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Abstract: We consider the Lévy Ornstein- Uhlenbeck procgsdescribed by the equatiaX = —A X dt+dLi, A > 0 andL; a Lévy
white noise. The corresponding semigroup is expressed by@actation with respect to a pure jump Ornstein- Uhlenipeokess. A
large diffusion expansion is then obtained.

The expansion is organized by using suitable generalizgdrif@n graphs and rules. Applications on information s@snwill be
given.
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1 Introduction important one, that attract researchers due to its large
applications, especially in Mathematical Finance, is the

We consider the Lévy Ornstein- Uhlenbeck (OU) equation'—éVy Ornstein-Uhlenbeck process. The latter is used for

for anR9—valued proces¥;, t € [0, oo[: example as volatility process in stochastic volatility
models, see, e.g10)].
_ The aim of this work is to provide expansions for the
{dX{__ /\?f‘ dt+ dOL(t) R A >0 (1) transition semigroup for the Lévy OU-process.
Xo =X, (t,X0) €]0, ®[xRE, In the Gaussian case one has the well known "Mehler's

. ] ] Formula”, for the transition semigroup, which we denote

wherel; = L(t) is a Lévy process iRY. See below for by PM(xo, dX), t >0, x,Xo € RY:
more details about;.
In their paper 21], Ornstein and Uhlenbeck studied a free i 2m B 4

icle i i | ing i i RY (x0,dX) = (deD) 2 (S~ (1—e A1) %
particle in Brownian motion, moving in a rarefied gas and ft (%o, 2
affected by a friction force proportional to the pressure. | At 1 At
order to understand the displacement procgssf the x eXp{“t<(X_e Xo), D™ (x—€ X0)>}d)9 (E1)
p?tr?deét)(tthe{f r]lr}vel(stlgated ttr:\eOVe[[OQItyUhlpfogeSkS where D = (Djj)ij=1..d iS @ symmetric strictly
u(t) = , which is known as the Ornstein-Uhlenbec L L o 1 A
process. The work of Ornstein and Uhlenbeck continueéDOS't've definite matrlx andft T 2120 ,t > 0.
Einstein’s fundamental work (in 1905), seel3[ on  Using the terminology in 73], the Lévy process
Brownian motion itself and also the work of {Lt > 0} with both Gaussian and non-Gaussian
Smoluchowski (in 1906), see2§] who, derived the —component, is given by its characteristic (or generating)
Fokker-Planck equation for the OU process and alsdfunctional:
determined the transition density. ,
After Paul Lévy's characterisation in the 1930s of all E(e{ét) =¥ vt >0,& eRY, 2)
processes with stationary independent increments, manyit,  a function fromR¢ into R of the form
researchers were interested in detailed properties of the
distributions of these processes. Moreover, important _ _ / i(x&)
classes of stochastic processes were obtained aswf) a.§)—(¢.D&)+ Rd\{o}(el 1) v(dx).
generalizations of the class of Lévy processes. An 3)
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result known as "Linked Cluster” theorem.

The aim of section 4 is to introduce generalized Feynman
graphs and rules, we achieve then our main result by
giving a graphical representation of the large diffusion
expansion of the transition density of the Lévy OU

process.

Later on we shall also assume that the Fourier transfornsection 5 is devoted to some applications on information
¥ of v is a smooth function ofRY.

Herea € RY and D is as abovey is a positive Lévy
measure satisfying:

/ x| v(dx) < oo, / XPv(dx) <.  (4)
[x|<1 [x>1

! | ) systems.
The transition semigrougi (Xp,dx) of L; is then the
kernel of the semigroup with infinitesimal generatog,
s.t.R = €€ onCy(RY) (the space of continuous functions 2 Lévy noise

vanishing at infinity equipped with sup-norm) and given
by In this section we recall some properties of the Lévy noise
L¢,t > 0, that are useful for the current work.

We define the compensated jump meaduralso called
the compensated Poisson random measure by:

2

d 0 d
(GHX) = - J;aja—xjf(x) + j;:lel Wf(x)

N(dt,d2) := N(dt,d2) — v(d2)dt, (7

[, Ifxry) — F0]v(dy), xe RS, (5)
S Xs(AL(s)), BaBorel setiRY, and

whereN(t,B) :=
(t,B) ngsgt

AL(s) :=L(s) —L(s7) is the jump ofL at times, we have

v(B) =E(N(1,B)).

By aresult of lo'and Lévy, see, e.g2B], [[ 8], p. 108-109],

the Lévy process: = L(t),t > 0, admits the following

integral representation:

The large diffusion expansion of the transition density
will be given by a power series in a parametgr
(proportional to the inverse of the determinantf the
latter series expansion is not convergent and hador some constard € RY and withD as in sectionl . Here
complicated terms, however it is well interpreted usingW =W(t),t > 0 is a standard Wiener processf
the recently discovered generalized Feynman graphs and By assumingg[| L(t) [°] < «,t >0, then
Feynman rules, see, e.d.415,16,25] the later will help  J;>1 | Z|* v(d2) <« and the representatiog)(becomes
in clarifying the problems related with this expansion. y
The graphical representation for the large diffusionL(t) =agt-+DW(t)+ [ j"z‘<1zN(dsdz)+f(§ J2>12N(ds d2),
expansion of the transition probabilities of the Lévy OU 9
process, as done in this work, seems to be new even fovherea; = a+f‘z‘21 zv(dz).
classical OU processes. It simplifies the analyticA Lévy process; which satisfies the representatid) (
expressions and could lead to a lot of applications , as inwith ay = D = 0 is called a pure jump Lévy process(it is

for f € C3(RY), see, eg., B3, p. 208].R satisfies then the
corresponding jump-diffusion Kolmogorov equation

)
GRf=GRI, t>0 (6)

L(t) =at+DW(t) + g fi-1ZN(ds d2) + [ f‘zmzN(dsdé);i

the simulation of Lévy OU processes, see, e2f],[in
applications to mathematical finance, see, eif)],[
neurobiology, see, e.g4], quantum field theory and

without Gaussian and deterministic components .(tf
is a pure jump Lévy process @&f, then its characteristic
function is given by:

statistical mechanics, see, €.8,3).

Before we go over to describe the contents of the present
paper, let us mention that our study of SDE's of tyf (
can be extended to other classes of non linear S(P)DEs, |, rd andv is the intensity measure, also called Lévy

such that KPZ equations, see, e.g5|[ and the beam measure, satisfyinng\{o}(|y|2 A1) v(dy) < w.

epitaxy equations, see, e.49. Also Iet'us mention that', For information on Lévy processes and related equations,
to the best of our knowledge, graphical representationg ., o 9.81.[11, 18], [23

and linked clugter theorems for Levy OU processes haVﬁ‘\/loreover, the Lévy-Itd decompositio8)(for L; takes then
not been considered before. :

X X . . the form:
The remainder of this paper is organized as follow:
In section 2 we present some results on Lévy noise, that
help the reader to understand the other sections of this
work. Section 3 is devoted to the study of the transition
density of the Lévy OU process, the latter will be be
given by a series which is not convergent but has a
meaning as an asymptotic series. We recall then a basi®, x (RY — {0})

(40 @i

I:t:/xN(t,dx)+/ xN(t,dx), t >0, (11)
B RA\B

where, in this casd\ is a Poisson random measure on
(the Poisson random measure
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associated with the jumpsAz = [ — [, ie.
N([0,t) x A) = {0 < s < t|AZs € A}, for eacht > O,
A e ZRN{0}), N(t,A) = N(t,A) —tv(A), for all
A€ #(RY,{0}), 0 A A the closure ofA) We have
V(A) = E(N(1,A)); for eacht > 0, w € Q, N(t, - )(w) is
the compensated Poisson random measur({to ) (w))
on the Borelo—algebraz(R%\ {0}); N(t,A),t > 0'is, in
particular, a martingale-valued measure.

3 Large diffusion expansion for the transition
probabilities

In this section the transition probability density of the
Léevy OU process; will be given by a series which is not

Let PM be the Gaussian transition density of the Lévy OU
process given by equation (E1), if we denote this process
by X then X satisfies Ywith L := L¢ given by the
generating triple{2D, 0,0)o.

For simplicity the matrix D, in equation 8), will
henceforth be taken to be diagonal, ie= D -1, where

D is constant and the unit matrix oriRY,

In the following we setB = 5 ( ),t>0.

Proposition 1 Let G

X= (X1, -, %) € R4 and V(x) :=| x |2.
The transition semigroup of theélky OU process X
solution of () satisfies:

1—e2At

d
(B4t

Z 01

R(x0,A) =G Ey [/Ae—ﬁV(y—Wdy ,t>0  (17)

convergent in general but rather has only the meaning ofor any Borel subset A d&%, whereEy is the expectation

an asymptotic series, see, e.tj4,27]. Under the use of

Linked Cluster Theorem we prove a large diffusion type

expansion for the transition density of the Lévy OU
process.

From known results, see, e.g8],[[23], under the above
assumptions orl;, equation {) has a unique strong
solution X;,t > 0 which can be assumed to be adag
process and is given by

t
X :e*“xo+/ e 9dLg, xo € RY,  (12)
0

the integral being a stochastic one. We shall salLévy
OU process.

Let (Q,%,P) the probability space underlying. Then

X is a Markov process, with transition semigroup
R (Xo0,dX), X0, X € RY. One has thus

a(xo,A>=/Aa<xo,dy>=P<><t cA[Xo=X), (13)

for any Borel subseA of RY.
It is proven, e.g., in R3], p. 106 ], that ifL; is given as
above by the characteristic functiond) (hen

/ ei(f-WH(X’dy) = exp[ie’“(s‘, X)
Rd

n /tw(e’ASE)ds},E,x cRY, (14)
0

with ¢ given by Q).

If B is the transition semigroup of a pure jump Lévy O-U
processt;, satisfying (L2) with L replaced by as given in
(10), thenR! satisfies:

/Rd VPRI (x, dy) = exp[ie*“@, Xo)

+ /()ttp(e*“f)ds},f crY (15)

where

(&) (16)

&)
/Rd\{O}(é 1)v(dx).

with respect to the probability measure for the pure jump
levy _OU process (Y  satisfying
d¥% = —AdY, +dL;, Yo = xo, with L; given by (0).

Proof. Following [[24], Lemma 2.2], X can be
decomposed into two processgsR s.t. Xi = Y + R,
andY;, R are independent of each other and

1 is a solution of the equatiorlf with L; replaced by
[{, and [} of pure jump type, with characteristic
functional ¢y given by equation 16), the initial
condition beingry = Xo;

2.R is a solution of the equatiori with L; replaced
by LY := L, — L, and initial conditionRy = 0, i.e., R
satisfieddR = —A Redt+dL{.

We have, for any Borel subsatin RY :
()- R(%0,A) =E (XA(X[)) whereE is the expectation with

respect to the probability measure underlyXagstarted at

Xo = Xo)(see (3)).
(ii)-Using the decompositiod = Y; + R we have

R(6,A) =P(X € A) =E(xa+R)).  (18)
But
E(Xal% +R)) = E[E(xa(% +R) | (%)
= E[By (Xax(R) | 0(%)) |
—E[Ev (xax(R)) ], (19)

since theo—algebrao (Y;) generated bY; is independent
of R, and where in the last equality we have used Fubini
theoremEy stands for expectation with respectvto

Using Fubini theorem to interchanggy and E, the
definition of PM, and recalling the definitions ¢8,G,V
then yields the resultm

Remark 1 1.The expression given by equatiot7)
looks like a sum over states in statistical mechanics,
where V is the potential energy and® is a
Boltzmann weight, see, e.@7],
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2.In the Gaussian case studied by Einstein the coefficientnserting now equatior2@) into (21) yields the resultsm
D is determined in terms of molecular quantities. The Fourier transform (or characteristic function ) of the
3.The case wherej(t) in (3) is purely Poisson, i.e, proces is given, fork € RY, see 15), by:
v # 0 and a= 0% = 0, the coordinate process; lis
then a marked Poisson process with intensity z, if We

write v = zu and it can be interpreted as a F W) (k) = E[elm’k)]
non-interacting classical continuous particle in the :/ d <Y(w) k> P(dw)
configurational grand canonical ensemble with

activity z, see, e.g.2P], where each particle carries a . / ei<y7k>R((d )
distributed random charge. The case, where both a a (Y

Gaussian and a Poisson process contribute to the ot A

random process Li.e, z> 0 and 02 > 0, can be = exp[|e (k, Xo>+/o J(e k)ds|,(24)
interpreted as a grand canonical ensemble

mesoscopic charge particle (Poisson contribution) , ,

and a white noise fluctuation of the charge density to€ré Py _is the image measure df under the map
microscopic  particles(Gaussian  contribution). @ — RY given byY; and R (dy) = R(0,dy) and  is
Moreover the Gaussian contribution can be seen as athe characteristic function given by equatidi)

scaling limit of a Poisson contribution, see, e.g].[ In the following we computél[Y" (y, 1), for r,s € N.
. _ . For simplicity we write the formulae fod = 1, an easy
The idea is now to perform a "high temperatur€;-  adaptation yields the case> 1. LetJ C N be a finite set.

expansion of R corresponding to a smallB,  The collection of all partitions of is denoted by (). A
(B = g7,k > 0,Tg > 0), which is in our case, sing@is  partition is a decomposition dfinto disjoint, non-empty
proportional to 3, as given by Prop.1) is a large subsets, i.el € Z(J) <= Ekke N, = {lg,-- I}, 1 €
diffusion expansign looking upon D as a diffusion S 1jNl=0V1<j<lI<kU_;li=J

coefficient.

Proposition 2 The large diffusion expansion of the

transition semigroup of thedvy OU processpt > 0 in Definition1 Let X, ---,Xy,n € N, be R-—valued
Prop. (1), is given by a formal expansion in power®f  random variables on some probability spa@®, «7,P).
ie: Denote(Xp---Xn) :=E(X1---Xn). Let I ={l1,...,Ik} a
partition of the set{1,...,n}, then (X;---X,) are the

k
R(GA) =G Z ' S im% ym—k= '( )(m—k moments of P and the truncated moments functions
m | (Xg---Xn)" are recursively defined by
x /A Y*E[Y? (y, Yt)™ <] dy, (20)
Y; is the pure jump process described in Prah.gndE is LX) —
the corresponding expectation. (X Xn) e {1 ..... r! ” XJ (25)

Proof. Expanding the exponential function under the

expectation in17), we get o
where, for a finite set AZ(A) stands for the set of all

R(Xo,A) = QIE[/ e PV dy partitions | of A into nonempty disjoint subséts, ..., Ix}.

m
QE(/ Z V (- Y)> dy. (21) Proposition3 ~ Assume the &vy measurev has all

moments and let K be a subset{df - - -,2n} then in the
If we now exchange, formally, the sum with the integral sense of formal power series:
and use Fubini theorem we get

[ee]

y Y)] dy (22) 6j1jn+1 T 5jnj2n
mn~=o0 '~ Y~ . n=u 1, 12n 1
K
Since by definitio/ (x) =| x |2, we have x oy (—2)t /Al'l (—Yn)lE[ u Yy, 1dy, (26)
KC{1--2n} leK leKke
— m—k
VT(y—Y) = %( )yZK% mkl( | )Yt2|
k= whereK® = {1---2n}\K and oy being the Kronecker
x {y, o)™k (23)  symbol and¥ andy are as in Propil.
(@© 2016 NSP
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Proof. From (21) and the definition of/ we have:

/ EV"(y -~ Yo)dy

R(%,A) = C i(_ﬁ)n

n!

/]E Yt“ yJ| ]dy

le an_l
6]1jn+1 T 5jnj2n

le vJZI’]

x /E[ (Ytj| —Yj)ldy
Ojn jzn

=G % n| _ Ojjnis
..... sz—l

X Kgg_zn}(_Z)ﬁK ll;l((—yh)/A]E[IIEJCYtJ_l]dy

Note that the moments of a product of random variables
can be calculated by differentiation of the Fourier

Yy,
transformlfﬂ(tjI (k) of the lawsRy, (k) atk=0:

. c 0 "
Eﬁﬂm =, (,—kjl)ajl ® o

tKC
([] 0k“

leKe

) explie ™ (k, xo)

Proof. The proof is immediate by induction ovge= £J..
|

The following analogue of the "Linked Cluster” Theorem
of statistical mechanics gives a connection between the
ordinary expectations of products 4fand the truncated
ones:

Theorem 1 LetK be asubsetdfl,...,2n} and ¥ be the
Lévy OU process described in Propositibthen:

k
_ T
E[I Qthjl ] B |e;<5) II:!<q€ | Yt-,Q> (30)

1={IqIy}
Proof. The proof is based on lemma)( by takingf og =
exp(g), we have then:

E[ u Yth] = Z
leKe 1ePTRC)

1={11-1}

k
Y/ T
|e;@) II:!<q€| t’q>

1={11-1}

t !
avexpl | ple gty

The following first main result holds:

Theorem2  The large diffusion expansion for the
transition semigroup of thedvy OU process X defined
by equation (1) is given, in the sense of formal power

+/ P(e JK)ds} [k - (27) series, by:
The last equation is based on the fact that if the proces§0e.A) =& ZD > Buina Oy quzn)(fz)w
Y is given by = e Mxo + (K D)(1), where(i D)ty = " o <
/ Ky (t,9)L(ds), with K, (t,s) = Xo.(s)e * "9, and if - ./AqEL“ 2 que Yo' 0y Gy
: | Iy |k

f1,..., fn are given functions then

k
E[lgcﬁjleﬁl )= IE;(C E!Cl/l%K)‘fjlds’ (28)

I={l1- I}

whereg =/ S v(ds).
R\{0}

In the following we setd; = W whered = {jg,----
1 q

Lemmal Let f and g be two functions defined Bn
differentiable k times, then the following holds:

#J k
dfog=5 fMog a9 (29)
kZl |E;J) IE! l

1={l- i}

where ¥(y) = 4

e, R ={l ={l1,-- I} : 1 0, Nl =0, Ul = J}.

f(y) and R(J) is a k—partitions of J,

Proof. From proposition3) and theoreml) we have:

d
. - K
» Z 5111n+1"'61n12n z (=2
jzT2n=1 KE{L--2n}

x rl<fy,».>m Q ¥,
3 d
11|n+1 “Ojn iz z (*Z)nK

..... |2n7 Kc{T-2n}
/ Uit
=Yi) (1Y) dy (32)
I_}|< : IGF%(C) rl qel)

1={lgle}

e~ 5

Remark 2  The disadvantages of the right hand side in
the formula given by theorem2)( is that the
corresponding N-truncated solution is a polynomial j x
and can not be used as a probability density. In addition
the obtained formula is quite complicated!, We shall see,
in the next section, that these disadvantages will be solved
by the Feynman graphs techniques.
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Table 1: Different types of vertices.

Empty
Inner o
Outer ®

4 Feynman graph representation of the large
diffusion expansion

(4.8)

The main objective of this section is to introduce the
generalized Feynman graphs and Feynman rules to solv
the disadvantages of the formula given by Theofem

Let us consider then—th terms in the large diffusion
expansion given by Theore®i.e :

Figure 1:  Construction of a generalized Feynman graph from the set K and the
partition I = {/;,,}

d

Suins O Y (<27 [ [] (%)
i Z 1 J1int1 InJ2 Kg(;-Zn} AqEL Iq
k .
. For every edge choose a numbeg I{1,---n} and an
x Y, Tdy. (33) ') |
|6I;<C) I:!<qD| t'q> index j € {1---d}.

':u.{'i”"k} ! ii). For every outer empty vertex connected to theth
- edge multiply b)%(—yj,)dy, Ac BRY).
A

Definiton 2 A generalized Feynman graph is a graph i) Foreveryinneremptyvertexwith | legs connected with
with two types of vertices called inner empty and outerthe edgesg---,a multiply by(-2)'q;.

empty and directed, distinguishable edges. Outer empty¥). SUM up overaj: - - jn.

vertices have only one leg, inner empty vertices have an

arbitrary number of legs. Remark 3 Here we used "topological graphs”, i.e, the
The inner empty and the outer empty vertices aredirection of edges and their labeling is being neglected.
indistinguishable and have indistinguishable legs (ire. a Therefore we obtain multiplicity factors in front of each
graphs that differ only by a relabling of such vertices, the graph. We note the set of all topological graphs %y

legs are identified.) such that¥ = {G' € Z,(n), G differs from% only by
The number of edges n, connected to the inner vertices, itbeling} .
also called the order of the Feynman graph. The multiplicity of a graph Ge #;(n) is equal to the

. ardinality of the topological graph G
We denote the set of all generalized Feynman graphs ofyie thatd (G) only depends on the topological graphs!
ordern by %>(n).

The different types of \{ertices of a generalized Feynmang,,, theorem 2), definition @) and lemma 2), we are
graph are summarized in Tatle now able to state the second main result of this work:

Lemma 2 There exists a one to one correspondence e .
between the set of pairs Theorem3  The large diffusion expansion for the

o o transition semigroup of thedvy OU process pgiven by
(K1) 21 = {1, i, K S {1---2n}} and F(n). equation (1) is given by a sum over all generalized
Proof. We haven pairs of indiceg1, n)---(n,2n) andwe ~ Feynman graphs G .%>(n) that are evaluated according
have to choose a sdét from {1---2n} and then a to therule fixed in definitiord), i.e,
partition of the remaining points. Now we represent the

pairs by vertices with two legs, the legsknby an outer A= (=B
empty vertex and we connect the legslin- - -, I to the R(0,A) =G n; n! GE; (n)S(G)(XO’ A, (34)
inner empty vertices. ] 72

Figure 1, gives an example of construction of a
generalized Feynman graph from the d€tand the
partitionl = {l1,12}.

The following rule gives an analytic value to a
generalized Feynman graph:

where G is as given by Prop.1).

Remark 4  The series given by equatiod) in general
diverge, but it can be given the meaning of an asymptotic
series, which can be studied in a future work, we can refer
Definition 3 We obtain an analytic valug : %,(n) — for the moment to some results found 4, [ 6].

R for a generalized Feynman graph as follow:
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5 Applications on information systems [2] ALBEVERIO. S, GOTTSCHALK. H AND J-L. Wu.
Convoluted Generalized White noise, Schwinger Functions

The current work can be used to simplify the complexity ~ and their Analytic continuation to Wightman Functiofev.

of the online social networks, which has been recently _Math. Phys, \ol. 8, No. 6, 763-817, (1996).

exploded in popularity and increasingly used from 2010031 é;;i\éER(')?' cslésgféngS;:r/?itrésHiﬁNchgongnD:. ghvc\)/ﬁical
tq 2.015’ as_an .example we can cite Google ng, ensemble, scaling limits and quantum field theBwsv. Math.
citations,... . This is really the case of many others online Phys, Vol. 17, No. 02, 175-226, (2005)

networks. L"'] EBIe S Maca ’ .

. . ALBEVERIO. S, MASTROGIACOMO. E AND SmiI. B.Small
Our graph formalism can be used to represent such online ™ ,yise asymptotic expansions for stochastic PDE's driven by

networks by a Feynman graph where the edges of the gjssipative nonlinearity and Lévy noisgtoch. Proc. Appl.
graph are the relationships between peoples in a given 123(2013), 2084-2109.

office while the vertices are persons in such office. [5] ALBEVERIO. S, MANDREKAR. V AND RUDIGER B.
Another example is to look to a given web as a Feynman  Existence of mild solutions for stochastic differential
graph where the vertices are individual sites or pages equations and semilinear equations with non-Gaussiary Lév
whereas the edges are the links between them, the noise.Stochastic Process. Appl. 119 (2009), no. 3, 835-863.
previous section of the current work can be used to findl6] ALBEVERIO. S AND Swmii. B.Asymptotic expansions for
the probability that a random web surfer, looked as a SDE'’s with small multiplicative noisestoch.Process. App.
stochastic process, will be at a given page and by the_ 125(2015), no.3, 1009-1031 . ,
same method developed in section 4 of this work, one cah’] ALBEVERIO. S , WU. J-L AND ZHANG. T. S. Parabolic

compute easily the transition probability densities oftsuc (Slgggs g;'_vseGn by Poisson white noisioch. Proc. Appl. 74

process. . (g?] APPLEBAUM. D . Lévy Processes and stochastic Calculus.
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