Existence of Nonoscillatory Solutions of Higher Order Nonlinear Neutral Nonhomogeneous Equations with Distributed Deviating Arguments

Tuncay Candan ${ }^{1, *}$ and Bekir Çetin ${ }^{2}$
Department of Mathematics, Faculty of Arts and Sciences, Niğde University, Niğde 51200, Turkey

Received: 12 Apr. 2016, Revised: 29 May 2016, Accepted: 30 May 2016
Published online: 1 Jul. 2016

Abstract

We obtain sufficient conditions for the existence of a nonoscillatory solution of higher order nonlinear neutral differential equations with distributed deviating arguments. For this purpose, we use the Banach contraction principle.

Keywords: Neutral equations, Fixed point, Higher-order, Nonoscillatory solution, Distributed delay.

1 Introduction

In recent years, the existence of nonoscillatory solution of the first, second and higher order neutral differential equations have been studied. We refer the reader to the papers [1-12] and the references cited therein.

In the present article, we consider the following higherorder nonlinear neutral differential equations

$$
\begin{align*}
& {\left[r(t)[x(t)+p(t) x(t-\tau)]^{(n-1)}\right]^{\prime}} \\
& +(-1)^{n}\left[\int_{a_{1}}^{b_{1}} q_{1}(t, \xi) g_{1}(x(t-\xi)) d \xi\right. \\
& \left.-\int_{a_{2}}^{b_{2}} q_{2}(t, \xi) g_{2}(x(t-\xi)) d \xi-f(t)\right]=0 \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
& {\left[r(t)\left[x(t)+\int_{a_{3}}^{b_{3}} \tilde{p}(t, \xi) x(t-\xi) d \xi\right]^{(n-1)}\right]^{\prime}} \\
& +(-1)^{n}\left[\int_{a_{1}}^{b_{1}} q_{1}(t, \xi) g_{1}(x(t-\xi)) d \xi\right. \\
& \left.-\int_{a_{2}}^{b_{2}} q_{2}(t, \xi) g_{2}(x(t-\xi)) d \xi-f(t)\right]=0 \tag{2}
\end{align*}
$$

where $n \geqslant 2$ is a positive integer, $\tau>0$, $b_{i}>a_{i} \geqslant 0, i=1,2,3, \quad p \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$, $\tilde{p} \in C\left(\left[t_{0}, \infty\right) \times\left[a_{3}, b_{3}\right], \mathbb{R}\right), \quad r \in C\left(\left[t_{0}, \infty\right),(0, \infty)\right)$,
$q_{i} \in C\left(\left[t_{0}, \infty\right) \times\left[a_{i}, b_{i}\right],[0, \infty)\right), \quad \mathrm{i}=1,2, \quad f \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ and $g_{i} \in C(\mathbb{R}, \mathbb{R}), i=1,2$. We assume that $g_{i}, i=1,2$, satisfy local Lipschitz condition and $g_{i}(x) x>0, i=1,2$, for $x \neq 0$.

The aim this paper is to extend the results of [6] to the case of distributed deviating argument and give sufficient conditions for the existence of a bounded nonoscillatory solution of (1) and (2).

Let $m=\max \left\{b_{1}, b_{2}, \tau\right\}$. By a solution of (1) we mean a function $x \in C\left(\left[t_{1}-m, \infty\right), \mathbb{R}\right)$, for some $t_{1} \geqslant t_{0}$, such that $x(t)+p(t) x(t-\tau)$ is $n-1$ times continuously differentiable and $r(t)(x(t)+p(t) x(t-\tau))^{(n-1)} \quad$ is continuously differentiable on $\left[t_{1}, \infty\right)$ and such that (1) is satisfied for $t \geqslant t_{1}$. Similarly, Let $m_{1}=\max \left\{b_{1}, b_{2}, b_{3}\right\}$. By a solution of (2) we mean a function $x \in C\left(\left[t_{1}-m_{1}, \infty\right), \mathbb{R}\right)$, for some $t_{1} \geqslant t_{0}$, such that $x(t)+\int_{a_{3}}^{b_{3}} \tilde{p}(t, \xi) x(t-\xi) d \xi$ is $n-1$ times continuously differentiable and $r(t)\left(x(t)+\int_{a_{3}}^{b_{3}} \tilde{p}(t, \xi) x(t-\xi) d \xi\right)^{(n-1)}$ is continuously differentiable on $\left[t_{1}, \infty\right)$ and such that (2) is satisfied for $t \geqslant t_{1}$.

As it is customary, a solution of (1) (or (2)) is said to be oscillatory if it has arbitrarily large zeros. Otherwise, the solution is called nonoscillatory.

[^0]
2 Main Results

In what follows, we use the notation $Q_{1}(s)=\int_{a_{1}}^{b_{1}} q_{1}(s, \xi) d \xi$ and $Q_{2}(s)=\int_{a_{2}}^{b_{2}} q_{2}(s, \xi) d \xi$.
Theorem 1. Assume that $0 \leqslant p(t) \leqslant p<1$ and

$$
\int_{t_{0}}^{\infty} \int_{t_{0}}^{s} \frac{s^{n-2}}{r(s)} Q_{i}(u) d u d s<\infty, \quad i=1,2
$$

and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \int_{t_{0}}^{s} \frac{s^{n-2}}{r(s)}|f(u)| d u d s<\infty \tag{3}
\end{equation*}
$$

Then (1) has a bounded nonoscillatory solution.
Proof. Let Λ be the set of all continuous and bounded functions on $\left[t_{0}, \infty\right)$ with the sup norm. Set
$A=\left\{x \in \Lambda: M_{1} \leqslant x(t) \leqslant M_{2}, \quad t \geqslant t_{0}\right\}$,
where M_{1} and M_{2} are positive constants such that
$p M_{2}+M_{1}<M_{2}$.
Let $\alpha \in\left(p M_{2}+M_{1}, M_{2}\right), L_{i}, i=1,2$, denote Lipschitz constants of functions $g_{i}, i=1,2$, on the set A, respectively and $L=\max \left\{L_{1}, L_{2}\right\}, \beta_{i}=\max _{x \in A}\left\{g_{i}(x)\right\}$, $i=1,2$, respectively. From (3), we can choose a $t_{1}>t_{0}$,
$t_{1} \geqslant t_{0}+\max \left\{b_{1}, b_{2}, \tau\right\}$
sufficiently large such that

$$
\begin{align*}
& \frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[Q_{1}(u) \beta_{1}+|f(u)|\right] d u d s \\
& \leqslant M_{2}-\alpha, \quad t \geqslant t_{1}, \tag{5}\\
& \frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[Q_{2}(u) \beta_{2}+|f(u)|\right] d u d s \\
& \leqslant \alpha-M_{1}-p M_{2}, \quad t \geqslant t_{1} \tag{6}
\end{align*}
$$

and

$$
\begin{align*}
& p+\frac{L}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left(Q_{1}(u)+Q_{2}(u)\right) d u d s \\
& \leqslant \theta_{1}<1, \quad t \geqslant t_{1}, \tag{7}
\end{align*}
$$

where θ_{1} is a constant. Define a mapping $T: A \longrightarrow \Lambda$ as follows

$$
\begin{aligned}
& (T x)(t) \\
& =\left\{\begin{array}{l}
\alpha-p(t) x(t-\tau)+\frac{1}{(n-2)!} \\
\times \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[\int_{a_{1}}^{b_{1}} q_{1}(u, \xi) g_{1}(x(u-\xi)) d \xi\right. \\
\left.-\int_{a_{2}}^{b_{2}} q_{2}(u, \xi) g_{2}(x(u-\xi)) d \xi-f(u)\right] d u d s, \\
t \geqslant t_{1} \\
(T x)\left(t_{1}\right), \quad t_{0} \leqslant t \leqslant t_{1}
\end{array}\right.
\end{aligned}
$$

Obviously, $T x$ is continuous. For $t \geqslant t_{1}$ and $x \in A$, using (5) and (6), respectively, we obtain

$$
\begin{aligned}
& (T x)(t) \leqslant \alpha+\frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \\
& \times \int_{t_{1}}^{s}\left[\int_{a_{1}}^{b_{1}} q_{1}(u, \xi) g_{1}(x(u-\xi)) d \xi-f(u)\right] d u d s \\
& \leqslant \alpha+\frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[Q_{1}(u) \beta_{1}+|f(u)|\right] d u d s \\
& \leqslant M_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& (T x)(t) \geqslant \alpha-p(t) x(t-\tau)-\frac{1}{(n-2)!} \times \\
& \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[\int_{a_{2}}^{b_{2}} q_{2}(u, \xi) g_{2}(x(u-\xi)) d \xi+f(u)\right] d u d s \\
& \geqslant \alpha-p M_{2}-\frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[Q_{2}(u) \beta_{2}+|f(u)|\right] d u d s \\
& \geqslant M_{1} .
\end{aligned}
$$

Thus, we proved that $T A \subset A$. We observe that A is a bounded, closed, convex subset of Λ. We now show that T is a contraction mapping on A. For $x_{1}, x_{2} \in A$ and $t \geqslant t_{1}$,

$$
\begin{aligned}
& \left(T x_{1}\right)(t)-\left(T x_{2}\right)(t)|\leqslant p(t)| x_{1}(t-\tau)-x_{2}(t-\tau) \left\lvert\,+\frac{1}{(n-2)!} \times\right. \\
& \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left(\int_{a_{1}}^{b_{1}} q_{1}(u, \xi)\left|g_{1}\left(x_{1}(u-\xi)\right)-g_{1}\left(x_{2}(u-\xi)\right)\right| d \xi\right. \\
& \left.\quad+\int_{a_{2}}^{b_{2}} q_{2}(u, \xi)\left|g_{2}\left(x_{1}(u-\xi)\right)-g_{2}\left(x_{2}(u-\xi)\right)\right| d \xi\right) d u d s
\end{aligned}
$$

or using (7)

$$
\begin{aligned}
& \left|\left(T x_{1}\right)(t)-\left(T x_{2}\right)(t)\right| \leqslant\left\|x_{1}-x_{2}\right\| \\
& \times\left(p+\frac{L}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left(Q_{1}(u)+Q_{2}(u)\right) d u d s\right) \\
& \leqslant \theta_{1}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

This implies with the sup norm that
$\left\|T x_{1}-T x_{2}\right\| \leqslant \theta_{1}\left\|x_{1}-x_{2}\right\|$,
where in view of (7), $\theta_{1}<1$, which shows that T is a contraction mapping on A. As a result, T has a fixed point $x \in A$, and x is a positive solution of (1). This completes the proof.

Theorem 2. Assume that $1<p \leqslant p(t) \leqslant p_{0}<\infty$ and (3) holds. Then (1) has a bounded nonoscillatory solution.

Proof. Let Λ be the same set as in the proof of Theorem 1. Set
$A=\left\{x \in \Lambda: M_{3} \leqslant x(t) \leqslant M_{4}, \quad t \geqslant t_{0}\right\}$,
where M_{3} and M_{4} are positive constants such that
$p_{0} M_{3}+M_{4}<p M_{4}$.
Let $\alpha \in\left(p_{0} M_{3}+M_{4}, p M_{4}\right), L_{i}, i=1,2$, denote Lipschitz constants of functions $g_{i}, i=1,2$, on the set A,
respectively and $L=\max \left\{L_{1}, L_{2}\right\}, \beta_{i}=\max _{x \in A}\left\{g_{i}(x)\right\}$, $i=1,2$, respectively. In view of (3), we can choose a $t_{1}>t_{0}$,
$t_{1}+\tau \geq t_{0}+\max \left\{b_{1}, b_{2}\right\}$
sufficiently large such that

$$
\begin{align*}
& \frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[Q_{1}(u) \beta_{1}+|f(u)|\right] d u d s \\
& \leqslant p M_{4}-\alpha, \quad t \geqslant t_{1}, \tag{9}\\
& \frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[Q_{2}(u) \beta_{2}+|f(u)|\right] d u d s \\
& \leqslant \alpha-M_{4}-p_{0} M_{3}, \quad t \geqslant t_{1} \tag{10}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{p}\left(1+\frac{L}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left(Q_{1}(u)+Q_{2}(u)\right) d u d s\right) \\
& \leqslant \theta_{2}<1, \quad t \geqslant t_{1}, \tag{11}
\end{align*}
$$

where θ_{2} is a constant. Define a mapping $T: A \longrightarrow \Lambda$ as follows
$(T x)(t)$

$$
=\left\{\begin{array}{l}
\frac{1}{p(t+\tau)}\left\{\alpha-x(t+\tau)+\frac{1}{(n-2)!} \int_{t+\tau}^{\infty} \frac{(s-t-\tau)^{n-2}}{r(s)}\right. \\
\times \int_{t_{1}+\tau}^{s}\left[\int_{a_{1}}^{b_{1}} q_{1}(u, \xi) g_{1}(x(u-\xi)) d \xi\right. \\
\left.\left.-\int_{a_{2}}^{b_{2}} q_{2}(u, \xi) g_{2}(x(u-\xi)) d \xi-f(u)\right] d u d s\right\} \\
t \geqslant t_{1} \\
(T x)\left(t_{1}\right), \quad t_{0} \leqslant t \leqslant t_{1}
\end{array}\right.
$$

Obviously, $T x$ is continuous. For $t \geqslant t_{1}$ and $x \in A$, using (9) and (10), respectively, we have

$$
\begin{aligned}
& (T x)(t) \leqslant \frac{1}{p(t+\tau)}\left[\alpha+\frac{1}{(n-2)!} \int_{t+\tau}^{\infty} \frac{(s-t-\tau)^{n-2}}{r(s)}\right. \\
& \left.\times \int_{t_{1}+\tau}^{s}\left[\int_{a_{1}}^{b_{1}} q_{1}(u, \xi) g_{1}(x(u-\xi)) d \xi-f(u)\right] d u d s\right] \\
& \leqslant \frac{1}{p}[\alpha \\
& \left.+\frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[Q_{1}(u) \beta_{1}+|f(u)|\right] d u d s\right] \\
& \leqslant M_{4}
\end{aligned}
$$

and

$$
\begin{aligned}
& (T x)(t) \\
& \geqslant \frac{1}{p(t+\tau)}\left[\alpha-x(t+\tau)-\frac{1}{(n-2)!} \int_{t+\tau}^{\infty} \frac{(s-t-\tau)^{n-2}}{r(s)}\right. \\
& \left.\times \int_{t_{1}+\tau}^{s}\left[\int_{a_{2}}^{b_{2}} q_{2}(u, \xi) g_{2}(x(u-\xi)) d \xi+f(u)\right] d u d s\right] \\
& \geqslant \frac{1}{p_{0}}\left[\alpha-M_{4}\right. \\
& \left.-\frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[Q_{2}(u) \beta_{2}+|f(u)|\right] d u d s\right] \\
& \geqslant M_{3} .
\end{aligned}
$$

Thus, we showed that $T A \subset A$. We observe that A is a bounded, closed, convex subset of Λ. We now show that T is a contraction mapping on A. For $x_{1}, x_{2} \in A$ and $t \geqslant t_{1}$, from (11)

$$
\begin{aligned}
& \left|\left(T x_{1}\right)(t)-\left(T x_{2}\right)(t)\right| \\
& \leqslant \frac{\left\|x_{1}-x_{2}\right\|}{p} \\
& \times\left(1+\frac{L}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left(Q_{1}(u)+Q_{2}(u)\right) d u d s\right) \\
& \leqslant \theta_{2}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

This implies with the sup norm that
$\left\|T x_{1}-T x_{2}\right\| \leqslant \theta_{2}\left\|x_{1}-x_{2}\right\|$,
where in view of (11), $\theta_{2}<1$, which proves that T is a contraction mapping on A. Consequently, T has a fixed point $x \in A$, and x is a positive solution of (1). This completes the proof of Theorem 2.
Theorem 3. Assume that $-1<p \leqslant p(t) \leqslant 0$ and (3) holds. Then (1) has a bounded nonoscillatory solution.
Proof. Let Λ be the same set as in the proof of Theorem 1. Set
$A=\left\{x \in \Lambda: M_{5} \leqslant x(t) \leqslant M_{6}, \quad t \geqslant t_{0}\right\}$,
where M_{5} and M_{6} are positive constants such that
$M_{5}<(1+p) M_{6}$.
Let $\alpha \in\left(M_{5},(1+p) M_{6}\right), L_{i}, i=1,2$, denote Lipschitz constants of functions $g_{i}, i=1,2$, on the set A, respectively and $L=\max \left\{L_{1}, L_{2}\right\}, \beta_{i}=\max _{x \in A}\left\{g_{i}(x)\right\}$, $i=1,2$, respectively. By making use of (3), we can choose a $t_{1}>t_{0}$ sufficiently large satisfying (4) such that

$$
\begin{aligned}
& \frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[Q_{1}(u) \beta_{1}+|f(u)|\right] d u d s \\
& \leqslant(1+p) M_{6}-\alpha, \quad t \geqslant t_{1} \\
& \frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[Q_{2}(u) \beta_{2}+|f(u)|\right] d u d s \\
& \leqslant \alpha-M_{5}, \quad t \geqslant t_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
& -p+\frac{L}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left(Q_{1}(u)+Q_{2}(u)\right) d u d s \\
& \leqslant \theta_{3}<1, \quad t \geqslant t_{1}
\end{aligned}
$$

where θ_{3} is a constant. Consider the operator $T: A \longrightarrow \Lambda$ defined by

$$
\begin{aligned}
& (T x)(t) \\
& =\left\{\begin{array}{l}
\alpha-p(t) x(t-\tau) \\
+\frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[\int_{a_{1}}^{b_{1}} q_{1}(u, \xi) g_{1}(x(u-\xi)) d \xi\right. \\
\left.-\int_{a_{2}}^{b_{2}} q_{2}(u, \xi) g_{2}(x(u-\xi)) d \xi-f(u)\right] d u d s, \quad t \geqslant t_{1} \\
(T x)\left(t_{1}\right), \quad t_{0} \leqslant t \leqslant t_{1}
\end{array}\right.
\end{aligned}
$$

Clearly, $T x$ is continuous. Since the rest of the proof is similar to that of Theorem 1, it is omitted.

Theorem 4. Assume that $-\infty<p_{0} \leqslant p(t) \leqslant p<-1$ and (3) holds. Then (1) has a bounded nonoscillatory solution.

Proof. Let Λ be the same set as in the proof of Theorem 1. Set
$A=\left\{x \in \Lambda: M_{7} \leqslant x(t) \leqslant M_{8}, \quad t \geqslant t_{0}\right\}$,
where M_{7} and M_{8} are positive constants such that
$-p_{0} M_{7}<(-p-1) M_{8}$.
Let $\alpha \in\left(-p_{0} M_{7},(-p-1) M_{8}\right), \quad L_{i}, i=1,2$, denote Lipschitz constants of functions $g_{i}, i=1,2$, on the set A, respectively and $L=\max \left\{L_{1}, L_{2}\right\}, \beta_{i}=\max _{x \in A}\left\{g_{i}(x)\right\}$, $i=1,2$, respectively. By using (3), one can choose a $t_{1}>t_{0}$ sufficiently large satisfying (8) such that

$$
\begin{aligned}
& \frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[Q_{2}(u) \beta_{2}+|f(u)|\right] d u d s \\
& \leqslant(-p-1) M_{8}-\alpha, \quad t \geqslant t_{1} \\
& \frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[Q_{1}(u) \beta_{1}+|f(u)|\right] d u d s \\
& \left.\leqslant \alpha+p_{0}\right) M_{7}, \quad t \geqslant t_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{-1}{p}\left(1+\frac{L}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left(Q_{1}(u)+Q_{2}(u)\right) d u d s\right) \\
& \leqslant \theta_{4}<1, \quad t \geqslant t_{1}
\end{aligned}
$$

where θ_{4} is a constant. Define a mapping $T: A \longrightarrow \Lambda$ as follows

$$
\begin{aligned}
& (T x)(t) \\
& =\left\{\begin{array}{l}
\frac{1}{p(t+\tau)}\left\{-\alpha-x(t+\tau)+\frac{1}{(n-2)!} \int_{t+\tau}^{\infty} \frac{(s-t-\tau)^{n-2}}{r(s)}\right. \\
\times \int_{t_{1}+\tau}^{s}\left[\int_{a_{1}}^{b_{1}} q_{1}(u, \xi) g_{1}(x(u-\xi)) d \xi\right. \\
\left.\left.\left.-\int_{a_{2}}^{b_{2}} q_{2}(u, \xi) g_{2}(x(u-\xi)) d \xi-f(u)\right)\right] d u d s\right\}, \\
t \geqslant t_{1} \\
(T x)\left(t_{1}\right), \quad t_{0} \leqslant t \leqslant t_{1}
\end{array}\right.
\end{aligned}
$$

Clearly $T x$ is continuous. Since the rest of the proof is similar to that of Theorem 2, it is omitted.
Theorem 5. Assume that $0 \leqslant \int_{a_{3}}^{b_{3}} \tilde{p}(t, \xi) d \xi \leqslant p<1$ and (3) holds. Then (2) has a bounded nonoscillatory solution.

Proof. Let Λ be the same set as in the proof of Theorem 1. Set
$A=\left\{x \in \Lambda: N_{1} \leqslant x(t) \leqslant N_{2}, \quad t \geqslant t_{0}\right\}$,
where N_{1} and N_{2} are positive constants such that
$p N_{2}+N_{1}<N_{2}$.
Let $\alpha \in\left(p N_{2}+N_{1}, N_{2}\right), L_{i}, i=1,2$, denote Lipschitz constants of functions $g_{i}, i=1,2$, on the set A,
respectively and $L=\max \left\{L_{1}, L_{2}\right\}, \beta_{i}=\max _{x \in A}\left\{g_{i}(x)\right\}$, $i=1,2$, respectively. From (3), one can choose a $t_{1}>t_{0}$,

$$
\begin{equation*}
t_{1} \geqslant t_{0}+\max \left\{b_{1}, b_{2}, b_{3}\right\} \tag{12}
\end{equation*}
$$

sufficiently large such that

$$
\begin{aligned}
& \frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[Q_{1}(u) \beta_{1}+|f(u)|\right] d u d s \\
& \leqslant N_{2}-\alpha, \quad t \geqslant t_{1},
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[Q_{2}(u) \beta_{2}+|f(u)|\right] d u d s \\
& \leqslant \alpha-N_{1}-p N_{2}, \quad t \geqslant t_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
& p+\frac{L}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left(Q_{1}(u)+Q_{2}(u)\right) d u d s \\
& \leqslant \theta_{5}<1, \quad t \geqslant t_{1}
\end{aligned}
$$

where θ_{5} is a constant. Consider the operator $T: A \longrightarrow \Lambda$ defined by

$$
(T x)(t)
$$

$$
=\left\{\begin{array}{l}
\alpha-\int_{a_{3}}^{b_{3}} \tilde{p}(t, \xi) x(t-\xi) d \xi+ \\
\frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[\int_{a_{1}}^{b_{1}} q_{1}(u, \xi) g_{1}(x(u-\xi)) d \xi\right. \\
\left.-\int_{a_{2}}^{b_{2}} q_{2}(u, \xi) g_{2}(x(u-\xi)) d \xi-f(u)\right] d u d s, t \geqslant t_{1} \\
(T x)\left(t_{1}\right), \quad t_{0} \leqslant t \leqslant t_{1}
\end{array}\right.
$$

Clearly $T x$ is continuous. Since the remaining part of the proof is similar to that of Theorem 1, it is omitted.

Theorem 6. Assume that $-1<p \leqslant \int_{a_{3}}^{b_{3}} \tilde{p}(t, \xi) d \xi \leqslant 0$ and (3) holds. Then (2) has a bounded nonoscillatory solution.

Proof. Let Λ be the same set as in the proof of Theorem 1. Set
$A=\left\{x \in \Lambda: N_{3} \leqslant x(t) \leqslant N_{4}, \quad t \geqslant t_{0}\right\}$,
where N_{3} and N_{4} are positive constants such that
$N_{3}<(1+p) N_{4}$.
Let $\alpha \in\left(N_{3},(1+p) N_{4}\right), L_{i}, i=1,2$, denote Lipschitz constants of functions $g_{i}, i=1,2$, on the set A, respectively and $L=\max \left\{L_{1}, L_{2}\right\}, \beta_{i}=\max _{x \in A}\left\{g_{i}(x)\right\}$, $i=1,2$, respectively. From (3), we can choose a $t_{1}>t_{0}$ sufficiently large satisfying (12) such that

$$
\begin{aligned}
& \frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[Q_{1}(u) \beta_{1}+|f(u)|\right] d u d s \\
& \leqslant(1+p) N_{4}-\alpha, \quad t \geqslant t_{1}, \\
& \frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[Q_{2}(u) \beta_{2}+|f(u)|\right] d u d s \\
& \leqslant \alpha-N_{3}, \quad t \geqslant t_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
& -p+\frac{L}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left(Q_{1}(u)+Q_{2}(u)\right) d u d s \\
& \leqslant \theta_{6}<1, \quad t \geqslant t_{1},
\end{aligned}
$$

where θ_{6} is a constant. Consider the operator $T: A \longrightarrow \Lambda$ defined by

$$
\begin{aligned}
& (T x)(t) \\
& =\left\{\begin{array}{l}
\alpha-\int_{a_{3}}^{b_{3}} \tilde{p}(t, \xi) x(t-\xi) d \xi+ \\
\frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{t_{1}}^{s}\left[\int_{a_{1}}^{b_{1}} q_{1}(u, \xi) g_{1}(x(u-\xi)) d \xi\right. \\
\left.-\int_{a_{2}}^{b_{2}} q_{2}(u, \xi) g_{2}(x(u-\xi)) d \xi-f(u)\right] d u d s, t \geqslant t_{1} \\
(T x)\left(t_{1}\right), \quad t_{0} \leqslant t \leqslant t_{1} .
\end{array}\right.
\end{aligned}
$$

Clearly Tx is continuous. Since the rest of the proof is similar to that of Theorem 1, it is omitted.

Example 1. Consider the equation

$$
\begin{align*}
& {\left[e^{t}\left[x(t)+\left(\frac{e^{-2 t}+2}{e^{3}}\right) x(t-3)\right]^{\prime \prime}\right]^{\prime}} \\
& -\left[\int_{1}^{2} x(t-\xi) d \xi-\int_{2}^{3} x(t-\xi) d \xi\right. \\
& \left.+e^{-t}\left(e^{3}-2 e^{2}+e\right)-18 e^{-2 t}\right]=0 \tag{13}
\end{align*}
$$

and note that $n=3, r(t)=e^{t}, p(t)=\frac{e^{-2 t}+2}{e^{3}}, q_{1}(t, \xi)=$ $q_{2}(t, \xi)=1, g_{1}(x)=g_{2}(x)=x$ and $f(t)=e^{-t}\left(e^{3}-2 e^{2}+\right.$ $e)-18 e^{-2 t}$. The conditions of Theorem 1 are satisfied. In fact $x(t)=\exp (-t)$ is a nonoscillatory solution of (13).

3 Conclusion

We considered the existence of bounded nonoscillatory solutions of the higher order nonlinear neutral nonhomogeneous equations with distributed deviating arguments. We presented four theorems for (1) and two theorems for (2) depending on the ranges of $p(t)$ and $\tilde{p}(t, \xi)$, and gave an example to support usability of our results.

References

[1] M. R. S. Kulenović and S. Hadžiomerspahić, Existence of Nonoscillatory Solution of Second-Order Linear Neutral Delay Equation. J. Math. Anal. Appl., 228 (1998), pp. 436448.
[2] Y. Zhou and B. G. Zhang, Existence of Nonoscillatory Solutions of Higher-Order Neutral Differential Equations with Positive and Negative Coefficients. Appl. Math. Lett., 15 (2002), pp. 867-874.
[3] W. Zhang, W. Feng, J. Yan and J. Song, Existence of Nonoscillatory Solutions of First-Order Linear Neutral Delay Differential Equations. Comput. Math. Appl., 49 (2005), pp. 1021-1027.
[4] Y. Yu and H. Wang, Nonoscillatory solutions of secondorder nonlinear neutral delay equations. J. Math. Anal. Appl., 311 (2005), pp. 445-456.
[5] T. Candan and R. S. Dahiya, Existence of nonoscillatory solutions of first and second order neutral differential equations with distributed deviating arguments. J. Franklin Inst., 347 (2010), pp. 1309-1316.
[6] T. Candan, The existence of nonoscillatory solutions of higher order nonlinear neutral equations. Appl. Math. Lett., 25 (2012), pp. 412-416.
[7] T. Candan and R. S Dahiya, Existence of nonoscillatory solutions of higher order neutral differential equations with distributed deviating arguments. Math. Slovaca, 63, (2013), pp. 183-190.
[8] R. P. Agarwal, S. R. Grace and D. O'Regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic, (2000).
[9] D. D. Bainov, D. P. Mishev, Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, (1991).
[10] L. H. Erbe, Q. K. Kong and B. G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, Inc., New York, (1995).
[11] I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations With Applications, Clarendon Press, Oxford, (1991).
[12] G. S. Ladde, V. Lakshmikantham and B. G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, Inc., New York, (1987).

Tuncay Candan received his M.Sc and Ph.D degree in Applied Mathematics from the Department of Mathematics at Iowa State University, USA. He is currently a Professor of Mathematics at Niğde University. His research interests are Oscillation theory, Functional differential equations and Dynamic equations on time scales. He is reviewer of many international journals.

Bekir Çetin received his M.S. degree in Mathematics from the Department of Mathematics at Niğde University. He is currently a mathematics teacher.

[^0]: * Corresponding author e-mail: tcandan@nigde.edu.tr

