{G e 1:G+#0} = {p}, then(X, 1) ish.

E-topologies orX thant.

Theorem 2.2. [3] The number of all topologies on a finite
setX, of n points is given by:

No = 375 C'Nr + Nn(NE)

WhereNp = 1 andN; is the number of all topologies on a
setX;,n> 0.

A topological spacéX, 1) is hyperconnectedLfl] or
irreducible [LQ] iff the intersection of any two nonempty
open sets is nonempty.

Theorem 2.3.[5] A principal topological spacéX, 1) ish
iff N{G e 1:G+#0} 0 iff Tis aP-topology onX.
Theorem 2.4. [3] The number of alh-topologies on a set
Xn of n points is given by:

Nn(h) = 37=5C'Ne

WhereNg = 1 andN; is the number of all topologies
onX,,n>0.

Theorem 2.5. A principal topological spacéX, 1) is Ty

iff Ux # Uy iff x € Uy implies thaty ¢ Uy for each two
distinct pointsx,y € X.

Proof. Suppose that,y € X are any two distinct points. If
Uy # Uy thenx ¢ Uy ory ¢ Uy which implies tha(X, 1) is
To.

Conversely; if(X, 1) is To,then there is an open IBte
T such thatx e Gandy ¢ Gorye Gandx ¢ G. If xe
G,thenUy C G and soy ¢ G implies thaty ¢ Uy which
implies thatUy # Uy.

As a consequence of Theorem (2.5),(K,7) is a

Conversely, if(X,T) is h, then by Theorem (2.3){G €
T:G#0} =U # 0. Sincer is principal,ther € 1 is the
minimal open set at each of its points ands Ty implies
that there is a poinp € X such that) = {p}.

Theorem 2.8. The number of alllp-topologies on a sef,
of n points is given by:

Nn(To) = NNh—1(To) + Nn(NETo)

whereN,_1(Tp) is the number of alllp-topologies on a
set ofn— 1 points.

Proof. Evidently (X,, T) is notTy if X, is minimal at more
than one of its points. So, §f is the minimal basis for &-
topology onX,_1 = X, — {p}, wherep € X, is any point.
Then,B* = {U, X, : U € B} is the minimal basis for @-
topology.t* on X, in which X, is minimal at the poinp.
This completes the proof.

Theorem 2.9. The number of alhTp-topologies on a set
Xn of n points is:

Nn (hTo) = nanl(To)

Proof. Suppose thak, is a set ofn points, p € X, and
Xn-1 = Xn — {p}. If B is the minimal basis for a
To-topologyT onX,_1, thenBp = {{p},UU{p}:U € B}
is the minimal basis for amTo-topology 7, on X, and
each weaker topology tharp is h. This completes the
proof.

In [2] Evans et.al. Induced a correspondence between
the reflexive transitive relations and the topologies orta se
Xn of n points. We generalize this result to the principal

principal To-topological space one can reform Theorem topologies on any nonempty sétas follows:
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Theorem 2.10. Let X be a nonempty set, then there is a 2)If U; = Uj,then the rows of the numbeisand j are
correspondence between the preorders and the principal coincide.

topologies orX.

Proof. If X is a nonempty set; is a principal topology on
X andp = {Uyx: x € X} is the minimal basis for,where
Uy is the minimal open set at the poixfor eachx € X.
Define the relatiorP = {(x,y) : y € Ux} asx varies on
X.Then, (1)(x,x) € P because € Uy for eachx € X. So
Pis reflexive. (2) For any points,y and z of X if
(x,y) € P,theny € Uy and (y,z) € P implies thatz € Uy.
Hence z € Ux which implies (x,z) € P and soP is
transitive.

Conversely; if P is a preorder relation onX and
Uy ={y e X:(xy) € P} asx varies onX. Then, (1)
U{Ux;x € X} = X because® is reflexive (2) Ifx,y are any
two distinct points of X and z € Uy NnUy, then
(X,2),(y,2z) € P. Now u € U, implies that(zu) € P and
since P is transitive(x,u), (y,u) € P, which implies that
U, C UxNUy. Therefore = {Uy: x € X} is a basis for a
topologyt on X. If x e X andG € 1 such thak € G,then
there is a poiny € X for whichx € Uy C G which implies
that (y,x) € P. Now z € Uy implies that(x,z) € P and
sinceP is transitive, then(y,z) € P, which implies that
z € Uy which implies thatJy C G which implies thatr is
a principal topology oIX.

Theorem 2.11. If P is the preorder relation on a
nonempty seX corresponding to the principal topology
on X. Then, the topology is:

1)Ty iff Pis partial.

2)hiff there is a pointp € X such thatx, p) € P for each
xe X.

3)E iff there is a pointp € X such tha{ p,x) € P for each
xeX.

A)Eh i.e bothE andh iff there are two pointg,q € X
such(p,x), (x,q) € P for eachx € X.

3 Proposed algorithm

3)Each columnj of the matrix has at least nonzero
elementthat i) (j, j) for eachj € X,.

4)When we say a singleton row (column)Uf(i,j) =0
for eachj € X, —{i},(U(i,j) = O for eachi € X, —

i).
5)The full columnj is such that (i, j) = j for eachi €

Xn.

6)The full rowi is such thatJ (i, j) = j for eachj € X,
in such caseJ); = X,.

7)The output of the program will be matrices of the
mentioned properties and each of which represents a
basisf* for a topologyr* on X, weaker tharr.

Theorem 3.1. [4] A topology T on a seiX,, is h or P(E) iff

the matrix which represents its minimal bagigor 7 has
a full column (a full row).

Theorem 3.2. A topology T on a setX, is To(nTp) iff the

matrix which represents its minimal basf® has no
coincided rows (at least two coincided rows).

Remark.The minimal bases for theE-topologies onX,
represented by the matrices which has no full rows and
the minimal bases fonh-topologies represented by the
matrices which has no full columns. In both cases for any
two distinct pointsi, j € X, there is a poink € X, such
thatU (i,k) £ U (j,k).

Remark.The minimal bases for thehnET, and
EnhTp-topologies on X, can be easily obtained by
obtaining the matrices representing the minimal bases for
all To-topologies each of which has a full column and no
full rows and the matrices each of which has a full row
and no full columns.

Remark.By using Theorem (3.2) one can easily obtain the
minimal bases for allhTp-topologies onX,. This by
obtaining the matrices that represent the minimal bases
for all To-topologies onX, each of which has a full
column.

Remark.One can easily obtain the minimal bases for all

We present an algorithm in Fortran 77 for construction ETp-topologies onX, by obtaining the matrices which
and enumeration of all strictly weaker and all weaker represent the minimal bases for aj-topologies onX,

To, ETo, NETp, hTo7 nhTo7 EhT()7 nEﬂhT()7 EnhTo, hﬂETo7
NEhTy, nTo, ENTg, NENTo, hnTg, nhnTy, EhnTy, NEnhn T,
EnhnTy, hnEnTy, NnEhnTy-topologies onX,.

Suppose thaX, = {1,2,3,...,n}, in the data of our
program for constructing the minimal bases for
topologies onX,,we present the minimal basf$ for a
given topologyt on X, by ann x n matrix [U (i, j)]. If
Ui € B is the minimal open set at X, then,

1)The row number of this matrix[U (i, j)] representy);
andU (i, j) of this row is such that:

o ifjey

Vg = {o it | ¢ U

each of which has a full row.

Remark.One can obtain the minimal bases for all
nTp-topologies  To-topologies) by obtaining the
matrices,which has two distinct coincided (no coincide)
rows using Theorem (3.2).

Remark.It should be noted that
Nn(ETO) - Nn(hTo),Nn(nETo) - Nn(nhTo),
Nn(EnhTo) = Nn(hnETo), Nn = Nn(To) + Na(nTo),

Nn = Nn(ETo) + Na(nETp) = Nn(hTo) + Na(nhTp) =
Nn(EhTo) + Nn(nEhTo) and
Np(NEhT) Nn(EnhTp) + Np(hnETp) + Np(nEnhTp)
whereN, are the number of all topologies of3. We have
similar equations for the same classes of
nTp-topologies.

the
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3.1 Algorithm (X, B,N) {6},{6,7},{5,8},{9,10},{10},}. Where B is the
minimal basis for dp-topologyTon X,.

Remark.This algorithm constructs and enumerates theOutput:

minimal bases for all strictly weakefly and nTp (&) Using algorithm (3.1) with the Corollary (2.7) to

topologies than a givefy-topologyt on X,. obtain all minimal bases for the strictly weaker
This algorithm is the algorithm in4] and we may or  Tp-topology on X than the topologyr which are 17

may not check the conditions of Theorem (2.6) in stead ofbases. We write the first and the end of them:

the conditions of the proposition id][which used in this  (3(10,7)

algorithm. This is together with the checking of: {{1,5,8},{2,6},{3,9,10},{4},{5},{6}.{6,7,10},{5, 8}

{9,10},{10}).

(b) Using algorithm (3.9) with the Corollary (2.8) to

obtain all minimal bases for the strictly weaker

Xn thant. _ :
2)The condition of the Corollary (2.8) to obtaining the E;()Sgps\l/%gxrﬁgatzJZ?IJ%I??L?”{. on Xgo which are 4

minimal bases for all strictly weakefy-topologies on 3(9,10

1)The condition of the Corollary (2.7) to obtaining the
minimal bases for all strictly weakdp-topologies on

% thant. ({L5.8),(2.6}.{2.9.10}, {4}, {5}, {6}. (6.7}, (5.8},
{9.10}}.
. (c) Using algorithm of 4] to obtain the minimal bases for

3.2 Algorithm all strictly weaker topologies oMy than the topologyt
on X10 which are 21 bases. These are just the union of the

(Xn, B(T0), Bn(To),Nn(To), Ba(ETo),Nn(ETo), Ba(NETo), To and nonTg-topologies obtained in (a) and(b).

Bn(hTO)v Nn(hTO)a Nn(nhTO)v Bn(EhTO)v Nn(EhTO)v

Bn(NENhTo), Nn(NENhTo), Ba(ENnhTo), Nn(EnhTo), Example2Input: ~ Xs = {1,2,3,456}  and

Bn(hNETo), Nn(hnETo), Bn(NENTo), Nn(NETo), B ={{1}.{2},{3}.{4}.{5}.{6}}.

Bn(nTO)a Nn(nTO)aBn(EnTO)a Nn(EnTO)a OUtpUt.: . . -,

Bn(NENTo), Nn(NENTo), Bn(hnTo), Nn(hnTo), (a) Using algorithm (3.10) with the condition of the

Bn(nhnTo), Nn(nhnTg), Bn(EhNTo), Nn(EhNTo), Corol'lary (2.7) to qbtam the minimal bases for' all

Bn(NENhNTy), N (NEnhnTo), Br(EnhnTo), Np(EnhnTo), nondlscrete'l'o-topqlogles o%. ThegeTo-topoIog|es will

Bn(hNENTo), Nn(hnENTo), Bn(NERNTo), N (NEhNT)). also be divided into nine classes of

E,nE, h,nh,Eh,nEnh, Enh, hnE and nEh-topologies. We
Remark.This algorithm constructs and enumerates thewrite the number of each class and some of each of
minimal bases for all weakenETy-topologies and all  \which.
To-topologies orX, than a givenip-topologyt onX,. If T
is the discrete topology oX, then we obtain the minimal
bases for alllp and allnETyp-topologies orXy.

i)The number of all Tp-topologies on Xg is
Ns(To) = 130023 and:

(130022 _
This algorithm is algorithm of§] together with the {Xe, X6 — {1},{3,4,5,6},{4,5,6},{5,6},{6}}.
checking of the condition of the Corollary (2.7). This i)The number of all ETo-topologies on Xs is
leads to obtaining the minimal bases for all wedkgand Ne(ETo) = 25386 and:
nETo-topologies orX, than a given topology on X. B(25386 =
The minimal bases for theTy-topologies onX, can {Xe, X6 — {1},{3,4,5,6},{4,5,6},{5,6},{6}}.
not be obtained directly by using the algorithm 6f gnd i) The number of all nondiscreteETo-topologies orXg
the Corollary (2.8) because the ultratopologiesXérare is Ng(NETo) = 104637 and:

all To. So, the algorithm of] to obtaining a store of the B(104636
matrices,which represents the minimal bases for all {Xs—{2},Xs—{1},{3,4,5,6},{4,5,6},{5,6}, {6}}

weaker topologies oX, than the giverily-topology T on v)The number of all To-topologies on Xs is
Xn. Then, use the condition of Theorem (3.2) to select Ne(hTo) 25386 and:
from the store all weakerTo-topologies onX, thant. Of B(25386
course by using Theorem (3.2) one can also selected all {Xe —{2},Xs—{1},{3,4,5,6},{4,5,6},{5,6}, {6}}
weakerTp-topologies orX, thant. v)The number of all nhTo-topoIog|es on Xg
Ne(nhTo) = 104637 and:
B(104636 _
4 Computer experiments {Xe, X6 —{1},{3,4,5,6}.{4,5,6}, {5}, {6}}.

vi)The number of all hnETp-topologies on Xg is

In this section the proposed algorithms are demonstrated NG(hnETO) = 18816 and:

by applying them to different finite sets and bases. (18818
Y aPPYIng X (2}, %~ {1}.{3.4.5.6}.{4.5.6}. (5.6}, {6}.
Example L.Input: X0 = {1,2,3,4,5,6,7,8,9,10} and vi)The number of all EnhTp-topologies on Xg is

B =1{{1,5,8},{2,6},{3,9,10}, {4}, {5}, Ns(EnhTp) = 18816 and:
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(18816
{X67X6_ {1}7 {374757 6}7 {4757 6}7 {5}7 {6}}

viii)The number of all nEnhTy-topologies on Xs is
Ne(nEnhTo) = 85821 and:

(85820 =
{Xe — {2}, X6 — {1},{3,4,5,6},{4,5,6},{5},{6}}.
ix)The number of all EhTo topolog|es on Xg is

Ns(EhTo) 6750 and:

B(6570) =

{X67X6_{1}7{3747576}7{47576}7{576}7{6}}
x)The number of all nEhTp-topologies on Xg is

Ng(NEhTo) = 123452 and:
(123452
{X67X6 - {1}7 {3747 57 6}7 {47 57 6}7 {Sv 6}7 {6}}

(b) Using algorithm (3.10) and the condition of Theorem
(3.2) to obtain the minimal bases for allp-toologies on
X7. These nTp-topologies will also divided into nine
classes ok, nE, h,nh,Eh,

nEnh,Enh,hnE and nEh-topologies. We write the
number of each class and the end of each of which.

i)The number of alhTp-topologies onXs is Ng(nTp) =
79504 and:
B(79503 = {{1,3,4,5},X5,{3,4,5},{4,5},{5}}.

ilThe number of all EnTp- topolog|es on Xg is
Ng(EnTp) = 22238 and:
B(22237 ={{1,3,4,5},%X5,{3,4,5},{4,5},{5}}.
iiThe number of all nEnTp-topologies on Xg is
Ne(NENTp) = 57266 and:
B(57266 =

. {{X6 - {2}7X6_ {1}3 {3343 5a 6}3 {43 5}3{5}}
iv)The number of alhnTyp-topologies orXg is Ng(hnTp) =
22238 and:

B(22237 = {{1,3,4,5},Xs,{3,4,5},{4,5},{5}}.

v)The number of aII nhnTo- topologles on Xg is
Ng(nhnTp) = 57266 and:
B(57266 - {{17 3,4, 5}7x6v {3543 5}5 {4}5 {5}}
vi)The number of all EhnTp-topologies on Xg is
Ns(EhnTp) = 8643 and:
B(8642):{{1737475}7X6v{33455}5{455}5{5}}
vii)The number of all nEnhnTy-topologies onXg is
Ng(NEnhnTp) = 43671 and:
B(43671) =
{XB_{2}7x6_{1}7{3747576}7{4}7{5}} .
viii)The number of all EnhnTyp-topologies on Xs is
Ns(EnhnTp) = 13595 and:
B(13595 ={{1,3,4,5},%5,{3,4,5},{4},{5}}.
ix)The number of all hnEnTp-topologies on Xg is

Ne(hnEnTo) = 13595 and:
B(13595
{X6 —{2},X6—{1},{3,4,5},{4,5,6},{4,5}, {5}}
X)The number of all nEhnTo topolog|es onXg is
Ns(nEhnTo) = 70861 and:
B(70861)
{Xe — {2}, X6 — {1},{3,4,5},{4,5,6},{4,5}, {5}}

5 Conclusion

There is a well-known correspondence between the
topologies on finite seX, of n points and preorders
relations on those sets. For our approach, we
characterized the principal hyperconnecigdopologies

on a nonempty seX. We established an algorithms in
Fortran 77 for construction and enumeration of all strictly
weaker and all weakély andnTp-topologieson oiX,. We
applied these algorithms to different finite sets and bases.
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