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Abstract: Scheduling is a key factor in real-world production management and manufacturing system. The Job-shop Scheduling
Problem (JSP) is important in combinatorial optimization and well known as an NP-hard. The Flexible Job-shop scheduling problem
(FJSP) is an extension of the JSP, which allows an operation may be processed by any machine from a given set. It is more complex
than JSP and quite difficult to achieve an optimal solution with traditional optimization approaches owing to the high computational
complexity. The intent of this paper is to develop an efficient Dynamic Monte-Carlo Tree Search model for solving the multi-objective
FJSP. First, a Sequential Operation-Machine Assignment (SOMA) scheme is proposed for encoding representation, lead to potentially
produce feasible candidate solutions for the FJSP. Then evolution-based FJSP mapping to a general tree search structure via the SOMA
is successively completed. Second, the original single-objective UCT (Upper Confidence bound apply to Tree) algorithmis modified
(called NSUCT) by using a Non-dominated Sorting strategy tobe able to deal with multi-objective optimization problems. Third,
the dynamic Monte-Carlo sampling technique is adopted for the tree search evaluation and guided with NSUCT to balance between
exploitation and exploration during the evolution process. Finally, the Multi-Objective Monte-Carlo Tree Search (MOMCTS) algorithm
is proposed to solve the FJSP for finding the Pareto-optimal solutions. Several popular benchmark problems with variousconditions are
considered to compare the proposed MOMCTS algorithm with the published algorithms. Simulation results show that the MOMCTS is
able to acquire wide range of Pareto-optimal solutions. In addition, the more decision-makings of the results in the form of Gantt chart
under the same Pareto-optimal solutions can be obtained.

Keywords: Flexible Job-shop Scheduling Problem, Multi-Objective Monte-Carlo Tree Search, Pareto-optimal solutions.

1 Introduction

The Job-shop Scheduling Problem (JSP) is important
in combinatorial optimization and well known as an
NP-hard [1], which concerned with allocating limited
resources to tasks to optimize some performance
criterion. The classical JSP consists of jobs and machines.
Each job must be performed on each machine in a
pre-defined sequence, and each operation of a job is to be
processed only one machine at a time. The Flexible
Job-shop scheduling problem (FJSP) [2] is an extension
of the JSP, which allows an operation may be processed
by any machine from a given set. It is more complex than
JSP because of the two decisions has to be made:
assignment of operations to machines and sequencing the
operations on each machine. It is quite difficult to achieve

an optimal solution with traditional optimization
approaches owing to the high computational complexity.

In the literature, different optimization approaches
have been proposed to solve the FJSP, including genetic
algorithm (GA) [3,4], simulated annealing (SA) [5], ant
colony optimization (ACO) [6], or particle swarm
optimization (PSO) [7,8], have made promising results.
The combination of evolutionary algorithm and local
search approaches for solving the FJSP have been
increasingly investigated by researchers and achieved
considerable good solutions. Xia and Wu [9] proposed the
PSO-SA method for solving FJSP on three public
benchmark datasets represented by problem (problem
8×8, 10×10 and 10×15) and provided solutions with
good quality to show the effectiveness of this approach.
Ho and Tay [10] presented the multi-objective
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evolutionary algorithm with guided local search
(MOEA-GLS) algorithm to solve FJSP and obtained
better Pareto-optimal solutions than PSO-SA method on
the same three benchmark problems. However, the
authors in [10] did not deal with the decision-makings of
different types in Gantt chart under the same
Pareto-optimal solutions.

In this paper, the Multi-Objective Monte-Carlo Tree
Search (MOMCTS) algorithm is proposed to solve the
FJSP for finding the Pareto-optimal solutions. Several
popular benchmark problems with various conditions are
considered to compare the proposed MOMCTS algorithm
with the published methods. Simulation results show that
the MOMCTS can achieve wide range of Pareto-optimal
solutions. In addition, the more decision-makings of
Gantt chart with the same Pareto-optimal solutions can be
obtained. The organization of the rest paper is as follows:
Section 2 introduces the FJSP formulations. Section 3
illustrates the MCTS framework and UCT algorithm. In
Section 4, SOMA scheme, problem transformation,
external repository and modification of UCT, Path
Random Search (PRS) method, and the proposed
MOMCTS algorithm are presented. Several public
benchmark problems are used to validate the proposed
method and comparison results are shown in Section 5.
Finally, conclusions are made in Section 6.

2 FJSP Description

The FJSP is a manufacturing strategy to properly
organize a set of machines to process a set of jobs for
some objectives. The FJSP is generally described as
follows: The problem is to organize the execution ofn
jobs Ji(i = 1,2, ...,n)on m machinesMk(k = 1,2, ...,m),
where each jobJi needs oi operations on the order of
restraint and each working procedure of job can be
processed by multiple processes ofM machines. The total
number of operations in all jobs isOt , Ot = ∑n

i=1oi .
M i j means the collection of the useable machines about
j-th operation ofi-th job, Mi j ∈ {1,2, ...,m}, Oi, j ,k means
the j-th operation of thei-th job can usek-th machine,
pi, j ,kmeans the required time ofj-th operation ofi-th job
processed on k-th machine,
1 ≤ i ≤ n, 1 ≤ j ≤ oi, 1 ≤ k ≤ m. In the FJSP, the
following assumptions are usually made [2]. The task is
to find a set of solutions and three criteria of FJSP are
considered and described as follows:

(a) The total workload of all machines

F1 = ∑ pi, j ,k (1)

wherepi, j ,k denotes the processing time ofj-th operation
of i-th job ink-th machine.

(b) The workload of the critical machine

F2 = max{W1,W2, ...,Wm} (2)

whereWk denotes the workload ofk-th machineMk.

(c) The completion time of the critical job

F3 = max{CT1,CT2, ...,CTn} (3)

whereCTi denotes the completion time ofi-th jobJi.

3 Structure of Monte-Carlo Tree Search
(MCTS)

3.1 Monte-Carlo Tree Search Framework

Monte-Carlo Tree Search (MCTS) [11] is a best-first
search method which uses Monte-Carlo sampling as its
evaluation function and is both explorative and
exploitative. Each node of the search tree contains a
current problem state, the possible actions, and some
other information about this state. Using the results of
previous explorations, the algorithm gradually grows a
random search tree in memory, and successively becomes
better at accurately estimating the values of the most
promising moves. If there is time left, all sampling search
and evaluation strategic phases will be run again. MCTS
can be stopped anytime, the more time the program runs,
the stronger the program may execute.

3.2 The UCT Algorithm

The algorithm UCT is the extension of UCB1 [12] to
min-max tree search. It has its origins in solving the
multi-armed bandit problem. AK-armed bandit problem
[13] is described to find the strategy for a bandit to choose
its K arms to get the maximum reward. The problem is
defined by the sequence of random variablesXi,n,
i = 1,2, ...,K, n≥ 1, wherei is the index of the gambling
machine and n is the number of times the machine was
played. The UCB1 policy was originally given in [14],
which ensures the optimal machine is played
exponentially more often than any other machine
uniformly when the rewards are in [0, 1]. The essence is
choosing the machinei which maximizes the following
formula:

UCTi = x̄i +Ce ·

√

lnn
ni

(4)

wherex̄i is the mean reward obtained from machinei
so far, ni is the number of times machinei has been
played and n is the overall number of plays done. The
constCe must be adjusted to balance between exploitation
and exploration. For the tree search procedure, the idea of
UCT is to consider each node as an independent bandit,
with its child nodes as independent arms. From the
current search position, the UCT method is to select
action according to knowledge contained within the
search tree. Each state in the tree estimates its UCT value
for each node by Monte-Carlo sampling simulation. As
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more simulation results propagate up the tree, the search
policy improves at every actual time-step, and the
Monte-Carlo is based on more accurate returns.

4 Methods

4.1 Representation and SOMA scheme

The evolution-based heuristic method can be achieved
better efficiency by means of the appropriate encoding
representation. Chen et al. [15] originally uses an A-B
string representation. A string indicates a list of all
operations of all jobs while B string denotes a list of
operations that are processed on each machine. But the
repair mechanism is required to deal with a deadlock
situation. This study extended the feature to generate a
{operation-machine} hybrid label as encoding
representation, and the Sequential Operation Machine
Assignment (SOMA) scheme has been proposed to
always produce feasible solutions. Therefore, a repair
mechanism such as local search method, to maintain
feasibility is not required.

To explain this scheme, the example (3 jobs, 2
machines, and 7 operations) is considered (in Table 4.1)
to detail the encoding representation and SOMA scheme
step by step. For instance, operationO1,1 of job 1 can be
processed on machineMa for 4 units of time, then to
machineMb for 3 units of time, and so on. Here, we
simplify the machine selection with the least processing
units of time. The symbols of candidate and selected
{operation-machine} pairs are indicated by ’△’ and ’©’,
respectively.

Step 1: From Table 4.2, we can generate the
{operation-machine}candidate set C1=
{O1,1-Ma,O1,1-Mb, O2,1-Ma,O2,1-Mb,O3,1-Ma,O3,1-Mb}.
In our simplified case, we choose the
{operation-machine} pair with the least processing units
of time fromC1 for computing each processing time{4, 3,
1, 3, 6, 7}, to select the{O2,1-Ma} with the minimum
value 1 as the selection set denoted byS1= {(2.1a)} (in
Table 4.3).

Step 2: From Table 4.3, the candidate operation
setO2={O1,1,O2,2,O3,1}, then to generate the candidate set
C2= {O1,1-Ma,O1,1-Mb,
O2,2-Ma,O2,2-Mb,O3,1-Ma,O3,1-Mb}. Compute each
processing time{4, 3, 7, 5, 6, 7} fromC2, to select the
{O1,1-Mb} with the minimum value 3, and the selection
setS2={(2.1a), (1.1b)} (in Table 4.4).

Step 3: From Table 4.4, the candidate operation
setO3={O1,2,O2,2 ,O3,1 }, then to generate the candidate
set C3= {O1,2-Ma,O1,2-Mb,
O2,2-Ma,O2,2-Mb,O3,1-Ma,O3,1-Mb}. Compute each
processing time{7, 10, 7, 5, 6, 7} fromC3, to select the
{O2,2-Mb} with the minimum value 5, and the selection
setS3= {(2.1a), (1.1b), (2.2b)} (in Table 4.5).

Step 4: From Table 4.5, the candidate operation
setO4={O1,2, O3,1 }, then to generate the candidate set

C4= {O1,2-Ma,O1,2-Mb, O3,1-Ma,O3,1-Mb}. Compute each
processing time{7, 10, 6, 7} fromC4, to select the
{O3,1-Ma} with the minimum value 6, and the selection
setS4= {(2.1a), (1.1b), (2.2b), (3.1a)} (in Table 4.6).

Step 5: From Table 4.6, the candidate operation
setO5={O1,2, O3,2 }, then to generate the candidate set
C5= {O1,2-Ma,O1,2-Mb, O3,2-Ma,O3,2-Mb}. Compute each
processing time{7, 10, 6, 5} fromC5, to select the
{O3,2-Mb} with the minimum value 5, and the selection
set S5= {(2.1a), (1.1b), (2.2b), (3.1a), (3.2b)} (in Table
4.7).

Step 6: From Table 4.7, the candidate operation
setO6={O1,2}, then to generate the candidate setC6=
{O1,2-Ma,O1,2-Mb}. Compute each processing time{7,
10} fromC6, to select the{O1,2-Ma} with the minimum
value 7, and the selection setS6= {(2.1a), (1.1b), (2.2b),
(3.1a), (3.2b), (1.2a)} (in Table 4.8).

Step 7: From Table 4.8, the candidate operation
setO7={ O1,3}, then to generate the candidate setC7=
{O1,3-Ma,O1,3-Mb}. Compute each processing time{5,
4} fromC7, to select the{O1,3-Ma} with the minimum
value 4, and the selection setS7= {(2.1a), (1.1b), (2.2b),
(3.1a), (3.2b), (1.2a), (1.3a)} (in Table 4.9).

As shown in Table 4.9, the operations of all jobs are
assigned to each machine done and one of the feasible
solutionsS7 is obtained. Its Gantt chart is shown in Figure
4.1. The precedence constraints are{(1.1b) before (1.2a)
before (1.3b)} (job 1), {(2.1a) before (2.2b)} (job 2),
{(3.1a) before{(3.2b)} (job 3), and the operation order
should be preserved by the different machine selection. It
is obvious that each scheduling solution from any
encoding representation based on{operation-machine}
and decoding by SOMA should be feasible. Moreover,
every encoding representation pair is initialized randomly,
so the proposed SOMA based scheme can produce more
different scheduling solutions.

4.2 Problem Transformation

Monte-Carlo search proved to be competitive in
deterministic algorithm with large stochastically
branching factors. As discussed, the effect of the
Monte-Carlo Tree Search structure is to efficiently apply
solving for the FJSP. Here, the definition of a tree data
structure is introduced, and the mapping procedures of the
example in Section 4.1 to tree search topology are
described as follows.

Assume that a simple data structure (a level tree) with
root noder. Every node in the tree is associated with a
candidate{operation-machine} hybrid label pair. Let
Sk = {s1,s2, ...,sk},k≥ 1 be an ordered items set from the
selection stage, then the item-set tree T is levelk. The
representation of each node denoted by{x.yz} string
symbol for the combination of{operation-machine} with
{Ox,yMz}. Every nodeu other than the root noder has a
unique parent node. Every non-leaf nodevin T hasd ≥ 1
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child nodes. For two nodesu and its child nodevin T, we
will use π(u,v) to denote the unique directed path in T
which connectsu and v. For detailed description, the
mapping procedure according to the SOMA approach
illustrated in Section 4.1 gives a step by step discussion
properly.

Step 1: Initialize to start from the tree T with root node
atL0, then to create its child nodes setN1= {(1.1a), (1.1b),
(2.1a), (2.1b), (3.1a), (3.1b)} at L1 corresponding to the
candidate set items fromC1 . The construction of search
tree topology is shown in Figure 4.2.

Step 2: The search pathπ1= {(2.1a)} is determined by
the selection setS1. Start from the search point node (2.1a)
at present, to construct its child nodes setN2= {(1.1a),
(1.1b), (2.2a), (2.2b), (3.1a), (3.1b)} at L2 corresponding
to the candidate setC2.

Step 3:The search pathπ2= {(2.1a), (1.1b)} is
determined by the selection setS2. Start from the search
point node (1.1b) at present, to construct its child nodes
setN3= {(1.2a), (1.2b), (2.2a), (2.2b), (3.1a), (3.1b)} at L3
corresponding to the candidate setC3.

Step 4:The search pathπ3= {(2.1a), (1.1b), (2.2b)} is
determined by the selection setS3. Start from the search
point node (2.2b) at present, to construct its child nodes
setN4= {(1.2a), (1.2b), (3.1a), (3.1b)} atL4 corresponding
to the candidate setC4.

Step 5: The search pathπ4= {(2.1a), (1.1b), (2.2b),
(3.1a)} is determined by the selection setS4. Start from
the search point node (3.1a) at present, to construct its
child nodes setN5= {(1.2a), (1.2b), (3.2a), (3.2b)} at L5
corresponding to the candidate setC5.

Step 6:The search pathπ5= {(2.1a), (1.1b), (2.2b),
(3.1a), (3.2b)} is determined by the selection setS5. Start
from the search point node (3.2b) at present, to construct
its child nodes set N6= {(1.2a), (1.2b)} at L6
corresponding to the candidate setC6.

Step 7: The search pathπ6= {(2.1a), (1.1b), (2.2b),
(3.1a), (3.2b), (1.2a)} is determined by the selection
setS6. Start from the search point node (1.2a) at present,
to construct its child nodes setN7= {(1.3a), (1.3b)} at L7
corresponding to the candidate setC7.

Step 8: In Figure 4.3, the search pathπ7= {(2.1a),
(1.1b), (2.2b), (3.1a), (3.2b), (1.2a), (1.3b)} is determined
by the selection setS7 and the growth of tree search
topology procedure ends at level 7.

Throughout the execution of the tree search growth, a
node u has bold rim mark if the best search node is
chosen with least processing units of time. It is clear that
the appropriate choice of the search pathπ7 in T is
equivalent to one of the feasible solutionsS7 in FJSP. As
shown in Figure 4.3, we can successively convert the
original evolution-based framework to the randomized
tree search model via the SOMA scheme.

4.3 External REP and Modification of UCT

As mentioned in Section 3.2, the original UCT is widely
used to deal with uncertainty in a smooth way. For every
search node in a single objective optimizations problem,
the estimated value is the summation of mean of the value
for each child and weighted by the frequency of visits.
The UCT selects most of the time the maximum
estimated value child nodes if one child-node has a much
higher value than the others. However, due to the
multi-criteria nature of multiple objectives problems, the
optimality of a solution has to be redefined, giving rise to
the concept of Pareto-optimal solution. In [16], the
authors adopt an external repository (REP) to keep the
historical record of the non-dominated solutions found
along the search space. The basic concept of REP
function is to determine whether a certain solution should
be added or not.

Here, the non-dominated sorting strategy in [17] was
adopted to modify the formal UCT, named NSUCT
(Non-dominated Sorting UCT), to make it suitable for the
features of multi-objective problem on the MCTS
sampling framework.

NSUCTi = (wi/ti)+Ce ·
√

ln tn/ti (5)

wi = 1− (Di/NREP) (6)

whereti is the number of nodevi has been visited and
tn is the overall number of the parent node ofvi visited
done.wi denoted the win score value for each nodevi, Di is
the number of dominated count among nodeviand
non-dominated solutions in REP, andNREPis the number
of non-dominated solutions in REP .

4.4 Path Random Search (PRS) algorithm

Consider to build a tree with its nodes labeled by
{operation-machine} symbol in large search state space,
the Path Random Search (PRS) algorithm based on the
Monte-Carlo sampling technique has been proposed to
simulate a random search for estimating the state-action
value. For reading convenience, the symbols employed in
the sequel of the procedure statement are summarized in
Table 4.10. The proposed PRS algorithm is described as
follows.

PRS algorithm procedure:
Step 1: Set WS is the working set for current nodes.
Step 2: Use roulette wheel selection to choose one

node v from WS according to the probability of
processing time for each operation on the machine. The
total fitness (TFp) of the WS from PRS procedure is given
by Eq. (7). The probability (pi) of a selection for each
nodevi is Eq. (8). The cumulative probability for each
nodevi is Eq. (9). Each time a nodevi for a new choice is
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selected a random number r is generated in the range [0,
1]. If r < q1 then select the first nodev1, otherwise select
the i-th nodevi such thatqi−1 < r ≤ qi.

TFp =
Nws

∑
i=1

EFi , EFi = (
1
ti
) (7)

pi =
EFi

TFp
(8)

qi =
i

∑
j=1

p j (9)

Step 3: Execute a random search R for the selected nodev
from Step 2.

Step 4: Obtain pathπ(v) from the root node through
nodev to bottom node in T.

Step 5: Calculate the fitness valueF(v) and Gantt chart
G(v) according toπ(v).

Step 6: Check if theF(v) dominates or non-dominates
the solutions in REP, then update and store the fitness value
F(v) to REP; otherwise go to Step 8.

Step 7: Check if theG(v)is the same as solutions in
REP, then store the Gantt chartG(v) to REP; otherwise go
to Step 8.

Step 8: Calculate the dominated times with respect to
F(v)and solutions in REP to obtain the win score value for
nodev.

Step 9: Calculate the NSUCT value for nodev.
Step 10: Update the NSUCT value with selected parent

node fromv along to root.
Step 11: Return results to main program.

4.5 The proposed MOMCTS approach

For the standard FJSP, the size of search space grows
exponentially. It is computationally infeasible to try every
possible solution in the whole tree. Instead of dealing
with each node once iteratively, we will adopt the
Monte-Carlo simulation technique to each state in the tree
search procedure within limited time. Once the search
tree has been constructed when FJSP complexity
increases, the resulting tree tends to be large. Therefore,
the dynamic pruning method is adopted to reduce tree
sizes for preventing the growth of those branches seems
not to improve the predictive result. The proposed
MOMCTS algorithm and the procedure statement are
detailed as follows:

MOMCTS algorithm procedure:
Step 1: Initialize the parameters including:

Monte-Carlo sampling times (Nmc) of iteration, the
coefficient (Ce) of NSUCT, the number of preserved
nodesNp after pruning at each level, the tree height h. Set
k= 1, wk= 1, wn=empty,WS=empty.

tep 2: Generate all possible candidate child nodes for
root node to WS.

Step 3: Execute one random search R for each node in
WS.

Step 4: Calculate the fitness valueF(vi) for each node
vi in WS, where1≤ i ≤ Nws.

Step 5: Calculate the dominated counterDi value of
nodevi with other nodes in WS.

Step 6: Calculate the win score value and obtain the
NSUCT value.

Step 7: SetSim= 0 and reset the number index of
Monte-Carlo simulation iteration.

Step 8: Setk = wk. Use roulette wheel selection to
choose one nodewn from WS according to the
probability of NSUCT value for each node in WS at level
k. The total fitness (TFM) of the WS from MOMCTS
procedure is given by Eq. (10). The probability (pi) of a
selection for each nodewni is Eq. (11). The cumulative
probability for each nodewni is Eq. (12). Each time a
nodewni for a new choice is selected a random number r
is generated in the range [0, 1]. Ifr < q1 then select the
first nodewn1, otherwise select the i-th nodewni such that
qi−1 < r ≤ qi .

TFM =
Nws

∑
i=1

NSUCTi (10)

pi =
NSUCTi

TFM
(11)

qi =
i

∑
j=1

p j (12)

Step 9: Check if the child nodes ofwn are empty, then
setk = k+1. Generate all possible candidate child nodes
for wn at level k. SetWS= childs(wn). Go to Step 12.
Otherwise, setk= k+1. LetWS= childs(wn).

Step 10: Check if the nodes in WS are not all
simulated, then put these not simulated nodes to WS, go
to Step 12. Otherwise, next step.

Step 11: Check ifk < h, then use roulette wheel
selection to choose one nodewn from WS according to
the probability of NSUCT value for each node in WS at
level k, go to Step 9. Otherwise, the path search converges
and program ends.

Step 12: Execute thePRS algorithm procedure.
Step 13: SetSim= Sim+1. If Sim≤ Nmc, then go to

Step 8. Otherwise, next step.
Step 14: Setk = wk. Rank every node at level k by

NSUCT value form high to Low. PreserveNpnodes
according their ranks with higher value. The other nodes
with lower NSUCT value are to be pruned.

Step 15: Setwk= wk+ 1. Check ifwk< h, then set
k= wk and go to Step 7. Otherwise, program ends.
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Table 4.1 Example of the FJSP with 3 jobs, 2 machines,
and 7 operations.

Table 4.2 Initial candidate setC1 for SOMA.

Table 4.3 The selectionS1 and candidateC2.

Table 4.4 The selectionS2 and candidateC3.

Table 4.5 The selectionS3 and candidateC4.

Table 4.6 The selectionS4 and candidateC5.

Table 4.7 The selectionS5 and candidateC6.

Table 4.8 The selectionS6 and candidateC7.

Table 4.9 The selection setS7.

Table 4.10. Symbols used in the algorithm procedure
statement.

Figure 4.1 The Gantt chart in Step 7 from SOMA scheme.
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Fig. 4.2 Transformation to tree search structure in Step 1
from SOMA scheme.

Fig. 4.3 Transformation to tree search structure in Step 8
from SOMA scheme.

5 Simulation Results

Comparing the proposed MOMCTS with the PSO-SA
[9] and the MOEA-GLS [10], the computational
experiments for several datasets such as three popular
benchmarks (problem 8×8, 10×10 and 15×10) and the
three problem instances with release dates (problem 4×5,
10×7 and 15×10) are considered. For each problem, the
obtained results are reported in table contains three
objectives: F1(total workload), F2(critical machine
workload), F3(makespan), are mentioned in Section 2.
The comparison results for the problem 8×8 ( 8 jobs, 8
machines, 27 operations), problem 10×10 ( 10 jobs, 10
machines, 30 operations) , problem 15×10 ( 15 jobs, 10
machines, 56 operations), problem 4×5 with release date
r1 = 3, r2 = 5, r3 = 1, r4 = 6 ( 4 jobs, 5 machines, 12
operations), problem 10×7 with release date
r1 = 2, r2 = 4, r3 = 9, r4 = 6
r5 = 7, r6 = 5, r7 = 7, r8 = 4, r9 = 1, r10 = 0( 10 jobs, 7
machines, 29 operations), problem 15×10 with release
date r1 = 5, r2 = 3, r3 = 6, r4 = 4, r5 = 9, r6 = 7, r7 =
1, r8 = 2, r9 = 9, r10 = 0
r11 = 14, r12= 13, r13= 11, r14 = 12, r15= 5 ( 15 jobs, 10

machines, 56 operations) are presented in Table 5.1 to
Table 5.6. The column labeled ‘Gantt chart variety’ is to
display the number of diversity. The symbol ‘x’ indicates
that the authors did not provide the Gantt chart.

For the three benchmarks (problem 8×8, 10×10 and
15×10), to compare the proposed MOMCTS with the
PSO-SA method [4], two new non-dominated solutions
(77, 12, 14) and (77, 11, 16) can be obtained by the
MOMCTS in the problem 8×8. For the problem 10×10,
two new solutions (43, 5, 7) and (42, 6, 7) of MOMCTS
dominate the PSO-SA and two non-dominated solutions
(41, 7, 8) and (42, 5, 8) can be achieved. In the problem
10×15, one new solution (91, 11, 11) of MOMCTS
dominates the PSO-SA and one non-dominated solution
(93, 10, 11) can be obtained. Although the solutions of
MOMCTS are the same as the MOEA-GLS [5], we can
see that more diversity of the Gantt charts from
MOMCTS can be obtained.

For the other three problem instances with release
dates (problem 4×5, problem 10×7 and problem 15×10),
to compare the proposed MOMCTS with the AL-CGA
method [4], two new non-dominated solutions (32, 8, 16)
and (33, 7, 16) can be obtained by the MOMCTS in the
problem 4×5. For the problem 10×7, the new solutions
(62, 10, 15) of MOMCTS dominate the AL-CGA (63, 10,
18) and (64, 10, 17) solutions. In the problem 10×15, two
solutions (91, 11, 23) and (93, 10, 23) from MOMCTS
dominates the AL-CGA solutions (91, 11, 24) and (95,
11, 23). Although the solutions of MOMCTS are the
same as the MOEA-GLS [5], the more diversity of the
Gantt charts from MOMCTS also can be obtained. For
example, two different Gantt charts of the solution (93,
10, 23) for the problem 10×15 with release date are
shown in Figure 5.1 and Figure 5.2.

Table 5.1 Comparison of results on problem 8×8.

Table 5.2 Comparison of results on problem 10×10.
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Table 5.3 Comparison of results on problem 15×10.

Table 5.4 Comparison of results on problem 4×5 with
release date.

Table 5.5 Comparison of results on problem 10×7 with
release date.

Table 5.6 Comparison of results on problem 15×10 with
release date.

Fig. 5.1. The Gantt chart 1 of (93, 10, 23) for the problem
10×15 with release date.

Fig. 5.2. The Gantt chart 2 of (93, 10, 23) for the problem
10×15 with release date.

6 Conclusions

The proposed SOMA scheme for encoding
representation is used to always produce feasible
solutions. Therefore, the evolution-based FJSP mapping
to a general tree search structure via SOMA is
successively completed. Next, the modification of formal
UCT by the non-dominated sorting strategy, called
NSUCT, makes it suitable for the features of
multi-objective problems. The proposed MOMCTS
approach solving FJSP is compared with the integrated
multi-objective approach based on evolutionary method
for several popular benchmarks. The computational
results validate the effectiveness of the proposed
MOMCTS approach, and the more decision-makings
under the same Pareto-optimal solutions condition can be
obtained.
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