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Abstract: Scheduling is a key factor in real-world production managetrand manufacturing system. The Job-shop Scheduling
Problem (JSP) is important in combinatorial optimizatiom avell known as an NP-hard. The Flexible Job-shop scheglginblem
(FJISP) is an extension of the JSP, which allows an operatanba processed by any machine from a given set. It is more leamp
than JSP and quite difficult to achieve an optimal solutiothwriaditional optimization approaches owing to the higmpatational
complexity. The intent of this paper is to develop an effitBpnamic Monte-Carlo Tree Search model for solving the ralifective
FJSP. First, a Sequential Operation-Machine AssignmedM&) scheme is proposed for encoding representation, leadtentially
produce feasible candidate solutions for the FISP. Thentemo-based FISP mapping to a general tree search sgewdtuthe SOMA
is successively completed. Second, the original singjeetibe UCT (Upper Confidence bound apply to Tree) algoritarmodified
(called NSUCT) by using a Non-dominated Sorting strategbdoable to deal with multi-objective optimization probleniird,
the dynamic Monte-Carlo sampling technique is adoptedHerttee search evaluation and guided with NSUCT to balantecka
exploitation and exploration during the evolution procé&ssally, the Multi-Objective Monte-Carlo Tree Search (MQTS) algorithm

is proposed to solve the FISP for finding the Pareto-optiotatisns. Several popular benchmark problems with varammitions are
considered to compare the proposed MOMCTS algorithm watptiblished algorithms. Simulation results show that the\M@J'S is
able to acquire wide range of Pareto-optimal solutionsdutiteon, the more decision-makings of the results in thenfof Gantt chart
under the same Pareto-optimal solutions can be obtained.

Keywords: Flexible Job-shop Scheduling Problem, Multi-ObjectiveritteCarlo Tree Search, Pareto-optimal solutions.

1 Introduction an optimal solution with traditional optimization
approaches owing to the high computational complexity.

The Job-shop Scheduling Problem (JSP) is important In the literature, different optimization approaches
in combinatorial optimization and well known as an have been proposed to solve the FISP, including genetic
NP-hard L], which concerned with allocating limited algorithm (GA) [B,4], simulated annealing (SA¥], ant
resources to tasks to optimize some performanceolony optimization (ACO) 6], or particle swarm
criterion. The classical JSP consists of jobs and machinesptimization (PSO) 1,8], have made promising results.
Each job must be performed on each machine in arhe combination of evolutionary algorithm and local
pre-defined sequence, and each operation of a job is to beearch approaches for solving the FJSP have been
processed only one machine at a time. The Flexibleincreasingly investigated by researchers and achieved
Job-shop scheduling problem (FISR) is an extension  considerable good solutions. Xia and V@] proposed the
of the JSP, which allows an operation may be processe®SO-SA method for solving FIJSP on three public
by any machine from a given set. It is more complex thanbenchmark datasets represented by problem (problem
JSP because of the two decisions has to be madex8, 10x10 and 1&15) and provided solutions with
assignment of operations to machines and sequencing thgpood quality to show the effectiveness of this approach.
operations on each machine. It is quite difficult to achieveHo and Tay 10 presented the multi-objective
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evolutionary algorithm with guided local search (c) The completion time of the critical job
(MOEA-GLS) algorithm to solve FJSP and obtained
better Pareto-optimal solutions than PSO-SA method on F3 =max{CT,CTy,...,.CTn} 3)
the same three benchmark problems. However, the S
authors in 10] did not deal with the decision-makings of whereCT; denotes the completion time bth jobd;.
different types in Gantt chart under the same
Pareto-optimal solutions.

In this paper, the Multi-Objective Monte-Carlo Tree 3 Structure of Monte-Carlo Tree Search
Search (MOMCTS) algorithm is proposed to solve the (M CTS)
FJSP for finding the Pareto-optimal solutions. Several

popular benchmark problems with various conditions are3 1 Monte-Carlo Tree Search Framework
considered to compare the proposed MOMCTS algorithm

with the published methods. Simulation results ShOW,thatl\/Ionte-Carlo Tree Search (MCTSL] is a best-first

the MOMCTS can achieve wide range of Pareto-optimalseaych method which uses Monte-Carlo sampling as its
solutions. In addition, the more decision-makings of o,ouation function and is both explorative and
Gantt chart with the same Pareto-optimal solutions can b%xploitative. Each node of the search tree contains a
obtai_ned.T_he organization of the rest paper is as fo'_lowsburrent problem state, the possible actions, and some
Section 2 introduces the FJSP formulations. Section Jyher information about this state. Using the results of
illustrates the MCTS framework and UCT algorithm. In previous explorations, the algorithm gradually grows a
Section 4, SOMA scheme, problem transformation, anqom search tree in memory, and successively becomes
external repository and modification of UCT, Path petier at accurately estimating the values of the most
Random Search (PRS) method, and the prOpOS,egromising moves. If there is time left, all sampling search
MOMCTS algorithm are presented. Several public 5ng eyajuation strategic phases will be run again. MCTS

benchmark problems are used to validate t.he Proposedan pe stopped anytime, the more time the program runs,
method and comparison results are shown in Section 5,4 stronger the program may execute.

Finally, conclusions are made in Section 6.

2 FJSP Description 3.2 The UCT Algorithm

The FJSP is a manufacturing strategy to properly . : .
. ; : he algorithm UCT is the extension of UCB17 to
organize a set of machines to process a set of jobs fog-nin—mgx tree search. It has its origins in sol\zﬂng the

some objectives. The FJSP is generally described as .. . .
follows: The problem is to organize the executionrof multi-armed bandit problem. K-armed bandit problem

jobs 31 ~ 1.2 mon m machneb(k  12...m. {138 described e i he titegy for bt o chooee
where each johJ; needs p operations on the order of 9 : P

. . : defined by the sequence of random varia¥lgs
restraint and each working procedure of job can be - .
processed by multiple processedwimachines. The total Im_aclﬁlzr’le:;;a nnzislir:,(\; hﬁlrjer%It?etrhgflTi(ri?gsorggen?ggmgl%vas
number of operations in all jobs @ G = 5,0 layed. The UCBL1 policy was originally given iri4]
Mijjmeans the collection of the useable machines abouf ' !

j-th operation of-th job, M;j € {1,2, ... m}, O; ; x means which ensures the optimal machine is played
the j-th operation of th'e'-th job 7cain ;,lsd;-th7jfnachine exponentially more often than any other machine

- . ) ) : e uniformly when the rewards are in [0, 1]. The essence is
bi,jmeans the required ime gth operation of-th job choosing the machinewhich maximizes the following

processed on k-th machine, formula:
1<i<n 1<j<o0, 1<k<m Inthe FISP, the ) nn
following assumptions are usually madg.[The task is UCTi=x+Ce-{/— (4)
to find a set of solutions and three criteria of FISP are ni
considered and described as follows: wherexis the mean reward obtained from machine
(a) The total workload of all machines so far, n; is the number of times machinehas been
played and n is the overall number of plays done. The
Fi= z Pijk 1) constCe must be adjusted to balance between exploitation

and exploration. For the tree search procedure, the idea of
UCT is to consider each node as an independent bandit,
with its child nodes as independent arms. From the
current search position, the UCT method is to select

wherep; j kK denotes the processing time jeth operation
of i-th job ink-th machine.
(b) The workload of the critical machine

P = max{Wi,Ws, ..., Win} (2)  action according to knowledge contained within the
search tree. Each state in the tree estimates its UCT value
whereW denotes the workload ¢¢th machineVi. for each node by Monte-Carlo sampling simulation. As
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more simulation results propagate up the tree, the searcBs= {O12-Ma,01,2-Mp, O3 1-Ma,031-Mp }. Compute each
policy improves at every actual time-step, and theprocessing time{7, 10, 6, # fromC4, to select the
Monte-Carlo is based on more accurate returns. {O31-Ma} with the minimum value 6, and the selection
set$= {(2.1a), (1.1b), (2.2b), (3.1h)in Table 4.6).
Step 5: From Table 4.6, the candidate operation

4 Methods seDs={01, Oz }, then to generate the candidate set
Cs= {01,2-Mg,01 2-Mp, O32-Mg4,03 2-Mp }. Compute each
4.1 Representation and SOMA scheme processing time{7, 10, 6, § fromCs, to select the

{O32-Mp} with the minimum value 5, and the selection
The evolution-based heuristic method can be achievedet Ss= {(2.1a), (1.1b), (2.2b), (3.1a), (3.2bfin Table
better efficiency by means of the appropriate encodingd.7).
representation. Chen et allg originally uses an A-B Step 6: From Table 4.7, the candidate operation
string representation. A string indicates a list of all seDg={O, 2}, then to generate the candidate €kt
operations of all jobs while B string denotes a list of {O12-M,,012-Mp}. Compute each processing tin{&,
operations that are processed on each machine. But thE0} fromCs, to select the{O;>-Ma} with the minimum
repair mechanism is required to deal with a deadlockvalue 7, and the selection s&= {(2.1a), (1.1b), (2.2b),
situation. This study extended the feature to generate #3.1a), (3.2b), (1.28)(in Table 4.8).
{operation-machine hybrid label as encoding Step 7: From Table 4.8, the candidate operation
representation, and the Sequential Operation MachinseO;={ O13}, then to generate the candidate gt
Assignment (SOMA) scheme has been proposed tg{O;3-Ma,013-Mp}. Compute each processing tin{®,
always produce feasible solutions. Therefore, a repai#} fromCs, to select the{O;3-Ma} with the minimum
mechanism such as local search method, to maintaivalue 4, and the selection s8t= {(2.1a), (1.1b), (2.2b),
feasibility is not required. (3.1a), (3.2b), (1.2a), (1.3Rfin Table 4.9).

To explain this scheme, the example (3 jobs, 2  As shown in Table 4.9, the operations of all jobs are
machines, and 7 operations) is considered (in Table 4.1assigned to each machine done and one of the feasible
to detail the encoding representation and SOMA schemeaolutionsS; is obtained. Its Gantt chart is shown in Figure
step by step. For instance, operaton; of job 1 can be  4.1. The precedence constraints &(&.1b) before (1.2a)
processed on machind, for 4 units of time, then to before (1.3b) (job 1), {(2.1a) before (2.28) (job 2),
machineM,, for 3 units of time, and so on. Here, we {(3.1a) before{(3.2b)} (job 3), and the operation order
simplify the machine selection with the least processingshould be preserved by the different machine selection. It
units of time. The symbols of candidate and selectedis obvious that each scheduling solution from any

{operation-machinepairs are indicated by’ and '()’, encoding representation based ¢operation-machinge

respectively. and decoding by SOMA should be feasible. Moreover,
Step 1. From Table 4.2, we can generate theevery encoding representation pair is initialized randoml

{operation-machingandidate set Ci= so the proposed SOMA based scheme can produce more

{01,1-M3,01,1-Mp, 021-Ma,021-Mp,031-Ma,03 1-Mp }. different scheduling solutions.

In  our simplified case, we choose the

{operation-machinepair with the least processing units

of time fronC; for computing each processing tinjé, 3,

1, 3, 6, 7, to select the{O,1-Ma} with the minimum 4.2 Problem Transformation

value 1 as the selection set denotedSy {(2.1a) (in

Table 4.3). Monte-Carlo search proved to be competitive in

Step 2: From Table 4.3, the candidate operationdeterministic algorithm with large stochastically
se0,={011,022,031}, then to generate the candidate setbranching factors. As discussed, the effect of the
C,= {01,1-Mg,01,1-Mp, Monte-Carlo Tree Search structure is to efficiently apply
022-Ma,022-Mp,03 1-Ma,031-Mp}.  Compute  each  solving for the FISP. Here, the definition of a tree data
processing timeg(4, 3, 7, 5, 6, 7 fromCy, to select the  structure is introduced, and the mapping procedures of the
{O11-Mp} with the minimum value 3, and the selection example in Section 4.1 to tree search topology are
set$={(2.1a), (1.1b) (in Table 4.4). described as follows.

Step 3: From Table 4.4, the candidate operation Assume that a simple data structure (a level tree) with
seD3={012,0.2 ,031 }, then to generate the candidate root noder. Every node in the tree is associated with a
set Cs= {O1,2-M3,01 2-Mp, candidate {operation-machinge hybrid label pair. Let
022-M3,022-Mp,03 1-Mg,031-Mp}.  Compute  each S={s1,%,...,},k> 1 be an ordered items set from the
processing timg7, 10, 7, 5, 6, ¥ fromCs, to select the selection stage, then the item-set tree T is ldueThe
{O22-Mp} with the minimum value 5, and the selection representation of each node denoted {yyz} string
setS= {(2.1a), (1.1b), (2.28)(in Table 4.5). symbol for the combination ofoperation-machinewith

Step 4: From Table 4.5, the candidate operation{OxyM}. Every nodeu other than the root nodehas a
se0,={01, Oz1 }, then to generate the candidate setunique parent node. Every non-leaf nuiteT hasd > 1
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child nodes. For two nodasand its child nodein T, we 4.3 External REP and Modification of UCT
will use m(u,v) to denote the unique directed path in T
which connectsu and v. For detailed description, the As mentioned in Section 3.2, the original UCT is widely
mapping procedure according to the SOMA approachused to deal with uncertainty in a smooth way. For every
illustrated in Section 4.1 gives a step by step discussiorsearch node in a single objective optimizations problem,
properly. the estimated value is the summation of mean of the value
for each child and weighted by the frequency of visits.
The UCT selects most of the time the maximum
estimated value child nodes if one child-node has a much
higher value than the others. However, due to the
multi-criteria nature of multiple objectives problemseth
optimality of a solution has to be redefined, giving rise to
Step 2: The search path= {(2.1a)} is determined by the concept of Pareto-optimal solution. Ii€], the
the selection s&j. Start from the search point node (2.1a) authors adopt an external repository (REP) to keep the
at present, to construct its child nodes 8bt {(1.1a), historical record of the non-dominated solutions found
(1.1b), (2.2a), (2.2b), (3.1a), (3.Lbat L, corresponding along the search space. The basic concept of REP
to the candidate sé€. function is to determine whether a certain solution should

. ; be added or not.
Step 3:The search patm= {(2.1a), (1.1b) is . .
determined by the selection Sgt Start from the search Here, the non-dominated sorting strategy 17][was

point node (1.1b) at present, to construct its child nodes""dOpte‘j to modify the formal UCT, named NSUCT

— Non-dominated Sorting UCT), to make it suitable for the
setNs= {(1.2a), (1.2b), (2.2a), (2.2b), (3.1a), (3.1} L3 ( A
corresponding to the candidate &at features of multi-objective problem on the MCTS

sampling framework.
Step 4:The search pais= {(2.1a), (1.1b), (2.28)is
determined by the selection Sgt Start from the search NSUCT= (Wi /t;) +Ce- v/INtn/t; (5)
point node (2.2b) at present, to construct its child nodes
setNs= {(1.2a), (1.2b), (3.1a), (3.1batL4 corresponding
to the candidate s€. Wi = 1— (Di/Nrep) (6)

Step 5: The search patly= {(2.1a), (1.1b), (2.2b) wheret;j is the number of nodg has been visited and
(3.1a) is determined by the selection SgtStart from IS the overall number of the parent nodepfvisited
the search point node (3.1a) at present, to construct itdonew: denoted the win score value for each nadbiis

child nodes seNs= {(1.2a), (1.2b), (3.2a), (3.2pjatLs  the number of dominated count among maded
corresponding to the candidate €&t non-dominated solutions in REP, agkps the number

of non-dominated solutions in REP .

Step 6:The search patts= {(2.1a), (1.1b), (2.2b),
(3.1a), (3.2b) is determined by the selection Set Start
from the search point node (3.2b) at present, to construct
its child nodes setNs= {(1.2a), (1.2b) at Le ;
corresponding to the candidate et 4.4 Path Random Search (PRS) algorithm

Step 7: The search patig= {(2.1a), (1.1b), (2.2b), Consider to build a tree with its nodes labeled by
(3.1a), (3.2b), (1.23) is determined by the selection {operation-machinesymbol in large search state space,
setss. Start from the search point node (1.2a) at presentthe Path Random Search (PRS) algorithm based on the
to construct its child nodes sht= {(1.3a), (1.3b) atL; ~ Monte-Carlo sampling technique has been proposed to
corresponding to the candidate €st simulate a random search for estimating the state-action

Step 8: In Figure 4.3, the search path= {(2.1a), value. For reading convenience, the symbols employed in

: . the sequel of the procedure statement are summarized in
(1.1b), (2.2b),.(3.1a), (3.2b), (1.2a), (1.3 determined Table 4.10. The proposed PRS algorithm is described as
by the selection s& and the growth of tree search

topology procedure ends at level 7. follows.

Step 1: Initialize to start from the tree T with root node
atLo, then to create its child nodes $¢t= {(1.1a), (1.1b),
(2.1a), (2.1b), (3.1a), (3.1b)at L; corresponding to the
candidate set items frafy . The construction of search
tree topology is shown in Figure 4.2.

Throughout the execution of the tree search growth, aPRSalgorithm procedure:
node u has bold rim mark if the best search node is  Step 1: Set WS is the working set for current nodes.
chosen with least processing units of time. It is clear that  Step 2: Use roulette wheel selection to choose one
the appropriate choice of the search pathin T is node v from WS according to the probability of
equivalent to one of the feasible solutioBsin FJSP. As  processing time for each operation on the machine. The
shown in Figure 4.3, we can successively convert thetotal fitness TF,) of the WS from PRS procedure is given
original evolution-based framework to the randomizedby Eq. (7). The probability ;) of a selection for each
tree search model via the SOMA scheme. nodev; is Eq. @). The cumulative probability for each
nodey; is Eq. ©). Each time a node for a new choice is
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selected a random number r is generated in the range [0, tep 2: Generate all possible candidate child nodes for
1]. If r < g1 then select the first nodg, otherwise select root node to WS.

thei-th nodev; such thatj_; <r <q;. Step 3: Execute one random search R for each node in
WS.
Nuvs 1 Step 4: Calculate the fitness valbév;) for each node
Th= _ZEE ,ER = (ﬂ) (7) v; in WS, wherel<i < Nys.
= Step 5: Calculate the dominated counigrvalue of
EF nodey; with other nodes in WS.
pi=— (8) Step 6: Calculate the win score value and obtain the
Fo NSUCT value.
i Step 7: SetSim= 0 and reset the number index of
g = Z Pj (9)  Monte-Carlo simulation iteration.
j=1 Step 8: Setk = wk. Use roulette wheel selection to

choose one nodewn from WS according to the
probability of NSUCT value for each node in WS at level
k. The total fitness hy) of the WS from MOMCTS
procedure is given by Eql(). The probability (;) of a
selection for each noden; is Eq. (L1). The cumulative
probability for each nodevn; is Eq. (12). Each time a
nodewn; for a new choice is selected a random number r
is generated in the range [0, 1].nf< q; then select the

Step 3: Execute a random search R for the selectedwode
from Step 2.

Step 4: Obtain path(v) from the root node through
nodev to bottom node in T.

Step 5: Calculate the fitness valkiév) and Gantt chart
G(v) according tat(v).

Step 6: Check if th& (v) dominates or non-dominates
the solutions in REP, then update and store the fitness val ; -
F(v) to REP; otherwise go to Step 8. u:‘j‘.rst ZOEiNqn-l, otherwise select the i-th nodey such that

Step 7: Check if the5(v)is the same as solutions in el N
REP, then store the Gantt ch&tv) to REP; otherwise go TRy = ZNSUCT (10)
to Step 8. =

Step 8: Calculate the dominated times with respect to

F (v)and solutions in REP to obtain the win score value for pi = NSUCT (11)
nodev. Thu

Step 9: Calculate the NSUCT value for node i

Step 10: Update the NSUCT value with selected parent q = Z Pj (12)
node fromv along to root. i=

Step 11: Return resuilts to main program. Step 9: Check if the child nodes wi are empty, then

setk = k+ 1. Generate all possible candidate child nodes
for wn at level k. SetW S= childs\wn). Go to Step 12.
Otherwise, sek = k+ 1. LetW S= childs(wn).
4.5 The proposed MOMCTS approach Step 10: Check if the nodes in WS are not all
simulated, then put these not simulated nodes to WS, go
For the standard FJSP, the size of search space grows Step 12. Otherwise, next step.
exponentially. It is computationally infeasible to try eye Step 11: Check ifk < h, then use roulette wheel
possible solution in the whole tree. Instead of dea”ngse|ecti0n to choose one noda from WS according to
with each node once iteratively, we will adopt the the probability of NSUCT value for each node in WS at
Monte-Carlo simulation technique to each state in the tregevel k, go to Step 9. Otherwise, the path search converges
search procedure within limited time. Once the searchand program ends.
tree has been constructed when FJSP complexity Step 12: Execute theRS algorithm procedure.
increases, the resulting tree tends to be large. Therefore, Step 13: SeSim= Sim+ 1. If SIm< Nm¢, then go to
the dynamic pruning method is adopted to reduce treestep 8. Otherwise, next step.
sizes for preventing the growth of those branches seems Step 14: Sek = wk. Rank every node at level k by
not to improve the predictive result. The proposedNSUCT value form high to Low. Preservilpnodes
MOMCTS algorithm and the procedure statement areaccording their ranks with higher value. The other nodes

detailed as follows: with lower NSUCT value are to be pruned.
_ Step 15: Setvk = wk+ 1. Check ifwk < h, then set
MOMCT S algorithm procedure: k =wk and go to Step 7. Otherwise, program ends.

Step 1: |Initialize the parameters including:
Monte-Carlo sampling times (M) of iteration, the
coefficient Ce) of NSUCT, the number of preserved
nodesNp, after pruning at each level, the tree height h. Set
k=1,wk= 1, wn=empty,W Ssempty.
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Table 4.1 Example of the FISP with 3 jobs, 2 machines,

and 7 operations.

Ma Mb
J1 011 4 3
012 7 10
013 5 4
)2 021 1 3
022 7 5
1k} 0.1 6 7
032 6 5

Table 4.2 Initial candidate s€; for SOMA.

Machine
DO
1.2 a
(L3 a
r @) ®

022 a

I3 @C:)

Table 4.3 The selectio®, and candidat€s.

Machine
I

a

a b
B AN
Iz (b)

i b

Table 4.4 The selectio® and candidat€;.

i Machine

= QP=@=

Table 4.5 The selectio; and candidat€,.

i Machine

~clp- -ep

Table 4.6 The selectio®, and candidat€s.

A Machine
Ji AN &
.
12 4:5 b
13 b
DINO)

Table 4.7 The selectio® and candidat€s.

A Maching

Table 4.8 The selectio® and candidat€;.

Maching
J1 a
/b
ORNO,
J2 Lo\ b
i

Table 4.9 The selection s&t.

Machine
I a
AN A\ b
a AN\
)2 A b

Table 4.10. Symbols used in the algorithm procedure

statement.
Symbole Descriptione
T+ A general search treee
he Mumber of tree heights
Qe Mutnber of operations in all jobs (3 = k)e
Ny # Mumber of Monte- Carlo simulation times for each deration at lewel e
N Murrber of preserved nodes after pruning at level k. A is the summation ofe|-
a the namber of mazimum NSUCT node and the number of nodes in REP.©
ke Current index number of treelevel (1 2k 2k)e
Wi Working index number of tree level (1 Swk < )¢ )
Stre Current index number of Monte-Carlo simulation iteration (1€ 8m <N 1o
»e Selected node at level ke

Wi Working set for current nodes at level ke
N e Mumher of nodes in Wae

wine Working node at level ke
childs(wiye | child nodes of working node wne
1+ Processing time unit of node v comesponding to its { operation-machne}. <

Fw)e Search path from root through node v to reach bottom node in tree Te
Fvye | The fitness walue according to (v«
Gl The Gantt chart according to r(v) e
R Execute the random Monte-Carlo simulation search one times
REP¢ Non-dominate sohutions in the exd ernal repositorys

M [ 2] il | 12 |
I 7 T4

Mb 11 | 2 | 12 V 13 |
I

3 § 1 4 1%

Figure 4.1 The Gantt chart in Step 7 from SOMA scheme.
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Lo

machines, 56 operations) are presented in Table 5.1 to
Table 5.6. The column labeled ‘Gantt chart variety’ is to
display the number of diversity. The symbol X’ indicates
that the authors did not provide the Gantt chart.

L U 2 @ Gy @ L For the three benchmarks (problem & 10x10 and

15x10), to compare the proposed MOMCTS with the

Fig. 4.2 Transformation to tree search structure in Step 1PSO-SA method4], two new non-dominated solutions

from SOMA scheme. (77, 12, 14) and (77, 11, 16) can be obtained by the
MOMCTS in the problem &8. For the problem 1010,
& b two new solutions (43, 5, 7) and (42, 6, 7) of MOMCTS

dominate the PSO-SA and two non-dominated solutions
(41, 7, 8) and (42, 5, 8) can be achieved. In the problem
B LY - 10x15, one new solution (91, 11, 11) of MOMCTS
dominates the PSO-SA and one non-dominated solution
" TYY Y 5 (93, 10, 11) can be obtained. Although the solutions of
P W' &N ) MOMCTS are the same as the MOEA-GLY,[we can
see that more diversity of the Gantt charts from
MOMCTS can be obtained.
For the other three problem instances with release
dates (problem 45, problem 167 and problem 1510),
12 ab G b fux to compare the proposed MOMCTS with the AL-CGA
method [4], two new non-dominated solutions (32, 8, 16)
and (33, 7, 16) can be obtained by the MOMCTS in the
2D (29 G2 Ls problem 4x5. For the problem 197, the new solutions
(62, 10, 15) of MOMCTS dominate the AL-CGA (63, 10,
18) and (64, 10, 17) solutions. In the problem<ii®, two
(2 12 Le solutions (91, 11, 23) and (93, 10, 23) from MOMCTS
dominates the AL-CGA solutions (91, 11, 24) and (95,
11, 23). Although the solutions of MOMCTS are the
same as the MOEA-GLSB], the more diversity of the
Gantt charts from MOMCTS also can be obtained. For
example, two different Gantt charts of the solution (93,
10, 23) for the problem 1015 with release date are
shown in Figure 5.1 and Figure 5.2.

l.la

12a) (12b) 22a @ 3.1a) (3.1b

Fig. 4.3 Transformation to tree search structure in Step 8
from SOMA scheme.

5 Simulation Results Table 5.1 Comparison of results on problem&
Algorithme Whdo Max(WR Makespand Gentt charls
Comparing the proposed MOMCTS with the PSO-SA B e B ity
[9] and the MOEA-GLS 10, the computational oSk | — . " -
experiments for several datasets such as three popular ) 0 150 %
benchmarks (problem»83, 10x10 and 1510) and the MOBR CLS: | - - -
three problem instances with release dates (probles 4 i e " -
10x7 and 15¢10) are considered. For each problem, the e m - =
obtained results are reported in table contains three MOMCTS | 1 1w v
objectives: Fy(total workload), Fy(critical machine m it 150 ]

workload), Fs(makespan), are mentioned in Section 2.
The comparison results for the problem & ( 8 jobs, 8
machines, 27 operations), problemx110 ( 10 jobs, 10

Table 5.2 Comparison of results on problemx®.

Algorithrn Wid MaxWy Makespan Gant chatts
machines, 30 operations) , problemxH) ( 15 jobs, 10 B ] B i
machines, 56 operations), problem B with release date O . . -
ri=3r,=5r3=1r4=06 (4 jobs, 5 machines, 12 \oRAGLs | @ 5 : p
operations), problem 207 with release date & ’ ! x
r = 2,1 = 413 = 91y = 6 ﬁ : ; :
r5 = 77 rG = 57 r7 = 77 r8 = 47 rg = 17r10 = O( 10 JObS, 7 Ouw proposed £ 3 3 13
machines, 29 operations), problemx1B) with release VODMCTS | ; ’ 7
dater; = 5,;rp = 3,13 =6,r4 = 4,5 = 9,rg = 7,17 = 4 : . :
1rg = 2,19 = 9,110 = 0
ri1=1214,r1o=13r13=11r14=12r15=5 ( 15 jObS, 10
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Table 5.3 Comparison of results on problemxI®.

Alpitin it Wa(ly) Niksspin Gt chats

fl fl fi vy
PS0-EA il Il 11 |

Moy | O ! ! !

% 10 Il X

Outgropased bl Il Il 9
MODETS 9 10 Il f

Table 5.4 Comparison of results on problemZwith
release date.

Algomhm Wid Max(Wk) Makespan Gantt chats
Fl ¥ 1] Vitiets
Y 8 18 X

ALCCA Eij 7 13
% 10 16

MOEA-GLS k)

Out proposed 3
MODMCTS 3

JREYY PO U e

X
X
X
16 X
X
5
2

Table 5.5 Comparison of results on problemxIwith
release date.

Algorithm Wid Max(Wh) Makespan Gantt charts
Fl F2 F3 vkt

AL-CGA 6 10 18

MOEA-GLS o m B

=

Qur proposed a0 12 16
MODMCT3

Table 5.6 Comparison of results on problemxI® with
release date.

lgoith i M Miespn | Ganthuts

Lo | ¥ I 4 x
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Queprogosed i 1l Jid 13
MODMCTS 4 10 i 9
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Fig. 5.1. The Gantt chart 1 of (93, 10, 23) for the problem

10x 15 with release date.

[N
T

[rv"»” XN WENRN KIKR 77/ /A A /A A A A Ao A A
7

5 3 i ERE] ]
R 777 P I £ 1

o7 8 0T [E)

6 2 ‘\‘ g
7 m 5 9

i il

3

7] “ XN 7|

i 2 B

[ IE} e [ 5% P77727722777277727),
5 %

7 617 19

s o 21 Bl
TR RN/
1 3 £

[IINT]

Fig. 5.2. The Gantt chart 2 of (93, 10, 23) for the problem
10x 15 with release date.

6 Conclusions

The proposed SOMA scheme for encoding
representation is used to always produce feasible
solutions. Therefore, the evolution-based FISP mapping
to a general tree search structure via SOMA is
successively completed. Next, the modification of formal
UCT by the non-dominated sorting strategy, called
NSUCT, makes it suitable for the features of
multi-objective problems. The proposed MOMCTS
approach solving FJSP is compared with the integrated
multi-objective approach based on evolutionary method
for several popular benchmarks. The computational
results validate the effectiveness of the proposed
MOMCTS approach, and the more decision-makings
under the same Pareto-optimal solutions condition can be
obtained.
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