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Abstract: There are many axioms on the principal topological spaces. Two of the interesting axioms are theT0 and hyperconnected
topological spaces. There is a well-known and straightforward correspondence (cf. [2]) between the topologies on finite setXn of
n points and reflexive transitive relations (preorders) on those sets. This paper generalizes this result, characterizes the principal
hyperconnectedT0-topologies on a nonempty setX and gives their number on a setXn. It mainly describes algorithms for construction
and enumeration of all weaker and strictly weakerT0 and nT0-topologieson onXn. The algorithms are written in fortran 77 and
implemented on pentiumII400 system.
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1 Introduction

The ultratopology on a setX is the strictly weaker
topology onX than the discrete topologyD on X and the
infratopology onX is the strictly finer topology onX than
the indiscrete topologyI on X . In [6] Frohich defined the
ultratopology on a setX to be a strictly weaker topology
than the discrete topologyD on X . The ultratopologies on
X are divided into two classes the principal and
nonprincipal ultratopologies onX . In [9] Mashhour and
Farrag showed that the principal ultratopology on a setX
is the topology having the minimal basis
βyz = {{x},{y,z} : x ∈ X −{z}}, wherey and z are two
distinct points ofX and denoted byDyz. In [14] Steiner
defined a minimal open set in a topological space(X ,τ)to
be the open set containing the pointx and contained in
each open set containingx. The first author defined a
principal topology on a setX to be the topology onX
having the minimal bases that consist only of open sets
minimal at eachx ∈ X . It is proved that a topologyτ on a
setX is principal iff arbitrary intersections of members of
τ are members ofτ.

In [9]Mashhour et al., defined theS-open set in a
topological space(X ,τ) to be the open set which cannot
be written as a union of distinct open sets which are

proper subsets of it. In a principal space(X ,τ) theS-open
set and the minimal open set are identical and theS-basis
i.e., the basis consists only ofS-open sets is the minimal
basis forτ. In [3], Farrag gave formulas for the numbers
of the topologies,hyperconnected andT0-topologies on a
finite setXn of n points. In [2] Evan et al. established a
correspondence between all topologies on a setXn of n
points and all preorders onXn. In [7] Jason and Stephen
gave the number of all preorder relations on a setXn and
so the number of all topologies onXn. In [4,5], Farrag and
Sewisy described algorithms for construction and
enumeration of topoloigies on a setXn. Many authors deal
with problem of the number of topologies onXn as [8,13]
and others. Fuzzy topological spaces and algorithms for
comparison of Fuzzy sets are described by [12,1].

2 On the T0 and hyperconnected T0-topologies

Throughout this paper the topologyτ on a nonempty set
X is an excluding topology if there is a pointp ∈ X such
that p /∈ ∪{G : G ∈ τ − {X}}: or equivalently if X is
minimal at some of its points. Such family of topologies
will be denoted by E-topologies. It is a particular
topology if there is a point p ∈ X such that
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p ∈ ∩{G : G ∈ τ − { /0}} in such topologiesX may and
may not be minimal at any of its points. Such family of
topologies will be denoted byp-topologies. Ux will
denote the minimal open set at the pointx for eachx ∈ X .
We denote a hyperconnected topology byh-topology and
write nR for non R or not R whereR is T0,E,h, p or Eh
andEh means bothE andh. If Q is a family of topologies
on a finite setXn of n points, thenNn(Q) will denote the
number of theQ-topologies onXn. If τ is a topology on
Xn,then Nn(τ)(Q) is the number of all weaker
Q-topologies onXn thanτ. Theorem 2.1. [5] Let (X ,τ)
and (X ,τ∗) be principal spaces andβ be the minimal
basis forτ. Then,τ∗ is strictly weaker thanτ iff there are
two distinct pointsy,z ∈ X satisfying the conditions.

1)y /∈Uz,
2)z ∈Ux andx /∈Uz imply thaty ∈Ux,
3)x ∈Uy andy /∈Ux imply thatx ∈Uz,

and τ∗ = τ ∩ Dyz = τyz having the minimal basis
βyz = {Ux,Uy ∪Uz : Ux ∈ β −{Uz}}.

If we add the conditionUx ∪Uz 6= X to the conditions
of Theorem 2.1, then one can obtain all strictly weaker non
E-topologies onX thanτ.

Theorem 2.2. [3] The number of all topologies on a finite
setXn of n points is given by:

Nn = ∑n−1
r=0 Cn

r Nr +Nn(nE)

WhereN0 = 1 andNr is the number of all topologies on a
setXr,n > 0.

A topological space(X ,τ) is hyperconnected [11] or
irreducible [10] iff the intersection of any two nonempty
open sets is nonempty.

Theorem 2.3.[5] A principal topological space(X ,τ) is h
iff ∩{G ∈ τ : G 6= /0} 6= /0 iff τ is aP-topology onX .

Theorem 2.4. [3] The number of allh-topologies on a set
Xn of n points is given by:

Nn(h) = ∑n−1
r=0 Cn

r Nr

WhereN0 = 1 andNr is the number of all topologies
on Xr,n > 0.

Theorem 2.5. A principal topological space(X ,τ) is T0
iff Ux 6= Uy iff x ∈ Uy implies thaty /∈ Ux for each two
distinct pointsx,y ∈ X .

Proof. Suppose thatx,y ∈ X are any two distinct points. If
Ux 6=Uy thenx /∈Uy or y /∈Ux which implies that(X ,τ) is
T0.

Conversely; if(X ,τ) is T0,then there is an open setG ∈
τ such thatx ∈ G andy /∈ G or y ∈ G andx /∈ G. If x ∈
G,thenUx ⊆ G and soy /∈ G implies thaty /∈ Ux which
implies thatUx 6=Uy.

As a consequence of Theorem (2.5), if(X ,τ) is a
principal T0-topological space one can reform Theorem

(2.1) and introduce two equivalent easy but main and
important results as follows:

Theorem 2.6. The topologyτ∗ on a nonempty setX is
a strictly weaker principal topology than a principalT0-
topologyτ on X iff there are two distinct pointsy,z ∈ X
such that:

1)y /∈Uz,
2)z ∈Ux implies thaty ∈Ux,
3)x ∈Uy implies thatx ∈Uz,

such thatτ∗ = τyz = τ ∩Dyz and its minimal basis isβyz =
{Ux,Uy ∪Uz : x ∈ X −{z}}.

And we have the following two corollaries.

Corollary 1.The topology τyz is T0 iff z /∈Uy,

Corollary 2.The topology τyz is nT0 iff z ∈Uy,

whereUy ∈ τ is the minimal open set aty.

Theorem 2.7. A principalT0-topological space(X ,τ) is h
iff there is a point p ∈ X such that
∩{G ∈ τ : G 6= /0}= {p}.

Proof. If ∩{G ∈ τ : G 6= /0}= {p}, then(X ,τ) is h.
Conversely, if(X ,τ) is h, then by Theorem (2.3)∩{G ∈
τ : G 6= /0}=U 6= /0. Sinceτ is principal,thenU ∈ τ is the
minimal open set at each of its points andτ is T0 implies
that there is a pointp ∈ X such thatU = {p}.

Theorem 2.8. The number of allT0-topologies on a setXn
of n points is given by:

Nn(T0) = nNn−1(T0)+Nn(nET0)

whereNn−1(T0) is the number of allT0-topologies on a
set ofn−1 points.

Proof. Evidently(Xn,τ) is notT0 if Xn is minimal at more
than one of its points. So, ifβ is the minimal basis for aT0-
topology onXn−1 = Xn −{p}, wherep ∈ Xn is any point.
Then,β ∗ = {U,Xn : U ∈ β} is the minimal basis for aT0-
topology.τ∗ on Xn in which Xn is minimal at the pointp.
This completes the proof.

Theorem 2.9. The number of allhT0-topologies on a set
Xn of n points is:

Nn(hT0) = nNn−1(T0)

Proof. Suppose thatXn is a set ofn points, p ∈ Xn and
Xn−1 = Xn − {p}. If β is the minimal basis for a
T0-topologyτ on Xn−1, thenβp = {{p},U ∪{p} : U ∈ β}
is the minimal basis for anhT0-topology τp on Xn and
each weaker topology thanτp is h. This completes the
proof.

In [2] Evans et.al. Induced a correspondence between
the reflexive transitive relations and the topologies on a set
Xn of n points. We generalize this result to the principal
topologies on any nonempty setX as follows:
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Theorem 2.10. Let X be a nonempty set, then there is a
correspondence between the preorders and the principal
topologies onX .

Proof. If X is a nonempty set,τ is a principal topology on
X andβ = {Ux : x ∈ X} is the minimal basis forτ,where
Ux is the minimal open set at the pointx for eachx ∈ X .
Define the relationP = {(x,y) : y ∈ Ux} as x varies on
X .Then, (1)(x,x) ∈ P becausex ∈ Ux for eachx ∈ X . So
Pis reflexive. (2) For any pointsx,y and z of X if
(x,y) ∈ P,theny ∈ Ux and (y,z) ∈ P implies thatz ∈ Uy.
Hence z ∈ Ux which implies (x,z) ∈ P and so P is
transitive.
Conversely; if P is a preorder relation onX and
Ux = {y ∈ X : (x,y) ∈ P} as x varies onX . Then, (1)
∪{Ux;x ∈ X}= X becauseP is reflexive (2) Ifx,y are any
two distinct points of X and z ∈ Ux ∩ Uy, then
(x,z),(y,z) ∈ P. Now u ∈ Uz implies that(z,u) ∈ P and
sinceP is transitive,(x,u),(y,u) ∈ P, which implies that
Uz ⊂Ux ∩Uy. Therefore,β = {Ux : x ∈ X} is a basis for a
topologyτ on X . If x ∈ X andG ∈ τ such thatx ∈ G,then
there is a pointy ∈ X for which x ∈Uy ⊂ G which implies
that (y,x) ∈ P. Now z ∈ Ux implies that(x,z) ∈ P and
sinceP is transitive, then(y,z) ∈ P, which implies that
z ∈ Uy which implies thatUx ⊆ G which implies thatτ is
a principal topology onX .

Theorem 2.11. If P is the preorder relation on a
nonempty setX corresponding to the principal topologyτ
on X . Then, the topologyτ is:

1)T0 iff P is partial.
2)h iff there is a pointp ∈ X such that(x, p) ∈ P for each

x ∈ X .
3)E iff there is a pointp ∈ X such that(p,x) ∈ P for each

x ∈ X .
4)Eh i.e bothE andh iff there are two pointsp,q ∈ X

such(p,x),(x,q) ∈ P for eachx ∈ X .

3 Proposed algorithm

We present an algorithm in Fortran 77 for construction
and enumeration of all strictly weaker and all weaker
T0,ET0,nET0,hT0,nhT0,EhT0,nEnhT0,EnhT0,hnET0,
nEhT0,nT0,EnT0,nEnT0,hnT0,nhnT0,EhnT0,nEnhnT0,
EnhnT0,hnEnT0,nEhnT0-topologies onXn.

Suppose thatXn = {1,2,3, ...,n}, in the data of our
program for constructing the minimal bases for
topologies onXn,we present the minimal basisβ for a
given topologyτ on Xn by an n × n matrix [U(i, j)]. If
Ui ∈ β is the minimal open set ati ∈ Xn then,

1)The row numberi of this matrix[U(i, j)] representsUi
andU(i, j) of this row is such that:

U(i, j) =

{

j if j ∈Ui

0 if j /∈Ui

2)If Ui = U j,then the rows of the numbersi and j are
coincide.

3)Each columnj of the matrix has at least nonzero
element that isU( j, j) for eachj ∈ Xn.

4)When we say a singleton row (column) ifU(i, j) = 0
for each j ∈ Xn −{i},(U(i, j) = 0 for eachi ∈ Xn −
{ j}).

5)The full columnj is such thatU(i, j) = j for eachi ∈
Xn.

6)The full row i is such thatU(i, j) = j for each j ∈ Xn
in such caseUi = Xn.

7)The output of the program will be matrices of the
mentioned properties and each of which represents a
basisβ ∗ for a topologyτ∗ onXn weaker thanτ.

Theorem 3.1. [4] A topologyτ on a setXn is h or P(E) iff
the matrix which represents its minimal basisβ for τ has
a full column (a full row).
Theorem 3.2. A topologyτ on a setXn is T0(nT0) iff the
matrix which represents its minimal basisβ has no
coincided rows (at least two coincided rows).

Remark.The minimal bases for thenE-topologies onXn
represented by the matrices which has no full rows and
the minimal bases fornh-topologies represented by the
matrices which has no full columns. In both cases for any
two distinct pointsi, j ∈ Xn there is a pointk ∈ Xn such
thatU(i,k) 6=U( j,k).

Remark.The minimal bases for thehnET0 and
EnhT0-topologies on Xn can be easily obtained by
obtaining the matrices representing the minimal bases for
all T0-topologies each of which has a full column and no
full rows and the matrices each of which has a full row
and no full columns.

Remark.By using Theorem (3.2) one can easily obtain the
minimal bases for allhT0-topologies onXn. This by
obtaining the matrices that represent the minimal bases
for all T0-topologies onXn each of which has a full
column.

Remark.One can easily obtain the minimal bases for all
ET0-topologies onXn by obtaining the matrices which
represent the minimal bases for allT0-topologies onXn
each of which has a full row.

Remark.One can obtain the minimal bases for all
nT0-topologies (T0-topologies) by obtaining the
matrices,which has two distinct coincided (no coincide)
rows using Theorem (3.2).

Remark.It should be noted that
Nn(ET0) = Nn(hT0),Nn(nET0) = Nn(nhT0),
Nn(EnhT0) = Nn(hnET0), Nn = Nn(T0) + Nn(nT0),
Nn = Nn(ET0) + Nn(nET0) = Nn(hT0) + Nn(nhT0) =
Nn(EhT0) + Nn(nEhT0) and
Nn(nEhT0) = Nn(EnhT0) + Nn(hnET0) + Nn(nEnhT0)
whereNn are the number of all topologies onXn. We have
similar equations for the same classes of the
nT0-topologies.
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3.1 Algorithm (Xn,β ,N)

Remark.This algorithm constructs and enumerates the
minimal bases for all strictly weakerT0 and nT0
topologies than a givenT0-topologyτ on Xn.

This algorithm is the algorithm in [4] and we may or
may not check the conditions of Theorem (2.6) in stead of
the conditions of the proposition in [4] which used in this
algorithm. This is together with the checking of:

1)The condition of the Corollary (2.7) to obtaining the
minimal bases for all strictly weakerT0-topologies on
Xn thanτ.

2)The condition of the Corollary (2.8) to obtaining the
minimal bases for all strictly weakernT0-topologies on
Xn thanτ.

3.2 Algorithm

(Xn,β (T0),βn(T0),Nn(T0),βn(ET0),Nn(ET0),βn(nET0),
βn(hT0),Nn(hT0),Nn(nhT0),βn(EhT0),Nn(EhT0),
βn(nEnhT0),Nn(nEnhT0),βn(EnhT0),Nn(EnhT0),
βn(hnET0),Nn(hnET0),βn(nEhT0),Nn(nEhT0),
βn(nT0),Nn(nT0),βn(EnT0),Nn(EnT0),
βn(nEnT0),Nn(nEnT0),βn(hnT0),Nn(hnT0),
βn(nhnT0),Nn(nhnT0),βn(EhnT0),Nn(EhnT0),
βn(nEnhnT0),Nn(nEnhnT0),βn(EnhnT0),Nn(EnhnT0),
βn(hnEnT0),Nn(hnEnT0),βn(nEhnT0),Nn(nEhnT0)).

Remark.This algorithm constructs and enumerates the
minimal bases for all weakernET0-topologies and all
T0-topologies onXn than a givenT0-topologyτ onXn. If τ
is the discrete topology onXn then we obtain the minimal
bases for allT0 and allnET0-topologies onXn.

This algorithm is algorithm of [5] together with the
checking of the condition of the Corollary (2.7). This
leads to obtaining the minimal bases for all weakerT0 and
nET0-topologies onXn than a given topologyτ on Xn.

The minimal bases for thenT0-topologies onXn can
not be obtained directly by using the algorithm of [5] and
the Corollary (2.8) because the ultratopologies onXn are
all T0. So, the algorithm of [5] to obtaining a store of the
matrices,which represents the minimal bases for all
weaker topologies onXn than the givenT0-topologyτ on
Xn. Then, use the condition of Theorem (3.2) to select
from the store all weakernT0-topologies onXn thanτ. Of
course by using Theorem (3.2) one can also selected all
weakerT0-topologies onXn thanτ.

4 Computer experiments

In this section the proposed algorithms are demonstrated
by applying them to different finite sets and bases.

Example 1.Input: X10 = {1,2,3,4,5,6,7,8,9,10} and
β = {{1,5,8},{2,6},{3,9,10},{4},{5},

{6},{6,7},{5,8},{9,10},{10},}. Where β is the
minimal basis for aT0-topologyτon Xn.
Output:
(a) Using algorithm (3.1) with the Corollary (2.7) to
obtain all minimal bases for the strictly weaker
T0-topology on X10 than the topologyτ which are 17
bases. We write the first and the end of them:
β (10,7) =
{{1,5,8},{2,6},{3,9,10},{4},{5},{6},{6,7,10},{5,8},
{9,10},{10}}.
(b) Using algorithm (3.9) with the Corollary (2.8) to
obtain all minimal bases for the strictly weaker
nT0-topology than the topologyτ on X10 which are 4
bases. We write the end of them:
β (9,10) =
{{1,5,8},{2,6},{3,9,10},{4},{5},{6},{6,7},{5,8},
{9,10}}.
(c) Using algorithm of [4] to obtain the minimal bases for
all strictly weaker topologies onX10 than the topologyτ
on X10 which are 21 bases. These are just the union of the
T0 and nonT0-topologies obtained in (a) and(b).

Example 2.Input: X6 = {1,2,3,4,5,6} and
β = {{1},{2},{3},{4},{5},{6}}.
Output:
(a) Using algorithm (3.10) with the condition of the
Corollary (2.7) to obtain the minimal bases for all
nondiscreteT0-topologies onX6. TheseT0-topologies will
also be divided into nine classes of
E,nE,h,nh,Eh,nEnh,Enh,hnE and nEh-topologies. We
write the number of each class and some of each of
which.

i)The number of all T0-topologies on X6 is
N6(T0) = 130023 and:
β (130022) =
{X6,X6−{1},{3,4,5,6},{4,5,6},{5,6},{6}}.

ii)The number of all ET0-topologies on X6 is
N6(ET0) = 25386 and:
β (25386) =
{X6,X6−{1},{3,4,5,6},{4,5,6},{5,6},{6}}.

iii)The number of all nondiscretenET0-topologies onX6
is N6(nET0) = 104637 and:
β (104636) =
{X6−{2},X6−{1},{3,4,5,6},{4,5,6},{5,6},{6}}.

iv)The number of all T0-topologies on X6 is
N6(hT0) = 25386 and:
β (25386) =
{X6−{2},X6−{1},{3,4,5,6},{4,5,6},{5,6},{6}}.

v)The number of all nhT0-topologies on X6 is
N6(nhT0) = 104637 and:
β (104636) =
{X6,X6−{1},{3,4,5,6},{4,5,6},{5},{6}}.

vi)The number of all hnET0-topologies on X6 is
N6(hnET0) = 18816 and:
β (18816) =
{X6−{2},X6−{1},{3,4,5,6},{4,5,6},{5,6},{6}}.

vii)The number of all EnhT0-topologies on X6 is
N6(EnhT0) = 18816 and:
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β (18816) =
{X6,X6−{1},{3,4,5,6},{4,5,6},{5},{6}}.

viii)The number of all nEnhT0-topologies on X6 is
N6(nEnhT0) = 85821 and:
β (85820) =
{X6−{2},X6−{1},{3,4,5,6},{4,5,6},{5},{6}}.

ix)The number of all EhT0-topologies on X6 is
N6(EhT0) = 6750 and:
β (6570) =
{X6,X6−{1},{3,4,5,6},{4,5,6},{5,6},{6}}.

x)The number of all nEhT0-topologies on X6 is
N6(nEhT0) = 123452 and:
β (123452) =
{X6,X6−{1},{3,4,5,6},{4,5,6},{5,6},{6}}.

(b) Using algorithm (3.10) and the condition of Theorem
(3.2) to obtain the minimal bases for allnT0-toologies on
X7. These nT0-topologies will also divided into nine
classes ofE,nE,h,nh,Eh,
nEnh,Enh,hnE and nEh-topologies. We write the
number of each class and the end of each of which.

i)The number of allnT0-topologies onX6 is N6(nT0) =
79504 and:
β (79503) = {{1,3,4,5},X6,{3,4,5},{4,5},{5}}.

ii)The number of all EnT0-topologies on X6 is
N6(EnT0) = 22238 and:
β (22237) = {{1,3,4,5},X6,{3,4,5},{4,5},{5}}.

iii)The number of all nEnT0-topologies on X6 is
N6(nEnT0) = 57266 and:
β (57266) =
{{X6−{2},X6−{1},{3,4,5,6},{4,5},{5}}.

iv)The number of allhnT0-topologies onX6 is N6(hnT0)=
22238 and:
β (22237) = {{1,3,4,5},X6,{3,4,5},{4,5},{5}}.

v)The number of all nhnT0-topologies on X6 is
N6(nhnT0) = 57266 and:
β (57266) = {{1,3,4,5},X6,{3,4,5},{4},{5}}.

vi)The number of all EhnT0-topologies on X6 is
N6(EhnT0) = 8643 and:
β (8642) = {{1,3,4,5},X6,{3,4,5},{4,5},{5}}.

vii)The number of all nEnhnT0-topologies onX6 is
N6(nEnhnT0) = 43671 and:
β (43671) =
{X6−{2},X6−{1},{3,4,5,6},{4},{5}}.

viii)The number of all EnhnT0-topologies on X6 is
N6(EnhnT0) = 13595 and:
β (13595) = {{1,3,4,5},X6,{3,4,5},{4},{5}}.

ix)The number of all hnEnT0-topologies on X6 is
N6(hnEnT0) = 13595 and:
β (13595) =
{X6−{2},X6−{1},{3,4,5},{4,5,6},{4,5},{5}}.

x)The number of all nEhnT0-topologies on X6 is
N6(nEhnT0) = 70861 and:
β (70861) =
{X6−{2},X6−{1},{3,4,5},{4,5,6},{4,5},{5}}.

5 Conclusion

There is a well-known correspondence between the
topologies on finite setXn of n points and preorders
relations on those sets. For our approach, we
characterized the principal hyperconnectedT0-topologies
on a nonempty setX . We established an algorithms in
Fortran 77 for construction and enumeration of all strictly
weaker and all weakerT0 andnT0-topologieson onXn. We
applied these algorithms to different finite sets and bases.
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