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Abstract: In the last decade the applications of quantum calculus in the field of approximation theory is an active area of research.The
(p,q)-calculus is further extension ofq-calculus, which provides a new direction for researchers.In the present article, we propose the
(p,q)-variant of the Baskakov-Kantorovich operators, using(p,q)-integrals. We estimate moments and establish direct results, using
linear approximating methods viz. Steklov mean andK-functionals in terms of modulus of continuity. Also, in a weighted space, we
obtain a direct estimate.
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1 Introduction

The quantum calculus (q-calculus) in the field of
approximation theory was discussed widely in the last
two decades. Several generalizations to theq variants
were recently presented in the books [5] and [11] related
to convergence behaviours of different operators.
Quantum calculus has many applications in special
functions and many other areas (see [2], [6]). Also, Araci
et al. [1] studied on the fermionicp-adic q-integral
representation associated with weightedq-Bernstein and
q-Genocchi polynomials. Further there is possibility of
extension of theq-calculus to post-quantum calculus,
namely the(p,q)-calculus. Actually such extension of
quantum calculus can not be obtained directly by
substitution ofq by q/p in q-calculus. Theq-calculus
may be obtained by substitutingp = 1 in (p,q)-calculus.
Sahai and Yadav [15] established some basic properties of
(p,q)-calculus based on two parameters. Recently
Mursaleen et al. [14] discussed some approximation
properties of (p,q)-Bernstein-Stancu operators. Very
recently the author [10] defined
(p,q)-Szász-Mirakyan-Baskakov operators and
established some approximation results. Some basic
notations of(p,q)-calculus are mentioned below:

The(p,q)-numbers are defined as

[n]p,q : = pn−1+ pn−2q+ pn−3q2+ · · ·+ pqn−2+qn−1

=
pn−qn

p−q
.

Obviously, it may be seen that[n]p,q = pn−1 [n]q/p , where
[n]q/p is the q-integer in quantum-calculus given by

[n]q/p =
1−(q/p)n

1−(q/p) . The(p,q)-factorial is defined by

[n]p,q! =
n

∏
k=1

[k]p,q ,n≥ 1, [0]p,q! = 1.

The(p,q)-binomial coefficient is given by

[
n
k

]

p,q
=

[n]p,q!

[n− k]p,q! [k]p,q!
,0≤ k≤ n.

The(p,q)-power basis is defined by

(x⊕a)np,q = (x+a)(px+qa)(p2x+q2a) · · · (pn−1x+qn−1a).

Definition 1.The (p,q)-derivative of the function f is
defined as

Dp,q f (x) =
f (px)− f (qx)

(p−q)x
,x 6= 0
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As a special case when p= 1, the (p,q)-derivative
reduces to the q−derivative. The(p,q)-derivative fulfils
the following product rules:

Dp,q( f (x)g(x)) = f (px)Dp,qg(x)+g(qx)Dp,q f (x)

Dp,q( f (x)g(x)) = g(px)Dp,q f (x)+ f (qx)Dp,qg(x).

Definition 2.Let f be an arbitrary function and a be a real
number. The(p,q)-integral of f(x) on [0,a] is defined as

∫ a

0
f (x)dp,qx=(q− p)a

∞

∑
k=0

pk

qk+1 f

(
pk

qk+1a

)
if

∣∣∣∣
p
q

∣∣∣∣< 1

and

∫ a

0
f (x)dp,qx=(p−q)a

∞

∑
k=0

qk

pk+1 f

(
qk

pk+1 a

)
if

∣∣∣∣
q
p

∣∣∣∣< 1

In the year 2011, Aral and Gupta [3] proposed
q-Baskakov operators, which was further extended to
Durrmeyer variant in [12] by using q-integral. The
(p,q)-analogue of Baskakov operators forx ∈ [0,∞) and
0< q< p≤ 1 may be defined as

Bn,p,q( f ,x) =
∞

∑
k=0

bp,q
n,k(x) f

(
pn−1[k]p,q
qk−1[n]p,q

)
, (1)

where

bp,q
n,k(x) =

[
n+ k−1

k

]

p,q
pk+n(n−1)/2qk(k−1)/2 xk

(1⊕ x)n+k
p,q

.

In casep = 1, we get theq-Baskakov operators [3], [8].
If p = q = 1, we get at once the well known Baskakov
operators.

Definition 3.For x ∈ [0,∞),0 < q < p ≤ 1 the
(p,q)-variant of Baskakov-Kantorovich operators are
defined as

Kp,q
n ( f ,x) = [n]p,q

∞

∑
k=0

bp,q
n,k(x)p

−kqk

∫ [k+1]p,q/qk[n]p,q

[k]p,q/qk−1[n]p,q
f (t)dp,qt (2)

where bp,qn,k(x) is as defined in (1). For the special case of
the operators (2), one may see [13].

In the present paper, we estimate the recurrence formula
for moments of the (p,q)-Baskakov operators. For
(p,q)-Baskakov-Kantorovich operators we estimate
direct results using linear approximating methods viz.
Steklov mean, K-functionals and also obtain
approximation estimate in weighted space.

2 Moments

First we estimate the following Lorentz type lemma for
(p,q)-Baskakov basis, which will be used in the sequel.

Lemma 1.For n,k≥ 0, we have

x(1+px)Dp,qb
p,q
n,k(x)=

(
pn−1[k]p,q
qk−1 [n]p,q

−qx

)
[n]p,q
qpn−1bp,q

n,k(qx).

Proof.By simple computation using the definition of
(p,q)-derivative, we have

Dp,q

(
1

(1⊕ x)n+k
p,q

)
=−

p[n+ k]p,q

(1⊕ px)n+k+1
p,q

,Dp,qxk = [k]p,qxk−1.

Applying product rule

Dp,q( f (x)g(x)) = f (px)Dp,qg(x)+g(qx)Dp,q f (x),

for (p,q)-derivative, we can write

Dp,q

(
xk

(1⊕ x)n+k
p,q

)

= [k]p,q
xk−1

(1⊕qx)n+k
p,q

− pk+1 [n+ k]p,q
xk

(1⊕ px)n+k+1
p,q

= [k]p,q
xk−1

(1⊕qx)n+k
p,q

− [n+ k]p,q
xk

(1+ px)pn−1(1⊕qx)n+k
p,q

.

Thus using[n+ k]p,q = pn [k]p,q+qk [n]p,q, we get

x(1+ px)Dp,q

(
xk

(1⊕ x)n+k
p,q

)

=
[
[k]p,q(1+ px)pn−1− [n+ k]p,qx

] xk

pn−1(1⊕qx)n+k
p,q

=

[
[k]p,q−

qk [n]p,qx

pn−1

]
xk

(1⊕qx)n+k
p,q

=

[
pn−1[k]p,q
qk−1 [n]p,q

−qx

]
[n]p,q
qpn−1

(qx)k

(1⊕qx)n+k
p,q

.

Therefore, we have

x(1+px)Dp,qb
p,q
n,k(x)=

(
pn−1[k]p,q
qk−1 [n]p,q

−qx

)
[n]p,q
qpn−1bp,q

n,k(qx).

Remark.We may note done here that for the special case
p= q= 1 of the above lemma, we may capture at once the
Lorentz type relation of the Baskakov operators, viz.

x(1+ x)
d
dx

[bn,k(x)] = (k−nx)bn,k(x),

where the Baskakov basis is given by

bn,k(x) =

(
n+ k−1

k

)
xk

(1+ x)n+k .
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The moments of(p,q)-Baskakov operators, satisfy the
following:

Lemma 2.If we define

T p,q
n,m(x) := Bn,p,q(em,x) =

∞

∑
k=0

bp,q
n,k(x)

(
pn−1[k]p,q
qk−1[n]p,q

)m

,

where ei = t i, i = 0,1,2, · · · , then for m≥ 1, we have the
following recurrence relation:

[n]p,qT p,q
n,m+1(qx)

= qpn−1x(1+ px)Dp,q[T
p,q

n,m(x)]+ [n]p,qqxTp,q
n,m(qx).

In particular, we have

Bn,p,q(e0,x) = 1,Bn,p,q(e1,x) = x

and

Bn,p,q(e2,x) = x2+
pn−1x
[n]p,q

(
1+

p
q

x

)
.

Proof.Using Lemma1, we have

qx(1+ px)Dp,q[T
p,q

n,m(x)]

=
∞

∑
k=0

qx(1+ px)Dp,qb
p,q
n,k(x)

(
pn−1[k]p,q
qk−1[n]p,q

)m

=
∞

∑
k=0

(
pn−1[k]p,q
qk−1 [n]p,q

−qx

)
[n]p,q
pn−1 bp,q

n,k(qx)

(
pn−1[k]p,q
qk−1[n]p,q

)m

=
[n]p,q
pn−1 T p,q

n,m+1(qx)−
[n]p,q
pn−1 qxTp,q

n,m(qx).

This completes the proof of the recurrence relation.
Obviously (p,q)-calculus may be related with the
q-calculus and we may write

[
n+ k−1

k

]

p,q
= pk(n−1)

[
n+ k−1

k

]

q/p

and

(x⊕a)n
p,q = pn(n−1)/2(x+a)n

q/p.

Using the definition ofq-Baskakov operators (see [3], [5]),
we getBn,p,q(e0,x) = 1. The other consequences follow
from recurrence relation.

Lemma 3.For x∈ [0,∞], 0< q< p≤ 1, we have

1.Kp,q
n (e0,x) = 1

2.Kp,q
n (e1,x) = 1

[2]p,q[n]p,q
+ x

qpn−1

3.Kp,q
n (e2,x) =
[n+1]p,qx2

[n]p,qq3p2n−2 +
x

pn−1q[n]p,q

[
1
q +

(2p+q)p
[3]p,q

]
+ 1

[3]p,q[n]2p,q
.

Proof.By (2), using[k+1]p,q = pk+q[k]p,q and Lemma2,
we have

Kp,q
n (e0,x) = [n]p,q

∞

∑
k=0

bp,q
n,k(x)p

−kqk

∫ [k+1]p,q/qk[n]p,q

[k]p,q/qk−1[n]p,q
dp,qt

= [n]p,q
∞

∑
k=0

bp,q
n,k(x)p

−kqk
[
[k+1]p,q−q[k]p,q

qk[n]p,q

]

= Bn,p,q(e0,x) = 1.

By (2), using the identity

[k+1]p,q = pk+q[k]p,q = qk+ p[k]p,q

and applying Lemma2, we have

Kp,q
n (e1,x)

= [n]p,q
∞

∑
k=0

bp,q
n,k(x)p

−kqk 1
[2]p,q

[
[k+1]2p,q−q2[k]2p,q

q2k[n]2p,q

]

=
∞

∑
k=0

bp,q
n,k(x)p

−k 1
[2]p,q

[
([k+1]p,q−q[k]p,q)([k+1]p,q+q[k]p,q)

qk[n]p,q

]

=
∞

∑
k=0

bp,q
n,k(x)p

−k 1
[2]p,q

[
pk(qk+ p[k]p,q+q[k]p,q)

qk[n]p,q

]

=
∞

∑
k=0

bp,q
n,k(x)

1
[2]p,q

[
(qk+[2]p,q[k]p,q)

qk[n]p,q

]

=
1

[2]p,q[n]p,q
Bn,p,q(e0,x)+

1
qpn−1Bn,p,q(e1,x)

=
1

[2]p,q[n]p,q
+

x
qpn−1 .

Again, using the identity

[k+1]p,q = pk+q[k]p,q = qk+ p[k]p,q

and by Lemma2, we get
K p,q

n (e2,x)

= [n]p,q
∞

∑
k=0

bp,q
n,k (x)p

−kqk 1
[3]p,q

[
[k+1]3p,q−q3[k]3p,q

q3k[n]3p,q

]

=
∞

∑
k=0

bp,q
n,k (x)

1
[3]p,q

[
([k+1]2p,q+q[k+1]p,q[k]p,q+q2[k]2p,q)

q2k[n]2p,q

]

=
∞

∑
k=0

bp,q
n,k (x)

1
[3]p,q

[
(p2+q2 + pq)[k]2p,q+qk(2p+q)p[k]p,q+q2k

q2k[n]2p,q

]

=
∞

∑
k=0

bp,q
n,k (x)

1
[3]p,q

[
[3]p,q[k]2p,q+qk(2p+q)p[k]p,q+q2k

q2k[n]2p,q

]

=
1

q2p2n−2 Bn,p,q(e2,x)+
(2p+q)

qpn−2[3]p,q[n]p,q
Bn,p,q (e1,x)

+
1

[3]p,q[n]2p,q
Bn,p,q(e0,x)

=
1

q2p2n−2

[
x2+

pn−1x

[n]p,q

(
1+

p

q
x

)]
+

(2p+q)x

qpn−2[3]p,q[n]p,q
+

1
[3]p,q[n]2p,q

=
[n+1]p,qx2

[n]p,qq3p2n−2 +
x

pn−1q[n]p,q

[
1
q
+

(2p+q)p

[3]p,q

]
+

1
[3]p,q[n]2p,q

.
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3 Direct Estimates

By CB [0,∞) we denote the class of all real valued
continuous and bounded functionsf on [0,∞) . The norm
||.||CB is defined as

‖ f‖CB
= sup

x∈[0,∞)

| f (x)| .

For f ∈CB[0,∞) the Steklov mean is defined as

fh (t)

=
4
h2

∫ h
2

0

∫ h
2

0
[2 f (t +u+ v)− f (t +2(u+ v))]dudv (3)

By simple computation, it is observed that
(i) ‖ fh− f‖CB

≤ ω̃2 ( f ,h) .
(ii) If f is continuous andf ′h, f ′′ ∈CB then

∥∥ f ′h
∥∥

CB
≤ 5

h
ω̃ ( f ,h) ,

∥∥ f ′′h
∥∥

CB
≤ 9

h2 ω̃2 ( f ,h) ,

where the first and second order modulus of continuity for
δ ≥ 0 are respectively defined as

ω̃ ( f ,δ ) = sup
x,u,v≥0
|u−v|≤δ

| f (x+u)− f (x+ v)|

and

ω̃2 ( f ,δ ) = sup
x,u,v≥0
|u−v|≤δ

| f (x+2u)−2 f (x+u+ v)+ f (x+2v)| .

Theorem 1.Let q∈ (0,1) and p∈ (q,1]. The operator Kp,q
n

maps space CB into CB and

‖Kp,q
n ( f )‖CB

≤ ‖ f‖CB
.

Proof.Let q ∈ (0,1) and p ∈ (q,1]. From Lemma3, we
have

|Kp,q
n ( f ,x) |

≤ [n]p,q
∞

∑
k=0

bp,q
n,k(x)p

−kqk
∫ [k+1]p,q/qk[n]p,q

[k]p,q/qk−1[n]p,q
| f (t)|dp,qt

≤ sup
x∈[0,∞)

| f (x)|
∞

∑
k=0

bp,q
n,k(x)p

−kqk
∫ [k+1]p,q/qk[n]p,q

[k]p,q/qk−1[n]p,q
dp,qt

= sup
x∈[0,∞)

| f (x)|Kp,q
n (1,x) = ‖ f‖CB

.

Theorem 2.Let q∈ (0,1) and p∈ (q,1]. If f ∈CB, then

|K p,q
n ( f ,x)− f (x)|

≤ 5ω̃

(
f ,

1√
[n]p,q

)(
1

[2]p,q
√
[n]p,q

+

(
1

qpn−1 −1

)
x

)

+
9
2

ω̃2

(
f ,

1√
[n]p,q

)[(
[n+1]p,q
q3p2n−2 − 2[n]p,q

qpn−1 +[n]p,q

)
x2

+

(
1

pn−1q

[
1
q
+

(2p+q)p
[3]p,q

]
− 2

[2]p,q

)
x+

1
[3]p,q[n]p,q

+2

]
.

Proof.For x≥ 0 andn∈ N and using the Steklov function
fh defined by (3), we can write
∣∣Kp,q

n ( f ,x)− f (x)
∣∣

≤ Kp,q
n (| f − fh| ,x)+

∣∣Kp,q
n ( fh− fh(x) ,x)

∣∣+ | fh(x)− f (x)| .
First by Theorem1 and property (i) of Steklov mean, we
have

Kp,q
n (| f − fh| ,x)≤

∥∥Kp,q
n ( f − fh)

∥∥
CB

≤ ‖ f − fh‖CB
≤ ω̃2 ( f ,h) .

Also, by Taylor’s expansion, we have

|Kp,q
n ( fh− fh(x) ,x)|

≤
∣∣ f ′h (x)

∣∣Kp,q
n (t − x,x)+

1
2

∥∥ f ′′
∥∥

CB
Kp,q

n

(
(t − x)2 ,x

)
.

By Lemma3, we have
∣∣Kp,q

n ( fh− fh (x) ,x)
∣∣ ≤ 5

h
ω̃ ( f ,h)

(
1

[2]p,q[n]p,q
+

x

qpn−1 −x

)

+
9

2h2 ω̃2( f ,h)Kp,q
n

(
(t −x)2 ,x

)
,

where

Kp,q
n

(
(t − x)2 ,x

)

=
[n+1]p,qx2

[n]p,qq3p2n−2 +
x

pn−1q[n]p,q

[
1
q
+

(2p+q)p
[3]p,q

]

+
1

[3]p,q[n]2p,q
−2x

(
1

[2]p,q[n]p,q
+

x
qpn−1

)
+ x2

=

(
[n+1]p,q

[n]p,qq3p2n−2 −
2

qpn−1 +1

)
x2

+

(
1

pn−1q[n]p,q

[
1
q
+

(2p+q)p
[3]p,q

]
− 2

[2]p,q[n]p,q

)
x

+
1

[3]p,q[n]2p,q

for x ≥ 0, h > 0. Settingh =
√

1
[n]p,q

, we get the desired

result.

A different form to obtain the direct result is the
applications ofK-functional. The Peetre’sK−functional
is defined by

K2( f ,δ ) = inf
g∈W2

{‖ f −g‖+ δ‖g′′‖},

whereW2 = {g ∈ CB[0,∞) : g′,g′′ ∈ CB[0,∞)}. By [7, p.
177, Theorem 2.4], there exists a positive constantC > 0
such thatK2( f ,δ ) ≤Cω2( f ,

√
δ ),δ > 0, where

ω2( f ,
√

δ ) = sup
0<h<

√
δ ,x∈[0,∞)

| f (x+2h)−2 f (x+h)+ f (x)|

is the second order modulus of continuity of functionf ∈
CB[0,∞).
Also, for f ∈CB[0,∞) the first order modulus of continuity
is given by

ω( f ,
√

δ ) = sup
0<h<

√
δ ,x∈[0,∞)

| f (x+h)− f (x)|.

c© 2016 NSP
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Theorem 3.Let f ∈ CB[0,∞). Then for all n∈ N, there
exists an absolute constant C> 0 such that

|Kp,q
n ( f ,x)− f (x)| ≤Cω2( f ,δn(x))+ω( f ,αn(x)),

where

δn(x) =
{

Kp,q
n ((t − x)2,x)+ (Kp,q

n ((t − x),x))2}1/2

and

αn(x) =

∣∣∣∣
1

[2]p,q[n]p,q
+

(
1

qpn−1 −1

)
x

∣∣∣∣ .

Proof.For x ∈ [0,∞), we consider the auxiliary operators
K

p,q
n ( f ,x) defined by

K
p,q
n ( f ,x)=Kp,q

n ( f ,x)+ f (x)− f

(
1

[2]p,q[n]p,q
+

x
qpn−1

)
.

It is observed thatK
p,q
n ( f ,x) preserve linear functions. Let

x∈ [0,∞) andg∈W2. Applying the Taylor’s formula

g(t) = g(x)+g′(x)(t − x)+
∫ t

x
(t −u)g′′(u)du,

we have

K
p,q
n (g,x)−g(x)

= K
p,q
n

(∫ t

x
(t −u)g′′(u)du,x

)

= K(p,q)
n

(∫ t

x
(t −u)g′′(u)du,x

)

−
∫ 1

[2]p,q[n]p,q
+ x

qpn−1

x

(
1

[2]p,q[n]p,q
+

x
qpn−1 −u

)
g′′(u)du

= K(p,q)
n

(∫ t

x
(t −u)g′′(u)du,x

)

−
∫ 1

[2]p,q[n]p,q
+ x

qpn−1

x

(
1

[2]p,q[n]p,q
+

x
qpn−1 −u

)
g′′(u)du.

On the other hand,

∣∣∣∣
∫ t

x
(t −u)g′′(u)du

∣∣∣∣≤ ‖g′′‖
∫ t

x
|t −u|du≤ (t − x)2‖g′′‖,

and
∣∣∣∣∣

∫ 1
[2]p,q[n]p,q

+ x
qpn−1

x

(
1

[2]p,q[n]p,q
+

x
qpn−1 −u

)
g′′(u)du

∣∣∣∣∣

≤
(

1
[2]p,q[n]p,q

+
x

qpn−1 − x

)2

‖g′′‖.

Therefore, we have

|Kp,q
n (g,x)−g(x)|

=

∣∣∣∣K
p,q
n

(∫ t

x
(t −u)g′′(u)du,x

)∣∣∣∣

+

∣∣∣∣∣

∫ 1
[2]p,q[n]p,q

+ x
qpn−1

x

(
1

[2]p,q[n]p,q
+

x
qpn−1 −u

)
g′′(u)du

∣∣∣∣∣

≤ ‖g′′‖K(p,q)
n ((t − x)2,x)+

(
1

[2]p,q[n]p,q
+

x
qpn−1 − x

)2

‖g′′‖

= δ 2
n (x)‖g′′‖.

Also, we have

|Kp,q
n ( f ,x)| ≤ |Kp,q

n ( f ,x)|+2‖ f‖ ≤ 3‖ f‖.
Therefore,

|K p,q
n ( f ,x)− f (x)|

≤ |Kp,q
n ( f −g,x)− ( f −g)(x)|+

∣∣∣∣ f
(

1
[2]p,q[n]p,q

+
x

qpn−1

)
− f (x)

∣∣∣∣

+ |Kp,q
n (g,x)−g(x)|

≤ |Kp,q
n ( f −g,x)|+ |( f −g)(x)|+

∣∣∣∣ f
(

1
[2]p,q[n]p,q

+
x

qpn−1

)
− f (x)

∣∣∣∣

+ |Kp,q
n (g,x)−g(x)|

≤ 4‖ f −g‖+ω
(

f ,

∣∣∣∣
1

[2]p,q[n]p,q
+

(
1

qpn−1 −1

)
x

∣∣∣∣
)
+δ 2

n (x)‖g′′‖.

Finally taking the infimum on the right-hand side over all
g∈W2, we get

|Kp,q
n ( f ,x)− f (x)| ≤ 4K2( f ,δ 2

n (x))+ω( f ,αn(x)).

By the property ofK−functional, we have

|Kp,q
n ( f ,x)− f (x)| ≤Cω2( f ,δn(x))+ω( f ,αn(x)).

This completes the proof of the theorem.

4 Weighted Approximation

We consider the following class of functions:

Let H [0, ∞) be the set of all functionsf defined on
[0, ∞) satisfying | f (x)| ≤ M f

(
1+ x2

)
, where M f is

certain constant depending only onf . By Cx2 [0, ∞), we
denote the subspace of all continuous functions belonging
to H [0, ∞) . Also, let C∗

x2 [0, ∞) be the subspace of all

functions f ∈ Cx2 [0, ∞) , for which lim
|x|→∞

f (x)
1+x2 is finite.

The norm on C∗
x2 [0, ∞) is

‖ f‖x2 = sup
x∈[0, ∞)

| f (x)|(1+ x2)−1.

Finally, we discuss the weighted approximation
theorem, where the approximation formula holds true on
the interval[0, ∞) .

Theorem 4.Let p= pn and q=qn satisfies0< qn< pn ≤1
and for n sufficiently large pn → 1, qn → 1 and qn

n → 1 and
pn

n → 1. For each f∈C∗
x2 [0, ∞) , we have
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lim
n→∞

‖Kpn,qn
n ( f )− f‖x2 = 0.

Proof.Using the methods of [9], in order to complete the
proof of theorem, it is sufficient to verify the following
three conditions

lim
n→∞

‖Kpn,qn
n (eν ,x)− xν‖x2 = 0, ν = 0,1,2. (4)

SinceKpn,qn
n (e0,x) = 1 the first condition of (4) is fulfilled

for ν = 0. We can write

‖Kpn,qn
n (e1,x)− x‖x2

≤
(

1
[2]pn,qn[n]pn,qn

+
(1−qnpn−1

n )x

qnpn−1
n

)
sup

x∈[0, ∞)

1
1+ x2 .

and
∥∥Kpn,qn

n (e2,x)− x2
∥∥

x2

≤
(

[n+1]pn,qnx2

[n]pn,qnq3
np2n−2

n
+

x

pn−1
n qn[n]pn,qn

[
1
qn

+
(2pn+qn)pn

[3]pn,qn

]

+
1

[3]pn,qn[n]2pn,qn

− x2
)

sup
x∈[0, ∞)

1
1+ x2

which implies that

lim
n→∞

‖Kpn,qn
n (eν ,x)− xν‖x2 = 0,ν = 1,2.

Thus the proof is completed.

Remark.For q ∈ (0,1) and p ∈ (q,1] it is seen that
lim
n→∞

[n]p,q = 1/(p− q). In order to obtain convergence

estimates of(p,q)-Baskakov-Kantorovich operators, we
assumep= (pn), q= (qn) such that 0< qn < pn ≤ 1 and
for n sufficiently largepn → 1, qn → 1 andpn

n → 1 and
qn

n → 1 and lim
n→∞

[n]pn,qn
= ∞.

5 Conclusion

By considering the (p,q)-variant of the
Baskakov-Kantorovich operators, we may have better
results for suitable choices ofp andq. Also, for special
case p = q = 1 of our operators, we capture the
approximation properties of the usual
Baskakov-Kantorovich operators. One may consider the
other form of(p,q)-Baskakov-Kantorovich operators by
extending the results of [4] to (p,q) setting, as the
analysis is different, we may discuss it elsewhere.
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