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Abstract: Protein sequences clustering based on their sequence patterns has attracted lots of research efforts in the last decade.
The principal idea of most clustering systems is how to represent and interpret protein sequences, which principally determines the
performance of classifiers. In this paper, we proposed a new methodology, that definite a new descriptor to represent and interpret
each sequence using its Probability Densities Functions (PDF). The Hellinger distance is used to measure the similarity between
the sequences. Afterward, a hierarchical algorithm is applied to clustering proteins sequences using the Hellinger distance. Two of
protein data sets are using for the experiments; the first is amixed between Influenza and Ebola virus and the second is a setof
Influenza. We compare between a two Hierarchical ClusteringAlgorithms, The first based on similarity measure is to use methods with
sequences alignments (HCAWSA). The second is the proposed approach to the similarity measure is to use methods without sequences
alignments.( HCAWOSA). The experiments result show that the proposed methodology is feasible and achieves good accuracy.
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1 Introduction

The increase in biological sequences information
resulting from the development of advanced
biotechnology and quantity of genetic information is
more rapidly than the speed at which it can analyze [1].
Clustering techniques offer a workable solution to
handling and analysis of these growing rapidly genetic
data. Clustering algorithms separate the sequences into
different significant groups biologically, thereby
facilitating prediction of the sequences functions such that
proteins function and genes functions [1,2,3].

When a new protein assigned to a cluster, the
biological properties of this cluster can be attributed to
this protein with high confidence. On the other hand,
clustering of protein sequences can also help analyze the
evolutionary relationships between the sequences in a
cluster [2,3].

Clustering sequences of proteins need a computing of
similarity between sequences. There are two approaches
for clustering according to the measure of similarity used
in a method of clustering. The first based on the sequence
alignment. The similarity between two sequences of
proteins measured by scores derived from an alignment
algorithm such as BLAST [4] or FASTA [5]. While the

alignment of the sequence yields good solutions, it is
relatively difficult to assemble a large number of
sequences because it’s computational complexity. Also, if
the sequences vary in length, satisfactory alignment is
difficult to realize, resulting in low the clustering
accuracy. The second approach to the similarity measure
is to use methods without alignments- [6,7,8,9,10,11]

In recent years, several measures without alignments
have been proposed for more information see [12,13,14,
15]. Different evaluating of the similarity between two
vectors is used. We site for example the Euclidean
distance [16], the Mahalanobis distance [17],
Kullback-Leibler divergence [18], the cosine distance
[19] and the correlation coefficient of Pearson [20]. Major
algorithms used in biological sequences clustering can
divide into two categories according to the result format:
partition clustering algorithms and hierarchical clustering
algorithms [21].

Hierarchical classification widely used for detecting
clusters in genomics data. It generates a set of partitions
that form a cluster hierarchy. According to linkage
criteria, there are three hierarchical clustering methods
including single-linkage clustering (SL), complete
linkage clustering (CL) and average linkage clustering
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(AL) [ 22]. With SL, clusters can be merged due to
sequence only be close to the other, although most of the
sequences of each group may be very distant from each
other [23]. With CL, all sequences in the cluster similar to
each other. AL viewed as an intermediate between the
complete linkage clustering and the single-linkage,
resulting in more homogenous than those obtained by
single-linkage. BlastClust [24] and GeneRage [25] are
employed the single linkage clustering approach.
SWORDS [26] based on the profile of word frequencies
to merge clusters hierarchically; and Uchiyama [27] use
the average linkage clustering algorithm to classify DNA
sequences. The clusters are formed such that the objects
in the same cluster are very similar, and the objects in
different clusters are very distinct. The similarity measure
between objects must be selected and criterions function,
which minimize the similarity between the objects that
belonging to the same cluster and maximize the similarity
between the objects of different clusters. [28,29,30].

The different hierarchical clustering methods differ
the way they define the distance between already
computed clusters, or between clusters and individual
sequences. Thus, we have: Nearest neighbor (single
linkage), the furthest neighbor (complete linkage) and an
average neighbor (average linkage)[29,30].

The basic hierarchical clustering algorithm (BHCA)
proceeds as follows:

1. Compute all pair-wise distances between
the sequences

2. Merge the sequences that are closest
(most similar) to each other

3. Compute the distance between the newly
created cluster and all other sequences/clusters

4. Repeat 2.

In this article, a new similarity measure is defined
based on a new descriptor without alignments. We
consider the Probability Densities Functions (PDF) of
each sequence as a descriptor to present the sequence.
Then, the Hellinger distance between the PDF’s of the
sequence is calculated to measure the similarity between
the sequences.

The paper is organized as follows, In Section 2 we
explain the Hellinger distance, the definition of the
descriptor for each sequence, a new similarity (
Computing the PDF) and a general methodology of
hierarchical clustering methods. Section 3, experimental
results that contains datasets description, evaluation of
similarity measure of the proposed algorithm, and
discussion In Section 4, the article finishes with the
conclusion.

In the following section, we are presenting Hellinger
distance and the computing of Probability Densities
Functions (PDF) for each sequence.

2 Distance Metrics- Hellinger distance

The concept has been developed to provide a metric for
the distance between two different discrete probability
distributions P and Q. See [31,32,33].

Define as follows:

D2(P,Q) =
1
2

N

∑
i=1

(
√

pi −
√

qi)
2 (1)

Note thatP andQ are described asN-tuples (vectors)
of probabilities, where P = p1,p2,...,pN and
Q = q1,q2,...,qN , pi andqi are assumed to be non-negative
real numbers such that∑

i
pi = 1 and∑

i
qi = 1.

Hellinger distance is a metric quantity, which means
that it has the properties of non-negativity, the identity,
and symmetry, besides, to obey the triangle inequality.
See [31,32,33]. The Hellinger distance between two
variables can be computed between two variables if we
have explicit knowledge of the probability distributions.
In general, these probabilities are not known. There are
various methods for estimating the probability densities
from observed data. See [31,32,33]. In this paper, we are
calculating the exact probability densities functions for
every protein sequence.

Given a series xi and yi of n simultaneous
observations for two random variablesX andY . Let fX (i)
denote the number of observationsi in X . The
probabilities then estimated as:

pi =
fX (i)

n
(2)

Let fY ( j) denote the number of observations ofj in Y .
The probabilities are estimated as:

qi =
fY ( j)

n
, (3)

where, Hellinger distance is computed using discrete
probabilities. Then Hellinger distance betweenX andY is
computed as:

D2(X ,Y ) =
1
2

N

∑
i=1

(
√

pi −
√

qi)
2 (4)

2.1 Sequence descriptor (Probability Densities
Functions (PDF))

We are calculating the PDF for every sequence, and then
defined the distance between the sequences using equation
(4). Where PDF defined as follows:

f : Pr → [0,1]n, f (s) = (pm, m = 1,2, ...,20) and
∑
m

pm = 1, wherePr is the set of proteins sequences see

Ref. [33]. Firstly we describe the PDF for the sequence as
the following:
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Compute the PDF of sequenceS
Find pm = Nm

ln(S) , m = 1,2, ...,20.
Where ln(S) is the length of the sequenceS,
Nm is the number of letter m in the sequence,
m belongs to the proteins alphabets.

Any clustering task characterized by three principles
pattern representation, definition of a similarity
measurement and clustering algorithm [34]

2.2 A new similarity measure

Hellinger distance between the PDF’s sequencesSi andS j
are computed as following:

Hellinger distance computation (H-distance)
Find PDF of the two sequencesSi andS j
Calculate the Hellinger distance betweenSi
andS j using equation 4

That is reducing the dimensionality of the features
that represent the protein sequence. We are applying the
following strategy for implementing Hierarchical
clustering techniques.

Fig. 1: The proposed Hierarchical clustering Strategy

3 Experimental Results and Discussion

To evaluate the proposed similarity measure, we used two
datasets Influenza virus families and mixed dataset from
Influenza and Ebola virus.

3.1 Data Description

The dataset I: Mixed from Influenza and Ebola virus
consists of 2102 sequences. The dataset I consists of 1417
Influenza and 685 Ebola virus.

Dataset II: Influenza virus families. Amino acid
sequences of subtypes of hemagglutinin influenza A

derived from human, birds and pigs, collected during
1918-2014 years in Canada downloaded from Influenza
Virus Resource database National Center for
Biotechnology Information (NCBI). Up to 2014 the
database of Influenza Virus Resource consists of about
300000 sequences (full genomes, sequences of RNA,
proteins). The Ebola virus proteins sequences are
collected and downloaded from (NCBI).

The proposed algorithm implemented in MATLAB
program developed by the author. Also, the MATLAB
dendrogram function is used to compute and display a
hierarchy of clusters that depends on the Hellinger
distance. Fig 2 and Fig.3 illustrate the PDF of two
proteins sequences.

Fig. 2: PDF of protein sequence where the length =230

Fig. 3: PDF of protein sequence where the length =288

3.2 Evaluation of similarity measure

Classifications presented in the figure of hierarchical trees
also called a dendrogram. A dendrogram is a graphical
representation of a ultrametric matrix (= cophenetic); then
the dendrograms can compare with each other by
comparing their cophenetic matrices [35].

Given the original data{Xi} that has been modeled
using a clustering method to produce a dendrogram{Ti}.
Set the following distance measurements
x(i, j) = |Xi − X j| is the ordinary Euclidean distance
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Table 1

Coph1 coph2 Cor1 Cor2 B TWOA TWA
0.916 0.641 0.929 0.629 0.644 0.751 5.467

Table 2: title

Coph1 coph2 Cor1 Cor2 B TWOA TWA
0.992 0.929 0.984 0.979 0.834 0.720 7.326

Table 3

Coph1 coph2 Cor1 Cor2 B TWOA TWA
0.957 0.997 0.911 0.924 1.000 0.560 8.295

Table 4

Coph1 coph2 Cor1 Cor2 B TWOA TWA
0.894 0.995 0.937 0.943 1.000 0.565 8.274

between i and jth observations. The t(i, j) =
dendrogrammatic distance betweenTi and Tj model
points. This distance is the height of the node at which
these two points first joined. Lettingx be the mean of
x(i, j) and t is the average of thet(i, j), the correlation
coefficient copheneticc is defined as follows [36].

c =

∑
i< j

(x(i, j)− x) (t(i, j)− t)

√

{

∑
i< j

(x(i, j)− x)2
}{

∑
i< j

(t(i, j)− t)2
}

(5)

Since its introduction by Sokal and Rohlf [37], the
cophenetic correlation coefficient has been widely used as
criteria of the effectiveness of different clustering
techniques [38].

The dendrogram function MatLab can display any
number of points; However, dendrograms of data sets
with more than 30 points may be incomprehensible for
reading. Only 30 nodes (sequences) used in the display of
the dendrograms for illustrating the examples figs. 4, 5, 6
and 7, and Tables 1, 2, 3 and 4.

Coph1, Cor1, and TWOA are the Cophenetic
coefficients, correlation coefficient, and execution time
for HCAWOSA respectively. Coph2, Cor2, and TWA are
the Cophenetic coefficients, correlation coefficient, and
time execution for HCAWSA respectively. B-coefficient
is the similarity index between the two clustering
algorithms

Table 5

Table 5 that regroup the average of 100 runs for all
coefficients comparison ( Coph1, coph2, Cor1, Cor2, B,
TWOA, and TWA).

The following Fig s 8, 9,10 and 11 resume the average
of 100 runs of the execution time for the two algorithms
HCAWOSA and HCAWSA. TWA and TWOA are the
execution time for HCAWSA and HCAWOSA
respectively.

According to Table 5 and Figs 8,9,19 and 11 the
proposed algorithms gives the best results. Both in terms
of execution time and quality clustering which based on
the high value of B coefficients.

3.3 Discussion

In this study, we compare between two Hierarchical
Clustering Algorithms:

• The first based on similarity measure, which need to
sequences alignments for calculating the distance between
two sequences (HCAWSA))

• The second is the proposed algorithm based on a
new similarity, which need to calculate PDF for
calculating Hellinger distance between two sequences,
without sequences alignments. (HCAWOSA)). The two
algorithms implemented with single and average
methods.

The comparison based on Cophenetic coefficients,
B-coefficients and execution times.B-coefficients is the
similarity index proposed in [39], B belongs to[0 1] when
B = 1 that meaning perfect matching between the two
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Example 1:

Fig. 4: 30 sequence randomly taken from dataset I with single method

Example 2:

Fig. 5: 30 sequence randomly taken from dataset I with average method

partitions andB = 0 no matching between the two
partitions. The two algorithms applied for different
numbers of sequencesn = 10,15,20,30 and 40. And for
each size the program run 100 times. See Table 5 that
regroup the average of all runs for all coefficients
comparison.From the Figs 8,9,19 and 11 we see that the
HCAWOSA (proposed algorithm) gives the best results of

execution time that is a linear, where the HCAWSA is
exponential. From Table 5, the quality of clustering of
HCAWOSA is best and much closed to HCAWSA, which
based which based on the high value of B coefficients.
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Example 3:

Fig. 6: 30 sequence randomly taken from dataset II with average method

Example 4:

Fig. 7: 30 sequences randomly taken from dataset II with single method
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Fig. 8: Execution time average for 100 runs (N = 10,15,20,40)
dataset I and Single method

Fig. 9: Execution time average for 100 runs (N = 10,15,20,40)
dataset I and average method

4 Conclusion

We propose a clustering algorithm that based on a new
sequence similarity measure. It is effective in classifying
proteins sequences with similar biological characteristics.
We are implementing the proposed algorithm for
classifying the subtypes of hem agglutinin influenza A
using more than 2,000 viral sequences proteins. Two
different algorithms (‘average’ and ‘single’) utilized PDF
and Hellinger distance achieve a good performance in the
Hierarchical classification of influenza virus proteins and
Ebola Virus. We are observing that a good separation. The
results of the proposed algorithm show that the effectively
for the classification of proteins sequences in terms of
execution time and quality clustering. We compare
between a two Hierarchical Clustering Algorithms, The
first based on similarity measure is to use methods with
sequences alignments (HCAWSA). The second is the
proposed approach to the similarity measure is to use

Fig. 10: Execution time average for 100 runs (N = 10,15,20,40)
dataset II and Single method

Fig. 11: Execution time average for 100 runs (N = 10,15,20,40)
dataset II and average method

methods without sequences alignments ( HCAWOSA).
The experiments result prove that the proposed
methodology is feasible and achieves good accuracy.
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