Computer Construction and Enumeration of All T_{0} and All Hyperconnected T_{0} Topologies on Finite Sets

A. S. Farrag ${ }^{1}$, A. A. Nasef ${ }^{2}$ and R. Mareay ${ }^{3, *}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt
${ }^{2}$ Department of Physics and Engineering Mathematics, Faculty of Engineering, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
${ }^{3}$ Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt

Received: 13 Dec. 2013, Revised: 21 Aug. 2015, Accepted: 22 Aug. 2015
Published online: 1 Jul. 2016

Abstract

There are many axioms on the principal topological spaces. Two of the interesting axioms are the T_{0} and hyperconnected topological spaces. There is a well-known and straightforward correspondence (cf. [2]) between the topologies on finite set X_{n} of n points and reflexive transitive relations (preorders) on those sets. This paper generalizes this result, characterizes the principal hyperconnected T_{0}-topologies on a nonempty set X and gives their number on a set X_{n}. It mainly describes algorithms for construction and enumeration of all weaker and strictly weaker T_{0} and $n T_{0}$-topologieson on X_{n}. The algorithms are written in fortran 77 and implemented on pentium II 400 system.

Keywords: Principal topological spaces, preorder relations, $T_{0} ; E$, hyperconnected, hyperconnected T_{0}-topological spaces

1 Introduction

The ultratopology on a set X is the strictly weaker topology on X than the discrete topology D on X and the infratopology on X is the strictly finer topology on X than the indiscrete topology I on X. In [6] Frohich defined the ultratopology on a set X to be a strictly weaker topology than the discrete topology D on X. The ultratopologies on X are divided into two classes the principal and nonprincipal ultratopologies on X. In [9] Mashhour and Farrag showed that the principal ultratopology on a set X is the topology having the minimal basis $\beta_{y z}=\{\{x\},\{y, z\}: x \in X-\{z\}\}$, where y and z are two distinct points of X and denoted by $D_{y z}$. In [14] Steiner defined a minimal open set in a topological space (X, τ) to be the open set containing the point x and contained in each open set containing x. The first author defined a principal topology on a set X to be the topology on X having the minimal bases that consist only of open sets minimal at each $x \in X$. It is proved that a topology τ on a set X is principal iff arbitrary intersections of members of τ are members of τ.

In [9]Mashhour et al., defined the S-open set in a topological space (X, τ) to be the open set which cannot be written as a union of distinct open sets which are
proper subsets of it. In a principal space (X, τ) the S-open set and the minimal open set are identical and the S-basis i.e., the basis consists only of S-open sets is the minimal basis for τ. In [3], Farrag gave formulas for the numbers of the topologies,hyperconnected and T_{0}-topologies on a finite set X_{n} of n points. In [2] Evan et al. established a correspondence between all topologies on a set X_{n} of n points and all preorders on X_{n}. In [7] Jason and Stephen gave the number of all preorder relations on a $\operatorname{set} X_{n}$ and so the number of all topologies on X_{n}. In [4,5], Farrag and Sewisy described algorithms for construction and enumeration of topoloigies on a set X_{n}. Many authors deal with problem of the number of topologies on X_{n} as $[8,13]$ and others. Fuzzy topological spaces and algorithms for comparison of Fuzzy sets are described by [12, 1].

2 On the T_{0} and hyperconnected T_{0}-topologies

Throughout this paper the topology τ on a nonempty set X is an excluding topology if there is a point $p \in X$ such that $p \notin \cup\{G: G \in \tau-\{X\}\}$: or equivalently if X is minimal at some of its points. Such family of topologies will be denoted by E-topologies. It is a particular topology if there is a point $p \in X$ such that

[^0]$p \in \cap\{G: G \in \tau-\{\emptyset\}\}$ in such topologies X may and may not be minimal at any of its points. Such family of topologies will be denoted by p-topologies. U_{x} will denote the minimal open set at the point x for each $x \in X$. We denote a hyperconnected topology by h-topology and write $n R$ for non R or not R where R is T_{0}, E, h, p or $E h$ and $E h$ means both E and h. If Q is a family of topologies on a finite set X_{n} of n points, then $N_{n}(Q)$ will denote the number of the Q-topologies on X_{n}. If τ is a topology on X_{n}, then $N_{n}(\tau)(Q)$ is the number of all weaker Q-topologies on X_{n} than τ. Theorem 2.1. [5] Let (X, τ) and $\left(X, \tau^{*}\right)$ be principal spaces and β be the minimal basis for τ. Then, τ^{*} is strictly weaker than τ iff there are two distinct points $y, z \in X$ satisfying the conditions.

1) $y \notin U_{z}$,
2) $z \in U_{x}$ and $x \notin U_{z}$ imply that $y \in U_{x}$,
3) $x \in U_{y}$ and $y \notin U_{x}$ imply that $x \in U_{z}$,
and $\tau^{*}=\tau \cap D_{y z}=\tau_{y z}$ having the minimal basis $\beta_{y z}=\left\{U_{x}, U_{y} \cup U_{z}: U_{x} \in \beta-\left\{U_{z}\right\}\right\}$.

If we add the condition $U_{x} \cup U_{z} \neq X$ to the conditions of Theorem 2.1, then one can obtain all strictly weaker non E-topologies on X than τ.
Theorem 2.2. [3] The number of all topologies on a finite set X_{n} of n points is given by:

$$
N_{n}=\sum_{r=0}^{n-1} C_{r}^{n} N_{r}+N_{n}(n E)
$$

Where $N_{0}=1$ and N_{r} is the number of all topologies on a set $X_{r}, n>0$.

A topological space (X, τ) is hyperconnected [11] or irreducible [10] iff the intersection of any two nonempty open sets is nonempty.
Theorem 2.3.[5] A principal topological space (X, τ) is h iff $\cap\{G \in \tau: G \neq \emptyset\} \neq \emptyset$ iff τ is a P-topology on X.
Theorem 2.4. [3] The number of all h-topologies on a set X_{n} of n points is given by:

$$
N_{n}(h)=\sum_{r=0}^{n-1} C_{r}^{n} N_{r}
$$

Where $N_{0}=1$ and N_{r} is the number of all topologies on $X_{r}, n>0$.
Theorem 2.5. A principal topological space (X, τ) is T_{0} iff $U_{x} \neq U_{y}$ iff $x \in U_{y}$ implies that $y \notin U_{x}$ for each two distinct points $x, y \in X$.

Proof. Suppose that $x, y \in X$ are any two distinct points. If $U_{x} \neq U_{y}$ then $x \notin U_{y}$ or $y \notin U_{x}$ which implies that (X, τ) is T_{0}.

Conversely; if (X, τ) is T_{0}, then there is an open set $G \in$ τ such that $x \in G$ and $y \notin G$ or $y \in G$ and $x \notin G$. If $x \in$ G, then $U_{x} \subseteq G$ and so $y \notin G$ implies that $y \notin U_{x}$ which implies that $U_{x} \neq U_{y}$.

As a consequence of Theorem (2.5), if (X, τ) is a principal T_{0}-topological space one can reform Theorem
(2.1) and introduce two equivalent easy but main and important results as follows:
Theorem 2.6. The topology τ^{*} on a nonempty set X is a strictly weaker principal topology than a principal $T_{0^{-}}$ topology τ on X iff there are two distinct points $y, z \in X$ such that:

1) $y \notin U_{z}$,
2) $z \in U_{x}$ implies that $y \in U_{x}$,
3) $x \in U_{y}$ implies that $x \in U_{z}$,
such that $\tau^{*}=\tau_{y z}=\tau \cap D_{y z}$ and its minimal basis is $\beta_{y z}=$ $\left\{U_{x}, U_{y} \cup U_{z}: x \in X-\{z\}\right\}$.

And we have the following two corollaries.
Corollary 1.The topology $\tau_{y z}$ is T_{0} iff $z \notin U_{y}$,
Corollary 2.The topology $\tau_{y z}$ is $n T_{0}$ iff $z \in U_{y}$,
where $U_{y} \in \tau$ is the minimal open set at y.
Theorem 2.7. A principal T_{0}-topological space (X, τ) is h iff there is a point $p \in X$ such that $\cap\{G \in \tau: G \neq \emptyset\}=\{p\}$.

Proof. If $\cap\{G \in \tau: G \neq \emptyset\}=\{p\}$, then (X, τ) is h. Conversely, if (X, τ) is h, then by Theorem (2.3) $\cap\{G \in$ $\tau: G \neq \emptyset\}=U \neq \emptyset$. Since τ is principal,then $U \in \tau$ is the minimal open set at each of its points and τ is T_{0} implies that there is a point $p \in X$ such that $U=\{p\}$.
Theorem 2.8. The number of all T_{0}-topologies on a set X_{n} of n points is given by:

$$
N_{n}\left(T_{0}\right)=n N_{n-1}\left(T_{0}\right)+N_{n}\left(n E T_{0}\right)
$$

where $N_{n-1}\left(T_{0}\right)$ is the number of all T_{0}-topologies on a set of $n-1$ points.

Proof. Evidently $\left(X_{n}, \tau\right)$ is not T_{0} if X_{n} is minimal at more than one of its points. So, if β is the minimal basis for a $T_{0^{-}}$ topology on $X_{n-1}=X_{n}-\{p\}$, where $p \in X_{n}$ is any point. Then, $\beta^{*}=\left\{U, X_{n}: U \in \beta\right\}$ is the minimal basis for a $T_{0^{-}}$ topology. τ^{*} on X_{n} in which X_{n} is minimal at the point p. This completes the proof.
Theorem 2.9. The number of all $h T_{0}$-topologies on a set X_{n} of n points is:

$$
N_{n}\left(h T_{0}\right)=n N_{n-1}\left(T_{0}\right)
$$

Proof. Suppose that X_{n} is a set of n points, $p \in X_{n}$ and $X_{n-1}=X_{n}-\{p\}$. If β is the minimal basis for a T_{0}-topology τ on X_{n-1}, then $\beta_{p}=\{\{p\}, U \cup\{p\}: U \in \beta\}$ is the minimal basis for an $h T_{0}$-topology τ_{p} on X_{n} and each weaker topology than τ_{p} is h. This completes the proof.

In [2] Evans et.al. Induced a correspondence between the reflexive transitive relations and the topologies on a set X_{n} of n points. We generalize this result to the principal topologies on any nonempty set X as follows:

Theorem 2.10. Let X be a nonempty set, then there is a correspondence between the preorders and the principal topologies on X.
Proof. If X is a nonempty set, τ is a principal topology on X and $\beta=\left\{U_{x}: x \in X\right\}$ is the minimal basis for τ, where U_{x} is the minimal open set at the point x for each $x \in X$. Define the relation $P=\left\{(x, y): y \in U_{x}\right\}$ as x varies on X.Then, (1) $(x, x) \in P$ because $x \in U_{x}$ for each $x \in X$. So P is reflexive. (2) For any points x, y and z of X if $(x, y) \in P$,then $y \in U_{x}$ and $(y, z) \in P$ implies that $z \in U_{y}$. Hence $z \in U_{x}$ which implies $(x, z) \in P$ and so P is transitive.
Conversely; if P is a preorder relation on X and $U_{x}=\{y \in X:(x, y) \in P\}$ as x varies on X. Then, (1) $\cup\left\{U_{x} ; x \in X\right\}=X$ because P is reflexive (2) If x, y are any two distinct points of X and $z \in U_{x} \cap U_{y}$, then $(x, z),(y, z) \in P$. Now $u \in U_{z}$ implies that $(z, u) \in P$ and since P is transitive, $(x, u),(y, u) \in P$, which implies that $U_{z} \subset U_{x} \cap U_{y}$. Therefore, $\beta=\left\{U_{x}: x \in X\right\}$ is a basis for a topology τ on X. If $x \in X$ and $G \in \tau$ such that $x \in G$,then there is a point $y \in X$ for which $x \in U_{y} \subset G$ which implies that $(y, x) \in P$. Now $z \in U_{x}$ implies that $(x, z) \in P$ and since P is transitive, then $(y, z) \in P$, which implies that $z \in U_{y}$ which implies that $U_{x} \subseteq G$ which implies that τ is a principal topology on X.
Theorem 2.11. If P is the preorder relation on a nonempty set X corresponding to the principal topology τ on X. Then, the topology τ is:

1) T_{0} iff P is partial.
2) h iff there is a point $p \in X$ such that $(x, p) \in P$ for each $x \in X$.
3) E iff there is a point $p \in X$ such that $(p, x) \in P$ for each $x \in X$.
4) $E h$ i.e both E and h iff there are two points $p, q \in X$ such $(p, x),(x, q) \in P$ for each $x \in X$.

3 Proposed algorithm

We present an algorithm in Fortran 77 for construction and enumeration of all strictly weaker and all weaker $T_{0}, E T_{0}, n E T_{0}, h T_{0}, n h T_{0}, E h T_{0}, n E n h T_{0}, E n h T_{0}, h n E T_{0}$, $n E h T_{0}, n T_{0}, E n T_{0}, n E n T_{0}, h n T_{0}, n h n T_{0}, E h n T_{0}, n E n h n T_{0}$, $E n h n T_{0}, h n E n T_{0}, n E h n T_{0}$-topologies on X_{n}.

Suppose that $X_{n}=\{1,2,3, \ldots, n\}$, in the data of our program for constructing the minimal bases for topologies on X_{n}, we present the minimal basis β for a given topology τ on X_{n} by an $n \times n$ matrix $[U(i, j)]$. If $U_{i} \in \beta$ is the minimal open set at $i \in X_{n}$ then,
1)The row number i of this matrix $[U(i, j)]$ represents U_{i} and $U(i, j)$ of this row is such that:

$$
U(i, j)= \begin{cases}j & \text { if } j \in U_{i} \\ 0 & \text { if } j \notin U_{i}\end{cases}
$$

2)If $U_{i}=U_{j}$, then the rows of the numbers i and j are coincide.
3)Each column j of the matrix has at least nonzero element that is $U(j, j)$ for each $j \in X_{n}$.
4)When we say a singleton row (column) if $U(i, j)=0$ for each $j \in X_{n}-\{i\},\left(U(i, j)=0\right.$ for each $i \in X_{n}-$ $\{j\})$.
5)The full column j is such that $U(i, j)=j$ for each $i \in$ X_{n}.
6)The full row i is such that $U(i, j)=j$ for each $j \in X_{n}$ in such case $U_{i}=X_{n}$.
7)The output of the program will be matrices of the mentioned properties and each of which represents a basis β^{*} for a topology τ^{*} on X_{n} weaker than τ.
Theorem 3.1. [4] A topology τ on a set X_{n} is h or $P(E)$ iff the matrix which represents its minimal basis β for τ has a full column (a full row).
Theorem 3.2. A topology τ on a set X_{n} is $T_{0}\left(n T_{0}\right)$ iff the matrix which represents its minimal basis β has no coincided rows (at least two coincided rows).
Remark.The minimal bases for the $n E$-topologies on X_{n} represented by the matrices which has no full rows and the minimal bases for $n h$-topologies represented by the matrices which has no full columns. In both cases for any two distinct points $i, j \in X_{n}$ there is a point $k \in X_{n}$ such that $U(i, k) \neq U(j, k)$.
Remark.The minimal bases for the $h n E T_{0}$ and $E n h T_{0}$-topologies on X_{n} can be easily obtained by obtaining the matrices representing the minimal bases for all T_{0}-topologies each of which has a full column and no full rows and the matrices each of which has a full row and no full columns.
Remark.By using Theorem (3.2) one can easily obtain the minimal bases for all $h T_{0}$-topologies on X_{n}. This by obtaining the matrices that represent the minimal bases for all T_{0}-topologies on X_{n} each of which has a full column.
Remark.One can easily obtain the minimal bases for all $E T_{0}$-topologies on X_{n} by obtaining the matrices which represent the minimal bases for all T_{0}-topologies on X_{n} each of which has a full row.
Remark.One can obtain the minimal bases for all $n T_{0}$-topologies (T_{0}-topologies) by obtaining the matrices, which has two distinct coincided (no coincide) rows using Theorem (3.2).
Remark.It should be noted that $N_{n}\left(E T_{0}\right)=N_{n}\left(h T_{0}\right), N_{n}\left(n E T_{0}\right)=N_{n}\left(n h T_{0}\right)$, $N_{n}\left(E n h T_{0}\right)=N_{n}\left(h n E T_{0}\right), \quad N_{n}=N_{n}\left(T_{0}\right)+N_{n}\left(n T_{0}\right)$, $N_{n}=N_{n}\left(E T_{0}\right)+N_{n}\left(n E T_{0}\right)=N_{n}\left(h T_{0}\right)+N_{n}\left(n h T_{0}\right)=$ $N_{n}\left(E h T_{0}\right) \quad+\quad N_{n}\left(n E h T_{0}\right) \quad$ and
$N_{n}\left(n E h T_{0}\right)=N_{n}\left(E n h T_{0}\right)+N_{n}\left(h n E T_{0}\right)+N_{n}\left(n E n h T_{0}\right)$ where N_{n} are the number of all topologies on X_{n}. We have similar equations for the same classes of the $n T_{0}$-topologies.

3.1 Algorithm $\left(X_{n}, \beta, N\right)$

Remark.This algorithm constructs and enumerates the minimal bases for all strictly weaker T_{0} and $n T_{0}$ topologies than a given T_{0}-topology τ on X_{n}.

This algorithm is the algorithm in [4] and we may or may not check the conditions of Theorem (2.6) in stead of the conditions of the proposition in [4] which used in this algorithm. This is together with the checking of:
1)The condition of the Corollary (2.7) to obtaining the minimal bases for all strictly weaker T_{0}-topologies on X_{n} than τ.
2)The condition of the Corollary (2.8) to obtaining the minimal bases for all strictly weaker $n T_{0}$-topologies on X_{n} than τ.

3.2 Algorithm

$\left(X_{n}, \beta\left(T_{0}\right), \beta_{n}\left(T_{0}\right), N_{n}\left(T_{0}\right), \beta_{n}\left(E T_{0}\right), N_{n}\left(E T_{0}\right), \beta_{n}\left(n E T_{0}\right)\right.$, $\beta_{n}\left(h T_{0}\right), N_{n}\left(h T_{0}\right), N_{n}\left(n h T_{0}\right), \beta_{n}\left(E h T_{0}\right), N_{n}\left(E h T_{0}\right)$,
$\beta_{n}\left(n E n h T_{0}\right), N_{n}\left(n E n h T_{0}\right), \beta_{n}\left(E n h T_{0}\right), N_{n}\left(E n h T_{0}\right)$,
$\beta_{n}\left(h n E T_{0}\right), N_{n}\left(h n E T_{0}\right), \beta_{n}\left(n E h T_{0}\right), N_{n}\left(n E h T_{0}\right)$,
$\beta_{n}\left(n T_{0}\right), N_{n}\left(n T_{0}\right), \beta_{n}\left(E n T_{0}\right), N_{n}\left(E n T_{0}\right)$,
$\beta_{n}\left(n E n T_{0}\right), N_{n}\left(n E n T_{0}\right), \beta_{n}\left(h n T_{0}\right), N_{n}\left(h n T_{0}\right)$,
$\beta_{n}\left(n h n T_{0}\right), N_{n}\left(n h n T_{0}\right), \beta_{n}\left(E h n T_{0}\right), N_{n}\left(E h n T_{0}\right)$,
$\beta_{n}\left(n E n h n T_{0}\right), N_{n}\left(n E n h n T_{0}\right), \beta_{n}\left(E n h n T_{0}\right), N_{n}\left(E n h n T_{0}\right)$,
$\left.\beta_{n}\left(h n E n T_{0}\right), N_{n}\left(h n E n T_{0}\right), \beta_{n}\left(n E h n T_{0}\right), N_{n}\left(n E h n T_{0}\right)\right)$.
Remark.This algorithm constructs and enumerates the minimal bases for all weaker $n E T_{0}$-topologies and all T_{0}-topologies on X_{n} than a given T_{0}-topology τ on X_{n}. If τ is the discrete topology on X_{n} then we obtain the minimal bases for all T_{0} and all $n E T_{0}$-topologies on X_{n}.

This algorithm is algorithm of [5] together with the checking of the condition of the Corollary (2.7). This leads to obtaining the minimal bases for all weaker T_{0} and $n E T_{0}$-topologies on X_{n} than a given topology τ on X_{n}.

The minimal bases for the $n T_{0}$-topologies on X_{n} can not be obtained directly by using the algorithm of [5] and the Corollary (2.8) because the ultratopologies on X_{n} are all T_{0}. So, the algorithm of [5] to obtaining a store of the matrices, which represents the minimal bases for all weaker topologies on X_{n} than the given T_{0}-topology τ on X_{n}. Then, use the condition of Theorem (3.2) to select from the store all weaker $n T_{0}$-topologies on X_{n} than τ. Of course by using Theorem (3.2) one can also selected all weaker T_{0}-topologies on X_{n} than τ.

4 Computer experiments

In this section the proposed algorithms are demonstrated by applying them to different finite sets and bases.
Example 1.Input: $X_{10}=\{1,2,3,4,5,6,7,8,9,10\}$ and $\beta=\{\{1,5,8\},\{2,6\},\{3,9,10\},\{4\},\{5\}$,
$\{6\},\{6,7\},\{5,8\},\{9,10\},\{10\}$,$\} . Where \beta$ is the minimal basis for a T_{0}-topology τ on X_{n}.

Output:

(a) Using algorithm (3.1) with the Corollary (2.7) to obtain all minimal bases for the strictly weaker T_{0}-topology on X_{10} than the topology τ which are 17 bases. We write the first and the end of them:
$\beta(10,7)$
$\{\{1,5,8\},\{2,6\},\{3,9,10\},\{4\},\{5\},\{6\},\{6,7,10\},\{5, \overline{8}\}$, $\{9,10\},\{10\}\}$.
(b) Using algorithm (3.9) with the Corollary (2.8) to obtain all minimal bases for the strictly weaker $n T_{0}$-topology than the topology τ on X_{10} which are 4 bases. We write the end of them:
$\beta(9,10)=$ $\{\{1,5,8\},\{2,6\},\{3,9,10\},\{4\},\{5\},\{6\},\{6,7\},\{5,8\}$, $\{9,10\}\}$.
(c) Using algorithm of [4] to obtain the minimal bases for all strictly weaker topologies on X_{10} than the topology τ on X_{10} which are 21 bases. These are just the union of the T_{0} and non T_{0}-topologies obtained in (a) and(b).

Example 2.Input: $\quad X_{6}=\{1,2,3,4,5,6\} \quad$ and $\beta=\{\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\}$.

Output:

(a) Using algorithm (3.10) with the condition of the Corollary (2.7) to obtain the minimal bases for all nondiscrete T_{0}-topologies on X_{6}. These T_{0}-topologies will also be divided into nine classes of $E, n E, h, n h, E h, n E n h, E n h, h n E$ and $n E h$-topologies. We write the number of each class and some of each of which.
i) The number of all T_{0}-topologies on X_{6} is $N_{6}\left(T_{0}\right)=130023$ and:
β (130022)
$\left\{X_{6}, X_{6}-\{1\},\{3,4,5,6\},\{4,5,6\},\{5,6\},\{6\}\right\}$.
ii) The number of all $E T_{0}$-topologies on X_{6} is $N_{6}\left(E T_{0}\right)=25386$ and:
β (25386)
$\left\{X_{6}, X_{6}-\{1\},\{3,4,5,6\},\{4,5,6\},\{5,6\},\{6\}\right\}$.
iii) The number of all nondiscrete $n E T_{0}$-topologies on X_{6} is $N_{6}\left(n E T_{0}\right)=104637$ and:
$\beta(104636)=$ $\left\{X_{6}-\{2\}, X_{6}-\{1\},\{3,4,5,6\},\{4,5,6\},\{5,6\},\{6\}\right\}$.
iv)The number of all T_{0}-topologies on X_{6} is $N_{6}\left(h T_{0}\right)=25386$ and:
$\beta(25386)=$
$\left\{X_{6}-\{2\}, X_{6}-\{1\},\{3,4,5,6\},\{4,5,6\},\{5,6\},\{6\}\right\}$.
v)The number of all $n h T_{0}$-topologies on X_{6} is $N_{6}\left(n h T_{0}\right)=104637$ and: $\beta(104636)$
$=$
$\left\{X_{6}, X_{6}-\{1\},\{3,4,5,6\},\{4,5,6\},\{5\},\{6\}\right\}$.
vi)The number of all $h n E T_{0}$-topologies on X_{6} is $N_{6}\left(h n E T_{0}\right)=18816$ and: β (18816)
$=$ $\left\{X_{6}-\{2\}, X_{6}-\{1\},\{3,4,5,6\},\{4,5,6\},\{5,6\},\{6\}\right\}$.
vii)The number of all $E n h T_{0}$-topologies on X_{6} is $N_{6}\left(E n h T_{0}\right)=18816$ and:

```
    \(\beta\) (18816)
    \(\left\{X_{6}, X_{6}-\{1\},\{3,4,5,6\},\{4,5,6\},\{5\},\{6\}\right\}\).
viii)The number of all \(n E n h T_{0}\)-topologies on \(X_{6}\) is
    \(N_{6}\left(n E n h T_{0}\right)=85821\) and:
    \(\beta(85820)=\)
\[
=
\]
    \(\left\{X_{6}-\{2\}, X_{6}-\{1\},\{3,4,5,6\},\{4,5,6\},\{5\},\{6\}\right\}\).
ix)The number of all \(E h T_{0}\)-topologies on \(X_{6}\) is
    \(N_{6}\left(E h T_{0}\right)=6750\) and:
    \(\beta(6570)=\)
    \(\left\{X_{6}, X_{6}-\{1\},\{3,4,5,6\},\{4,5,6\},\{5,6\},\{6\}\right\}\).
x)The number of all \(n E h T_{0}\)-topologies on \(X_{6}\) is
    \(N_{6}\left(n E h T_{0}\right)=123452\) and:
    \(\beta(123452)=\)
    \(\left\{X_{6}, X_{6}-\{1\},\{3,4,5,6\},\{4,5,6\},\{5,6\},\{6\}\right\}\).
```

-

(b) Using algorithm (3.10) and the condition of Theorem (3.2) to obtain the minimal bases for all $n T_{0}$-toologies on X_{7}. These $n T_{0}$-topologies will also divided into nine classes of $E, n E, h, n h, E h$,
$n E n h, E n h, h n E$ and $n E h$-topologies. We write the number of each class and the end of each of which.

[^1]. Fortran 77 for construction and enumeration of all strictly weaker and all weaker T_{0} and $n T_{0}$-topologieson on X_{n}. We applied these algorithms to different finite sets and bases.

References

[1] Y. Chen, Fuzzy Sets and System 84, 97-102 (1996).
[2] J.W Evans, F. Harry and M.S Lynn, Commur ACM 10, 295297 (1967).
[3] A.S Farrag, On S - topological spacses, Ph.D. Thesis Assiut Unv., (1983).
[4] A.S Farrg and A.A Sewisy, IJCM. 72, 433-440 (1999).
[5] A.S Farrg and A.A Sewisy, IJCM. 74, 471-482 (2000).
[6] O. Frohlich, Math. Ann. 156, 76-95 (1964).
[7] I. Jason Brown and Stephen Watson, Discrete Mathematics, 15427-1539 (1996).
[8] V. Krischnamurthy, Amer.Math. Monthly 3, 154-157 (1966).
[9] A.S Mashhour and A.S Farrag, "Simple topological space", In $14^{\text {th }}$ An.Conf. In Stat. Comp. Sci. Res. Math., Cairo University (1979),78-85.
[10] A.A Nabiha and A.G Naoum, "On maximal irreducible space", Bull. Coll. Sci. (Baghdad), no.2, 17(1976), 477-490.
[11] T. Noiri, Math. Appl. 24, 182-190 (1979).
[12] A.A Ramadan, Fuzzy Sets and System 48, 371-375 (1992).
[13] H.R Warren, Houston Journal of Mathematics 8(2), 297-301 (1982).
[14] A.K Steiner, Trans. Amer. Math. Soc. 122, 379-398 (1966).

A. S. Farrag He (co-topological spaces) has B.Sc. special degree in mathematics from Assuit University 1966 with excellent and honors degree, and received M.Sc. and Ph.D. both in the general topology from Assuit University, Assuit in 1978 (co-topological spaces) and 1983 (co-topological spaces) respectively. He has published abut nine papers on the strictly weaker topologies on any set, the number of the topologies and the number of the open sets of the topologies on a finite set. He worked in different universities like Assuit, United Emerates, Elfaum branch of Cairo University and now he is a prof. in Sohag University. He has some interesting books but not published in Mathematics.

A. A. Nasef is a professor and Head Physics \& Engineering Mathematics Department, Faculty of Engineering, Kafrelsheikh University, Kafr El-Sheikh, Egypt. He received his B.SC. degree in mathematics (1976), M.Sc. degree in (1989) and Ph.D in (1992) from Faculty of Science, Tanta University, Egypt. His research interests are: Topological Ideals, multifunctions, theory of generalized closed sets, bitopology, Fuzzy topology, theory of rough sets and digital topology. In these areas, he published over 100 technical papers in referred international journals or conference proceedings.
R. Mareay is a lecturer of pure mathematics at department of mathematics, faculty of science, Kafrelsheish University. His PhD thesis from Ain Ashams university. His principle research interests lie at general topology. He is also interested in the applications of Topology in computer science, soft set theory, rough set theory and fuzzy set theory .

[^0]: * Corresponding author e-mail: roshdeymareay@ sci.kfs.edu.eg

[^1]: i) The number of all $n T_{0}$-topologies on X_{6} is $N_{6}\left(n T_{0}\right)=$ 79504 and:
 $\beta(79503)=\left\{\{1,3,4,5\}, X_{6},\{3,4,5\},\{4,5\},\{5\}\right\}$.
 ii) The number of all $E n T_{0}$-topologies on X_{6} is $N_{6}\left(E n T_{0}\right)=22238$ and:
 $\beta(22237)=\left\{\{1,3,4,5\}, X_{6},\{3,4,5\},\{4,5\},\{5\}\right\}$.
 iii) The number of all $n E n T_{0}$-topologies on X_{6} is $N_{6}\left(n E n T_{0}\right)=57266$ and:

 $$
 \beta(57266) \quad=
 $$

 $$
 \left\{\left\{X_{6}-\{2\}, X_{6}-\{1\},\{3,4,5,6\},\{4,5\},\{5\}\right\}\right.
 $$

 iv) The number of all $h n T_{0}$-topologies on X_{6} is $N_{6}\left(h n T_{0}\right)=$ 22238 and:
 $\beta(22237)=\left\{\{1,3,4,5\}, X_{6},\{3,4,5\},\{4,5\},\{5\}\right\}$.
 v)The number of all $n h n T_{0}$-topologies on X_{6} is $N_{6}\left(n h n T_{0}\right)=57266$ and:
 $\beta(57266)=\left\{\{1,3,4,5\}, X_{6},\{3,4,5\},\{4\},\{5\}\right\}$.
 vi) The number of all $E h n T_{0}$-topologies on X_{6} is $N_{6}\left(E h n T_{0}\right)=8643$ and:
 $\beta(8642)=\left\{\{1,3,4,5\}, X_{6},\{3,4,5\},\{4,5\},\{5\}\right\}$.
 vii)The number of all $n E n h n T_{0}$-topologies on X_{6} is $N_{6}\left(n E n h n T_{0}\right)=43671$ and:
 β (43671)
 $=$
 $\left\{X_{6}-\{2\}, X_{6}-\{1\},\{3,4,5,6\},\{4\},\{5\}\right\}$.
 viii)The number of all EnhnT T_{0}-topologies on X_{6} is $N_{6}\left(E n h n T_{0}\right)=13595$ and:
 $\beta(13595)=\left\{\{1,3,4,5\}, X_{6},\{3,4,5\},\{4\},\{5\}\right\}$.
 ix) The number of all $\operatorname{hnEn} T_{0}$-topologies on X_{6} is $N_{6}\left(h n E n T_{0}\right)=13595$ and:
 $\beta(13595)=$ $\left\{X_{6}-\{2\}, X_{6}-\{1\},\{3,4,5\},\{4,5,6\},\{4,5\},\{5\}\right\}$.
 x)The number of all $n E h n T_{0}$-topologies on X_{6} is $N_{6}\left(n E h n T_{0}\right)=70861$ and:
 $\beta(70861)=$
 $\left\{X_{6}-\{2\}, X_{6}-\{1\},\{3,4,5\},\{4,5,6\},\{4,5\},\{5\}\right\}$.

