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Abstract: We consider the Lévy Ornstein- Uhlenbeck processXt described by the equationdXt =−λ Xt dt+dLt , λ > 0 andLt a Lévy
white noise. The corresponding semigroup is expressed by anexpectation with respect to a pure jump Ornstein- Uhlenbeckprocess. A
large diffusion expansion is then obtained.
The expansion is organized by using suitable generalized Feynman graphs and rules. Applications on information sciences will be
given.
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1 Introduction

We consider the Lévy Ornstein- Uhlenbeck (OU) equation
for anRd−valued processXt , t ∈ [0, ∞[ :

{

dXt =−λXt dt+ dL(t) , λ > 0
X0 = x0, (t,x0) ∈]0, ∞[×R

d,
(1)

whereLt = L(t) is a Lévy process inRd. See below for
more details aboutLt .
In their paper [21], Ornstein and Uhlenbeck studied a free
particle in Brownian motion, moving in a rarefied gas and
affected by a friction force proportional to the pressure. In
order to understand the displacement processXt of the
particle, they investigated the velocity process
υ(t) = ∂tXt , which is known as the Ornstein-Uhlenbeck
process. The work of Ornstein and Uhlenbeck continues
Einstein’s fundamental work (in 1905), see. [13] on
Brownian motion itself and also the work of
Smoluchowski (in 1906), see. [26] who, derived the
Fokker-Planck equation for the OU process and also
determined the transition density.
After Paul Lévy’s characterisation in the 1930s of all
processes with stationary independent increments, many
researchers were interested in detailed properties of the
distributions of these processes. Moreover, important
classes of stochastic processes were obtained as
generalizations of the class of Lévy processes. An

important one, that attract researchers due to its large
applications, especially in Mathematical Finance, is the
Lévy Ornstein-Uhlenbeck process. The latter is used for
example as volatility process in stochastic volatility
models, see, e.g, [10].
The aim of this work is to provide expansions for the
transition semigroup for the Lévy OU-process.
In the Gaussian case one has the well known ”Mehler’s
Formula”, for the transition semigroup, which we denote
by PM

t (x0, dx), t > 0, x,x0 ∈ R
d :

PM
t (x0,dx) = (detD)−

1
2 (

2π
λ

(1−e−2λ t))−
d
2

× exp
{

αt 〈(x−e−λ tx0), D−1(x−e−λ tx0)〉
}

dx, (E1)

where D = (Di j )i, j=1,...,d is a symmetric strictly
positive definite matrix andαt =− 1

2
λ

1−e−2λ t , t > 0.
Using the terminology in [23], the Lévy process
{Lt , t > 0} with both Gaussian and non-Gaussian
component, is given by its characteristic (or generating)
functional:

E(ei〈ξ ,Lt 〉) = et ψ(ξ ), ∀ t ≥ 0,ξ ∈ R
d, (2)

with ψ a function fromR
d intoR of the form

ψ(ξ ) = i〈a,ξ 〉− 〈ξ ,Dξ 〉+
∫

Rd\{0}
(ei〈x,ξ 〉−1)ν(dx).

(3)
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Here a ∈ R
d and D is as above,ν is a positive Lévy

measure satisfying:
∫

|x|≤1
|x|ν(dx) < ∞,

∫

|x|≥1
|x|2 ν(dx) < ∞. (4)

Later on we shall also assume that the Fourier transform
ν̂ of ν is a smooth function onRd.
The transition semigroupPt(x0,dx) of Lt is then the
kernel of the semigroupPt with infinitesimal generatorG,
s.t.Pt = et G onC0(R

d) (the space of continuous functions
vanishing at infinity equipped with sup-norm) and given
by

(G f)(x) = −
d

∑
j=1

a j
∂

∂x j
f (x)+

d

∑
j ,l=1

D jl
∂ 2

∂x j∂xl
f (x)

+
∫

Rd\{0}
[ f (x+ y)− f (x)]ν(dy), x ∈ R

d, (5)

for f ∈C2
0(R

d), see, eg., [[23], p. 208].Pt satisfies then the
corresponding jump-diffusion Kolmogorov equation

∂
∂ t

Pt f = GPt f , t > 0 (6)

The large diffusion expansion of the transition density
will be given by a power series in a parameterβ
(proportional to the inverse of the determinant ofD), the
latter series expansion is not convergent and has
complicated terms, however it is well interpreted using
the recently discovered generalized Feynman graphs and
Feynman rules, see, e.g. [14,15,16,25],the later will help
in clarifying the problems related with this expansion.
The graphical representation for the large diffusion
expansion of the transition probabilities of the Lévy OU
process, as done in this work, seems to be new even for
classical OU processes. It simplifies the analytic
expressions and could lead to a lot of applications , as in
the simulation of Lévy OU processes, see, e.g. [28], in
applications to mathematical finance, see, e.g, [10],
neurobiology, see, e.g. [4], quantum field theory and
statistical mechanics, see, e.g, [2,3].
Before we go over to describe the contents of the present
paper, let us mention that our study of SDE’s of type (1)
can be extended to other classes of non linear S(P)DEs,
such that KPZ equations, see, e.g, [25], and the beam
epitaxy equations, see, e.g, [19]. Also let us mention that,
to the best of our knowledge, graphical representations
and linked cluster theorems for Lévy OU processes have
not been considered before.
The remainder of this paper is organized as follow:
In section 2 we present some results on Lévy noise, that
help the reader to understand the other sections of this
work. Section 3 is devoted to the study of the transition
density of the Lévy OU process, the latter will be be
given by a series which is not convergent but has a
meaning as an asymptotic series. We recall then a basic

result known as ”Linked Cluster” theorem.
The aim of section 4 is to introduce generalized Feynman
graphs and rules, we achieve then our main result by
giving a graphical representation of the large diffusion
expansion of the transition density of the Lévy OU
process.
Section 5 is devoted to some applications on information
systems.

2 Lévy noise

In this section we recall some properties of the Lévy noise
Lt , t ≥ 0, that are useful for the current work.
We define the compensated jump measureÑ, also called
the compensated Poisson random measure by:

Ñ(dt,dz) := N(dt,dz)−ν(dz)dt, (7)

whereN(t,B) := ∑
0≤s≤t

χB(∆L(s)), Ba Borel set inRd, and

∆L(s) := L(s)−L(s−) is the jump ofL at times, we have
ν(B) = E(N(1,B)).
By a result of Itô and Lévy, see, e.g. [23], [[ 8], p. 108-109],
the Lévy processLt = L(t), t ≥ 0, admits the following
integral representation:

L(t) = at+DW(t)+
∫ t
0

∫

|z|<1zN(ds,dz)+
∫ t

0

∫

|z|≥1zN(ds,dz),
(8)

for some constanta ∈ R
d and withD as in section1 . Here

W =W(t), t ≥ 0 is a standard Wiener process onR
d.

By assumingE[| L(t) |2]< ∞, t ≥ 0, then
∫

|z|≥1 | z |2 ν(dz) < ∞ and the representation (8) becomes

L(t) = a1t +DW(t)+
∫ t
0

∫

|z|<1zÑ(ds,dz)+
∫ t

0

∫

|z|≥1zN(ds,dz),
(9)

wherea1 = a+
∫

|z|≥1 zν(dz).
A Lévy processLt which satisfies the representation (9)
with a1 = D = 0 is called a pure jump Lévy process(it is
without Gaussian and deterministic components ). IfL̃(t)
is a pure jump Lévy process onRd, then its characteristic
function is given by:

E
(

ei〈u,L̃(t)〉
)

= e
t
∫

Rd\{0}(ei〈u,y〉−1)ν(dy)
, (10)

u∈R
d andν is the intensity measure, also called Lévy

measure, satisfying
∫

Rd\{0}(| y |2 ∧1)ν(dy) < ∞.

For information on Lévy processes and related equations,
see, e.g., [8],[11], [18] , [23] .
Moreover, the Lévy-Itô decomposition (8) for L̃t takes then
the form:

L̃t =

∫

B
xN(t,dx)+

∫

Rd\B
xN(t,dx), t ≥ 0, (11)

where, in this case,N is a Poisson random measure on
R+ × (Rd − {0}) (the Poisson random measure
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associated with the jumps∆Zt := L̃t − L̃t− , i.e.
N([0, t) × A) = {0 ≤ s < t|∆Zs ∈ A}, for each t ≥ 0,
A ∈ B(Rd\{0}), Ñ(t,A) := N(t,A) − tν(A), for all
A ∈ B(Rd,{0}), 0 ∈ A, A the closure ofA.) We have
ν(A) = E(N(1,A)); for eacht > 0, ω ∈ Ω , Ñ(t, ·)(ω) is
the compensated Poisson random measure (toN(t, ·)(ω))
on the Borelσ−algebraB(Rd\{0}); Ñ(t,A), t ≥ 0 is, in
particular, a martingale-valued measure.

3 Large diffusion expansion for the transition
probabilities

In this section the transition probability density of the
Lévy OU processXt will be given by a series which is not
convergent in general but rather has only the meaning of
an asymptotic series, see, e.g, [14,27]. Under the use of
Linked Cluster Theorem we prove a large diffusion
expansion for the transition density of the Lévy OU
process.
From known results, see, e.g., [8], [23], under the above
assumptions onLt , equation (1) has a unique strong
solution Xt , t ≥ 0 which can be assumed to be a c `adlàg
process and is given by

Xt = e−λ t x0+

∫ t

0
e−λ (t−s)dLs, x0 ∈ R

d, (12)

the integral being a stochastic one. We shall callXt Lévy
OU process.
Let (Ω ,B,P) the probability space underlyingXt . Then
Xt is a Markov process, with transition semigroup
Pt(x0,dx), x0, x ∈ R

d. One has thus

Pt(x0, A) =
∫

A
Pt(x0,dy) = P(Xt ∈ A | X0 = x0), (13)

for any Borel subsetA of Rd.
It is proven, e.g., in [[23], p. 106 ], that ifLt is given as
above by the characteristic functional (2) then
∫

Rd
ei〈ξ ,y〉Pt(x,dy) = exp

[

ie−λ t〈ξ , x〉

+

∫ t

0
ψ(e−λ sξ )ds

]

,ξ , x ∈ R
d, (14)

with ψ given by (3).
If PJ

t is the transition semigroup of a pure jump Lévy O-U
processYt , satisfying (12) with L replaced bỹL as given in
(10), thenPJ

t satisfies:
∫

Rd
ei〈ξ ,y〉PJ

t (x,dy) = exp
[

ie−λ t〈ξ , x0 〉

+
∫ t

0
ψ̃(e−λ sξ )ds

]

,ξ ∈ R
d, (15)

where
ψ̃(ξ ) =

∫

Rd\{0}
(ei〈x,ξ 〉−1)ν(dx). (16)

Let PM
t be the Gaussian transition density of the Lévy OU

process given by equation (E1), if we denote this process
by Xt then Xt satisfies (1)with L := Ld

t given by the
generating triplet(2D,0,0)0.
For simplicity the matrix D, in equation (3), will
henceforth be taken to be diagonal, i.e:D = D ·1, where
D is constant and1 the unit matrix onRd.
In the following we set:β = 1

2D(
λ

1−e−2λ t ), t ≥ 0.

Proposition 1 Let Ct = ( π
β )

− d
2 , t ≥ 0,

x= (x1, · · ·,xd) ∈ R
d and V(x) :=| x |2.

The transition semigroup of the Lévy OU process Xt
solution of (1) satisfies:

Pt(x0,A) =Ct EY

[

∫

A
e−β V(y−Yt )dy

]

, t > 0 (17)

for any Borel subset A ofRd, whereEY is the expectation
with respect to the probability measure for the pure jump
type Ĺevy OU process Yt satisfying
dYt =−λ dYt +dL̃t , Y0 = x0, with L̃t given by (10).

Proof. Following [[24], Lemma 2.2], Xt can be
decomposed into two processesYt ,Rt s.t. Xt = Yt + Rt ,
andYt ,Rt are independent of each other and

1.Yt is a solution of the equation (1) with Lt replaced by
L̃J

t , and L̃J
t of pure jump type, with characteristic

functional ψ̃ given by equation (16), the initial
condition beingY0 = x0;

2.Rt is a solution of the equation (1) with Lt replaced
by Ld

t := Lt − L̃t , and initial conditionR0 = 0, i.e., Rt

satisfiesdRt =−λ Rt dt+dLd
t .

We have, for any Borel subsetA in R
d :

(i)- Pt(x0,A) =E

(

χA(Xt)
)

whereE is the expectation with

respect to the probability measure underlyingXt (started at
X0 = x0)(see (13)).
(ii)-Using the decompositionXt =Yt +Rt we have

Pt(x0,A) = P(Xt ∈ A) = E

(

χA(Yt +Rt)
)

. (18)

But

E

(

χA(Yt +Rt)
)

= E

[

E

(

χA(Yt +Rt) | σ(Yt)
)]

= E

[

EY

(

χA−Yt (Rt) | σ(Yt)
)]

= E

[

EY

(

χA−Yt (Rt)
)]

, (19)

since theσ−algebraσ(Yt) generated byYt is independent
of Rt , and where in the last equality we have used Fubini
theorem.EY stands for expectation with respect toY.
Using Fubini theorem to interchangeEY and E, the
definition of PM

t , and recalling the definitions ofβ ,Ct ,V
then yields the result.

Remark 1 1.The expression given by equation (17)
looks like a sum over states in statistical mechanics,
where V is the potential energy and e−βV is a
Boltzmann weight, see, e.g. [22],
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2.In the Gaussian case studied by Einstein the coefficient
D is determined in terms of molecular quantities.

3.The case whereψ(t) in (3) is purely Poisson, i.e,
ν 6= 0 and a= σ2 = 0, the coordinate process Lt is
then a marked Poisson process with intensity z, if we
write ν = zµ and it can be interpreted as a
non-interacting classical continuous particle in the
configurational grand canonical ensemble with
activity z, see, e.g., [22], where each particle carries a
distributed random charge. The case, where both a
Gaussian and a Poisson process contribute to the
random process L, i.e, z> 0 and σ2 > 0, can be
interpreted as a grand canonical ensemble
mesoscopic charge particle (Poisson contribution)
and a white noise fluctuation of the charge density to
microscopic particles(Gaussian contribution).
Moreover the Gaussian contribution can be seen as a
scaling limit of a Poisson contribution, see, e.g. [3].

The idea is now to perform a ”high temperature”Tβ -
expansion of Pt corresponding to a smallβ ,
(β = 1

kTβ
,k > 0,Tβ > 0), which is in our case, sinceβ is

proportional to 1
D , as given by Prop. (1) is a large

diffusion expansion, looking upon D as a diffusion
coefficient.

Proposition 2 The large diffusion expansion of the
transition semigroup of the Ĺevy OU process Xt , t ≥ 0 in
Prop. (1), is given by a formal expansion in power ofβ ,
i.e:

Pt(x,A) = Ct

∞

∑
m=0

(−β )m

m!

m

∑
k=0

m−k

∑
l=0

(−2)m−k−l
(m

k

)(m− k
l

)

×

∫

A
y2k

E[Y2l
t 〈y,Yt〉

m−k−l ]dy, (20)

Yt is the pure jump process described in Prop. (1) andE is
the corresponding expectation.

Proof. Expanding the exponential function under the
expectation in (17), we get

Pt(x0,A) = Ct E[
∫

A
e−βV(y−Yt )]dy

= Ct E

(

∫

A

∞

∑
m=0

(−β )m

m!
Vm(y−Yt)

)

dy. (21)

If we now exchange, formally, the sum with the integral
and use Fubini theorem we get

Pt(x0,A) =Ct

∞

∑
m=0

(−β )m

m!

∫

A
E[Vm(y−Yt)]dy. (22)

Since by definitionV(x) =| x |2, we have

Vm(y−Yt) =
m

∑
k=0

(m
k

)

y2k
m−k

∑
l=0

(−2)m−k−l
(m− k

l

)

Y2l
t

× 〈y,Yt〉
m−k−l . (23)

Inserting now equation (23) into (21) yields the results.
The Fourier transform (or characteristic function ) of the
processYt is given, fork ∈ R

d, see (15), by:

F (Yt)(k) = E[ei 〈Yt ,k〉]

=

∫

Ω
ei<Yt(w),k>P(dw)

=

∫

Rd
ei<y,k>PYt (dy)

= exp
[

ie−λ t〈k, x0〉+

∫ t

0
ψ̃(e−λ (t−s) k)ds

]

,(24)

here PYt is the image measure ofP under the map
Ω −→ R

d given byYt andPYt (dy) = Pt(0,dy) and ψ̃ is
the characteristic function given by equation (16).
In the following we computeE[Yr

t 〈y,Yt〉
s], for r,s ∈ N.

For simplicity we write the formulae ford = 1, an easy
adaptation yields the cased > 1. LetJ ⊆ N be a finite set.
The collection of all partitions ofJ is denoted byP(J). A
partition is a decomposition ofJ into disjoint, non-empty
subsets, i.e.I ∈ P(J)⇐⇒ ∃k ∈ N, I = {I1, · · ·, Ik}, I j ⊆

S, I j ∩ Il = /0∀1≤ j < l ≤ k, ∪k
l=1 Il = J.

Definition 1 Let X1, · · · ,Xn, n ∈ N, be R−valued
random variables on some probability space(Ω ,A ,P).
Denote〈X1 · · ·Xn〉 := E(X1 · · ·Xn). Let I = {I1, . . . , Ik} a
partition of the set{1, . . . ,n}, then 〈X1 · · ·Xn〉 are the
moments of P and the truncated moments functions
〈X1 · · ·Xn〉

T are recursively defined by

〈X1 · · ·Xn〉= ∑
I∈P({1,...,n})
I={I1,...,Ik}

k

∏
l=1

〈

∏
j∈Ik

Xj

〉T

(25)

where, for a finite set A,P(A) stands for the set of all
partitions I of A into nonempty disjoint subsets{I1, . . . , Ik}.

Proposition 3 Assume the Ĺevy measureν has all
moments and let K be a subset of{1, · · ·,2n} then in the
sense of formal power series:

Pt(x0,A) =Ct

∞

∑
n=0

(−β )n

n!

d

∑
j1,..., j2n=1

δ j1 jn+1 · · ·δ jn j2n

× ∑
K⊆{1···2n}

(−2)♯K
∫

A
∏
l∈K

(−y j l )E[ ∏
l∈Kc

Yt jl
]dy, (26)

whereKc = {1 · · · 2n}\K and δ jk being the Kronecker
symbol andY andy are as in Prop.1.
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Proof. From (21) and the definition ofV we have:

Pt(x0,A) = Ct

∞

∑
n=0

(−β )n

n!

∫

A
E[Vn(y−Yt)]dy

= Ct

∞

∑
n=0

(−β )n

n!

d

∑
j1,..., jn=1

∫

A
E[

n

∏
l=1

(Yt jl
− y j l )

2]dy

= Ct

∞

∑
n=0

(−β )n

n!

d

∑
j1,..., j2n=1

δ j1 jn+1 · · ·δ jn j2n

×

∫

A
E[

2n

∏
l=1

(Yt jl
− y j l )]dy

= Ct

∞

∑
n=0

(−β )n

n!

d

∑
j1,..., j2n=1

δ j1 jn+1 · · ·δ jn j2n

× ∑
K⊆{1···2n}

(−2)♯K ∏
l∈K

(−y j l )

∫

A
E[∏

l∈Kc

Yt jl
]dy

Note that the moments of a product of random variables
Yt jl

can be calculated by differentiation of the Fourier

transformP̂Yt jl
(k) of the lawsPYt jl

(k) atk= 0:

E[∏
l∈Kc

Yt jl
] = (−i)♯Kc( ∏

l∈Kc

∂
∂k j l

)

P̂t jl
(k) |k=0

= (−i)♯Kc( ∏
l∈Kc

∂
∂k j l

)

exp{ie−λ t 〈k,x0〉

+

∫ t

0
ψ̃(e−λ (t−s)k)ds} |k=0 . (27)

The last equation is based on the fact that if the process
Yt is given byYt = e−λ tx0+(Kλ L̃)(t), where(Kλ L̃)(t) =
∫

R

Kλ (t,s)L̃(ds), with Kλ (t,s) = χ[0,t](s)e−λ (t−s), and if

f1, ..., fn are given functions then

E[∏
l∈Kc

〈 f j l ,Yt jl
〉] = ∑

I∈P(Kc)
I={I1···Ik}

k

∏
l=1

cl

∫

R

Kλ f jl
dsl , (28)

wherecl =

∫

R\{0}
sl ν(ds).

In the following we set:∂J =
∂

∂kj1
···∂kjq

whereJ = { j1, · · · ·

· · jq}.

Lemma 1 Let f and g be two functions defined onR,
differentiable k times, then the following holds:

∂J f ◦g=
♯J

∑
k=1

f (k) ◦g ∑
I∈Pk(J)

I={I1···Ik}

k

∏
l=1

∂Il g (29)

where f(k)(y) = dk

dyk f (y) and Pk(J) is a k−partitions of J,

i.e, Pk(J) = {I = {I1, · · ·Ik} : Il 6= /0, Il ∩ Il ′ = /0,
⋃

Il = J}.

Proof. The proof is immediate by induction overq= ♯J,.

The following analogue of the ”Linked Cluster” Theorem
of statistical mechanics gives a connection between the
ordinary expectations of products ofYt and the truncated
ones:

Theorem 1 Let K be a subset of{1, ...,2n} and Yt be the
Lévy OU process described in Proposition1, then:

E[∏
l∈Kc

Yt jl
] = ∑

I∈P(Kc)
I={I1···Ik}

k

∏
l=1

〈∏
q∈Il

Yt,q〉
T (30)

Proof. The proof is based on lemma (1), by taking f ◦g=
exp(g), we have then:

E[∏
l∈Kc

Yt jl
] = ∑

I∈P(Kc)
I={I1···Ik}

∂Il exp{
∫ t

0
ψ̃(e−λ (t−t′)k)dt′}|k=0

= ∑
I∈P(Kc)

I={I1···Ik}

k

∏
l=1

〈∏
q∈Il

Yt,q〉
T

The following first main result holds:

Theorem 2 The large diffusion expansion for the
transition semigroup of the Ĺevy OU process Xt , defined
by equation (1) is given, in the sense of formal power
series, by:

Pt(x0,A) = Ct

∞

∑
n=0

(−β )n

n!

d

∑
j1,..., j2n=1

δ j1 jn+1 · · ·δ jn j2n ∑
K⊆{1···2n}

(−2)♯K

×

∫

A
∏
q∈K

(−y jq) ∑
I∈P(Kc)

I={I1···Ik}

k

∏
l=1

〈∏
q∈Il

Yt ,q〉
Tdy (31)

Proof. From proposition (3) and theorem (1) we have:

Pt(x0,A) = Ct

∞

∑
n=0

(−β )n

n!

d

∑
j1,..., j2n=1

δ j1 jn+1 · · ·δ jn j2n ∑
K⊆{1···2n}

(−2)♯K

× ∏
l∈K

(−y j l
)E[∏

l∈Kc
Yt jl

]

= Ct

∞

∑
n=0

(−β )n

n!

d

∑
j1,..., j2n=1

δ j1 jn+1 · · ·δ jn j2n ∑
K⊆{1···2n}

(−2)♯K

×
∫

A
∏
l∈K

(−y j l
) ∑

I∈P(Kc)
I={I1···Ik}

k

∏
l=1

〈∏
q∈Il

Yt ,q〉
Tdy (32)

Remark 2 The disadvantages of the right hand side in
the formula given by theorem (2) is that the
corresponding N-truncated solution is a polynomial in x0
and can not be used as a probability density. In addition
the obtained formula is quite complicated!, We shall see,
in the next section, that these disadvantages will be solved
by the Feynman graphs techniques.
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Table 1: Different types of vertices.
Empty

Inner ◦
Outer ⊗

4 Feynman graph representation of the large
diffusion expansion

The main objective of this section is to introduce the
generalized Feynman graphs and Feynman rules to solve
the disadvantages of the formula given by Theorem2.
Let us consider then−th terms in the large diffusion
expansion given by Theorem2, i.e :

d

∑
j1,..., j2n=1

δ j1 jn+1 · · ·δ jn j2n ∑
K⊆{1···2n}

(−2)♯K
∫

A
∏
q∈K

(−y jq)

× ∑
I∈P(Kc)

I={I1···Ik}
♯Il=ml

k

∏
l=1

〈∏
q∈Il

Yt,q〉
Tdy. (33)

Definition 2 A generalized Feynman graph is a graph
with two types of vertices called inner empty and outer
empty and directed, distinguishable edges. Outer empty
vertices have only one leg, inner empty vertices have an
arbitrary number of legs.
The inner empty and the outer empty vertices are
indistinguishable and have indistinguishable legs (i.e. are
graphs that differ only by a relabling of such vertices, the
legs are identified.)
The number of edges n, connected to the inner vertices, is
also called the order of the Feynman graph.

We denote the set of all generalized Feynman graphs of
ordern by F2(n).
The different types of vertices of a generalized Feynman
graph are summarized in Table1.

Lemma 2 There exists a one to one correspondence
between the set of pairs
{(K, I) : I = {I1, · · ·, Ik}, K ⊆ {1 · · ·2n}} andF2(n).

Proof. We haven pairs of indices(1, n) · · · (n, 2n) and we
have to choose a setK from {1 · · · 2n} and then a
partition of the remaining points. Now we represent the
pairs by vertices with two legs, the legs inK by an outer
empty vertex and we connect the legs inI1, · · ·, Ik to the
inner empty vertices.
Figure 1, gives an example of construction of a
generalized Feynman graph from the setK and the
partitionI = {I1, I2}.

The following rule gives an analytic value to a
generalized Feynman graph:

Definition 3 We obtain an analytic valueϑ : F2(n)−→
R for a generalized Feynman graph as follow:

i). For every edge choose a number l∈ {1, · · ·n} and an
index jl ∈ {1 · · ·d}.
ii). For every outer empty vertex connected to the l− th

edge multiply by
∫

A
(−y j l )dy, A ∈ B(Rd).

iii). For every inner empty vertex with l legs connected with
the edges q1, · · ·,ql multiply by(−2)l cl .
iv). Sum up over j1 · · · jn.

Remark 3 Here we used ”topological graphs”, i.e, the
direction of edges and their labeling is being neglected.
Therefore we obtain multiplicity factors in front of each
graph. We note the set of all topological graphs byG ,
such thatG = {G′ ∈ F2(n), G′ differs fromG only by
labeling.}
The multiplicity of a graph G∈ F2(n) is equal to the
cardinality of the topological graph G′.
Note thatϑ(G) only depends on the topological graphs!

From theorem (2), definition (2) and lemma (2), we are
now able to state the second main result of this work:

Theorem 3 The large diffusion expansion for the
transition semigroup of the Ĺevy OU process Xt given by
equation (1) is given by a sum over all generalized
Feynman graphs G∈ F2(n) that are evaluated according
to the rule fixed in definition (3), i.e,

Pt(x0,A) =Ct

∞

∑
n=0

(−β )n

n! ∑
G∈F2(n)

ϑ(G)(x0, A), (34)

where Ct is as given by Prop. (1).

Remark 4 The series given by equation (34) in general
diverge, but it can be given the meaning of an asymptotic
series, which can be studied in a future work, we can refer
for the moment to some results found in [4], [ 6].
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5 Applications on information systems

The current work can be used to simplify the complexity
of the online social networks, which has been recently
exploded in popularity and increasingly used from 2010
to 2015, as an example we can cite Google web,
citations,... . This is really the case of many others online
networks.
Our graph formalism can be used to represent such online
networks by a Feynman graph where the edges of the
graph are the relationships between peoples in a given
office while the vertices are persons in such office.
Another example is to look to a given web as a Feynman
graph where the vertices are individual sites or pages
whereas the edges are the links between them, the
previous section of the current work can be used to find
the probability that a random web surfer, looked as a
stochastic process, will be at a given page and by the
same method developed in section 4 of this work, one can
compute easily the transition probability densities of such
process.
The current Feynman graphs are also considered one of
the important modeling objects in many modern areas,
such as online networks, they can analyse in a simple way
the networks, complex networks from biological systems
and image segmentation. Moreover the Feynman rules or
algorithms as developed in section 4 of the current work
simplify the graphs of any complex online networks,
see.e.g, [9], with hundred million edges and several
millions vertices ,and are simple to implement. In
addition the approximations errors are bounded due to
their stochastic nature.
Finally the main advantage of our graphical
representations, as it s done in the current work, is that it
allows researchers to easily handle online networks that
are very large, with millions vertices and hundreds of
millions of edges.
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Existence of mild solutions for stochastic differential
equations and semilinear equations with non-Gaussian Lévy
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