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Abstract: In this paper, efficient numerical schemes based on the Haar wavelet method are applied for finding numerical solutions of
nonlinear Burger as well as Boussinesq-Burger equations. The numerical results are then compared with those of the exact solutions.
The accuracy of the obtained solutions is quite high even if the number of collocation points is small.
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1 Introduction

Generalized Boussinesq-Burger equation [1] is a nonlinear
partial differential equation of the form

ut −
1
2

vx +2uux = 0, (1)

vt −
1
2

uxxx +2(uv)x = 0, 0≤ x ≤ 1 (2)

The Boussinesq-Burger equations arise in the study of
fluid flow and describe the propagation of shallow water
waves. Herex andt respectively represent the normalized
space and time,u(x, t) is the horizontal velocity field and
v(x, t) denotes the height of the water surface above a
horizontal level at the bottom.
Consider the one-dimensional Burger equation [1]

ut + uux−νuxx = 0, 0≤ x ≤ 1 (3)

whereν is parameter.
The Burger’s equation is a nonlinear homogeneous
parabolic partial differential equation, which arises in
many physical problems including one-dimensional
turbulence, sound waves in viscous medium, shock waves
in a viscous medium, waves in fluid filled viscous elastic
tubes and magneto-hydrodynamic waves in a medium
with finite electrical conductivity.

Various mathematical methods such as the Galerkin
finite element method [2], spectral collocation method
[3], quartic B-spline differential quadrature method [4],
quartic B-splines collocation method [5], finite element
method [6], fourth order finite difference method [7],
explicit and exact explicit finite difference method [8] and
least-squares quadratic B-splines finite element method
[9] have been used in attempting to solve Burger’s
equations. Our aim in the present work is to implement
the Haar wavelet method to stress its power in handling
nonlinear equations, so that one can apply it to various
types of nonlinearity.

Recently, there has been some attention devoted to
search for better solution methods [20-22] for
determining analytical approximate solutions of fluid flow
problems. Moreover, the authors might likely to be
interested to apply homotopy perturbation transform
method [23, 24] for solving Burger’s and
Boussinesq-Burger equations in future.

This paper is organized as follows: in Section 1,
introduction to Boussinesq-Burger and Burger equation is
described. In Section 2, the mathematical preliminaries of
Haar wavelet is presented. Sections 3 and 5 define the
mathematical models of Burger and Boussinesq-Burger
equations respectively. We applied the Haar wavelet
method for solving Burger and Boussinesq-Burger
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equations in Sections 4 and 6 respectively. Convergence
of Haar wavelet approximation is discussed in Section 7.
The numerical results and discussions are discussed in
Section 8 and Section 9 concludes the paper.

2 Haar wavelets and the operational matrices

The Haar wavelet family forx ∈ [0,1) is defined as follows
[10, 11]

hi (x) =







1, x ∈ [ξ1,ξ2)
−1, x ∈ [ξ2,ξ3)
0, elsewhere

(4)

where

ξ1 =
k
m
, ξ2 =

k+0.5
m

, ξ3 =
k+1

m

In these formulae integerm = 2J, j = 0,1,2, ...,J
indicates the level of the wavelet;k = 0,1,2, ...,m− 1 is
the translation parameter. Maximum level of resolution is
J. The index i is calculated from the formula
i = m+ k+1; in the case of minimal valuesm = 1, k = 0
and we havei = 2. The maximal value ofi = 2M = 2J+1.
It is assumed that the valuei = 1 corresponds to the
scaling function for which

hi (x) =

{

1, for x ∈ [0,1)
0, elsewhere (5)

In the following analysis, integrals of the wavelets are
defined as

pi (x) =
∫ x

0
hi (x)dx

qi (x) =
∫ x

0
pi (x)dx

ri (x) =
∫ x

0
qi (x)dx

This can be done with the aid of (4)

pi (x) =







x− ξ1, for x ∈ [ξ1,ξ2)
ξ3− x, for x ∈ [ξ2,ξ3)

0, elsewhere
(6)

qi (x) =















0, for x ∈ [0,ξ1)
1
2 (x− ξ1)

2
, for x ∈ [ξ1,ξ2)

1
4m2 − 1

2 (ξ3− x)2 , for x ∈ [ξ2,ξ3)
1

4m2 , for x ∈ [ξ3,1)

(7)

ri (x) =















1
6 (x− ξ1)

3
, for x ∈ [ξ1,ξ2)

1
4m2 (x− ξ2)+

1
6 (ξ3− x)3

, for x ∈ [ξ2,ξ3)
1

4m2 (x− ξ2) , for x ∈ [ξ3,1)
0, elsewhere

(8)

The collocation points are defined as

xl =
l −0.5

2M
, l = 1,2, ...,2M

It is expedient to introduce the 2M×2M matricesH, P, Q
andR with the elementsH(i, l) = hi (xl), P(i, l) = pi (xl),
Q(i, l) = qi (xl) andR(i, l) = ri (xl).

3 Burger’s Equation

Consider the generalized Burger’s equation

ut + uux−νuxx = 0, 0≤ x ≤ 1 (9)

whereν(> 0) can be interpreted as viscosity.
To show the effectiveness and accuracy of proposed
scheme, we consider two test examples. The numerical
solutions thus obtained are compared with those of
analytical solutions as well as available numerical results.
The initial condition associated with eq. (9) will be

u(x, t0) = f (x), 0≤ x ≤ 1 (10)

with boundary conditionsu(0, t) = u(1, t) = 0, t > t0

4 Haar wavelet based scheme for Burger’s
equation

It is assumed that ˙u′′ (x, t) can be expanded in terms of
Haar wavelets as

u̇′′ (x, t) =
2M

∑
i=1

as(i)hi (x) for t ∈ [ts, ts+1] (11)

where “· ” and “′” stands for differentiation with respect to
t andx respectively. Now, integrating eq. (11) with respect
to t from ts to t and twice with respect tox from 0 tox the
following equations are obtained

u′′ (x, t) = (t − ts)
2M

∑
i=1

as(i)hi (x)+ u′′ (x, ts) (12)

u′ (x, t) =(t − ts)
2M

∑
i=1

as(i)pi (x)+ u′ (x, ts)

− u′ (0, ts)+ u′ (0, t) (13)

u(x, t) = (t − ts)
2M

∑
i=1

as(i)qi (x)+ u(x, ts)− u(0, ts)

+x
[

u′ (0, t)− u′ (0, ts)
]

+ u(0, t) (14)

u̇(x, t) =
2M

∑
i=1

as(i)qi (x)+ xu̇′ (0, t)+ u̇(0, t) (15)
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By using the boundary conditions atx = 1, and from eq.
(15) and (14) respectively, we have

u̇′ (0, t) =−
2M

∑
i=1

as(i)qi (1) (16)

and

u′ (0, t)− u′ (0, ts) =−(t − ts)
2M

∑
i=1

as(i)qi (1) (17)

From eq. (7), it is obtained that

qi (1) =

{

0.5 if i = 1
1

4m2 if i > 1
(18)

Substituting eqs. (16), (17) and (18) in eqs. (13), (14) and
(15) and discretising the results by assumingx → xl, t →
ts+1, the following equations are obtained

u′′ (xl , ts+1) = (ts+1− ts)
2M

∑
i=1

as(i)hi (xl)+ u′′ (xl , ts) (19)

u′ (xl , ts+1) = (ts+1− ts)
2M

∑
i=1

as(i) [pi (xl)− qi(1)]+u′ (xl , ts)

(20)

u(xl , ts+1)= (ts+1− ts)
2M

∑
i=1

as(i) [qi (xl)− xlqi(1)]+u(xl , ts)

(21)

u̇(xl , ts+1) =
2M

∑
i=1

as(i) [qi (xl)− xlqi(1)] (22)

Substituting eqs. (19), (20), (21) and (22) in eq. (9), we
have

2M

∑
i=1

as(i) [qi (xl)− xlqi(1)] =

ν

[

(ts+1− ts)
2M

∑
i=1

as(i)hi (xl)+ u′′ (xl , ts)

]

−

[

(ts+1− ts)
2M

∑
i=1

as(i) [qi (xl)− xlqi(1)]+ u(xl , ts)

]

×

[

(ts+1− ts)
2M

∑
i=1

as(i) [pi (xl)− qi(1)]+ u′ (xl , ts)

]

(23)

From eq. (23), the wavelet coefficientsas(i) can be
successively calculated using mathematical software.
This process starts with
u(xl , t0) = f (xl)
u′ (xl , t0) = f ′(xl)
u′′ (xl , t0) = f ′′(xl)

Example 1. Consider Burger’s equation with the
following initial and boundary conditions [8]

u(x,0) = sin(πx), 0≤ x ≤ 1 (24)

u(0, t) = u(1, t) = 0, t > 0.

The exact solution of eq. (9) is given by [8]

u(x, t) =
2πν ∑∞

n=1Annsin(nπx)exp(−n2π2νt)
A0+∑∞

n=1An cos(nπx)exp(−n2π2νt)
, (25)

where

A0 =
∫ 1

0
exp

( −1
2πν

(1− cos(πx))

)

dx,

An = 2
∫ 1

0
exp

( −1
2πν

(1− cos(πx))

)

dx,

The numerical solutions of the example 1 are presented
for ν = 0.01 with △t = 0.001 takingM = 64 in Table 1
and Figs. 1 and 2. The results are compared with Refs. [8,
9, 12] and consequently it is found that the present
method is much better than the results presented in [8, 9,
12]. The Figs. 1 and 2 are in good agreement with the
results obtained by learned researcher Jiwari in [13].

Example 2. In this example, we consider Burger’s
equation with initial condition in the following form

u(x,0) =
2πν sin(πx)
a+ cos(πx)

, a > 1 (26)

The exact solution of eq. (9) is given by [14]

u(x, t) =
2πν exp(−π2νt)sin(πx)
a+exp(−π2νt)cos(πx)

, a > 1 (27)

In case of example 2, Tables 2 and 3 show theL2 andL∞
errors at different values ofa, v and M. Moreover, the
results are compared with Refs. [15, 16] and it has been
observed that the present method is more accurate and
efficient than the other numerical solutions. The physical
behaviour of solutions at different time stages are shown
in Fig. 3 and Fig. 4.

5 Boussinesq-Burger’s Equation

Consider the general Boussinesq-Burger equation [17] of
the form

ut −
1
2

vx +2uux = 0, (28)

vt −
1
2

uxxx +2(uv)x = 0, 0≤ x ≤ 1 (29)

with initial conditions

u(x,0) =
−1
4

− 1
4

tanh

(

x− log2
2

)

(30)
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v(x,0) =
−1
8

sech2
(−x+ log2

2

)

(31)

The exact solutions of eq. (28) and (29) is given by [18]

u(x, t) =
−1
4

− 1
4

tanh

(

x+ t
2 − log2

2

)

(32)

v(x, t) =
−1
8

sech2
(−x− t

2 + log2

2

)

(33)

These exact solutions satisfies the following boundary
conditions

u(0, t) =
−1
4

− 1
4

tanh

( t
2 − log2

2

)

,

u(1, t) =
−1
4

− 1
4

tanh

(

1+ t
2 − log2

2

)

(34)

v(0, t) =
−1
8

sech2
(− t

2 + log2

2

)

,

v(1, t) =
−1
8

sech2
(−1− t

2 + log2

2

)

(35)

6 Application of Haar wavelet to
Boussinesq-Burgers equation

The Haar wavelet solutions ofu(x, t) andv(x, t) is sought
by assuming that ˙u′′′(x, t) and v̇′(x, t) can be expanded in
terms of Haar wavelets as

u̇′′′ (x, t) =
2M

∑
i=1

as(i)hi (x) (36)

v̇′ (x, t) =
2M

∑
i=1

bs(i)hi (x) for t ∈ [ts, ts+1] (37)

where “· ” and “′” stands for differentiation with respect to
t andx respectively.
Now, integrating eq. (36) with respect tot from ts to t and
thrice with respect tox from 0 tox the following equations
are obtained

u′′′ (x, t) = (t − ts)
2M

∑
i=1

as(i)hi (x)+ u′′′ (x, ts) (38)

u′′ (x, t) =(t − ts)
2M

∑
i=1

as(i)pi (x)+ u′′ (x, ts)

− u′′ (0, ts)+ u′′ (0, t) (39)

u′ (x, t) = (t − ts)
2M

∑
i=1

as(i)qi (x)+ u′ (x, ts)−

u′ (0, ts)+ x
[

u′′ (0, t)− u′′ (0, ts)
]

+ u′ (0, t) (40)

u(x, t) =(t − ts)
2M

∑
i=1

as(i)ri (x)+ u(x, ts)

− u(0, ts)+
x2

2

[

u′′ (0, t)− u′′ (0, ts)
]

+ x
[

u′ (0, t)− u′ (0, ts)
]

+ u(0, t) (41)

u̇(x, t) =
2M

∑
i=1

as(i)ri (x)+
x2

2
u̇′′ (0, t)+ xu̇′ (0, t)+ u̇(0, t)

(42)
Integrating eq. (37) with respect tot from ts to t and once
with respect tox from 0 tox, the following equations are
obtained

v′ (x, t) = (t − ts)
2M

∑
i=1

bs(i)hi (x)+ v′ (x, ts) (43)

v(x, t) =(t − ts)
2M

∑
i=1

bs(i)pi (x)+ v(x, ts)−

v(0, ts)+ v(0, t) (44)

v̇(x, t) =
2M

∑
i=1

bs(i)pi (x)+ v̇(0, t) (45)

Discretising the above results by assuming
x → xl , t → ts+1, from eqs. (43), (44) and (45), we obtain

v′ (xl , ts+1) = (ts+1− ts)
2M

∑
i=1

bs(i)hi (xl)+ v′ (xl , ts) (46)

v(xl , ts+1) =(ts+1− ts)
2M

∑
i=1

bs(i)pi (xl)+ v(xl , ts)

− v(0, ts)+ v(0, ts+1) (47)

v̇(xl , ts+1) =
2M

∑
i=1

bs(i)pi (xl)+ v̇(0, ts+1) (48)

Using finite difference method

u̇(0, t) =
u(0, t)− u(0, ts)

t − ts

Equation (42) becomes

u̇(x, t) =
2M

∑
i=1

as(i)ri(x)+
x2

2

[

u′′(0, t)− u′′(0, ts)
t − ts

]

+ x

[

u′(0, t)− u′(0, ts)
t − ts

]

+

[

u(0, t)− u(0, ts)
t − ts

]

(49)
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By using the boundary condition atx=1, eq. (40) becomes

u′(1, t) =(t − ts)
2M

∑
i=1

as(i)qi(1)+ u′(1, ts)− u′(0, ts)

+
[

u′′(0, t)− u′′(0, ts)
]

+ u′(0, t)

This implies

u′′(0, t)− u′′(0, ts) =− (t − ts)
2M

∑
i=1

as(i)qi(1)+ u′(1, t)

− u′(1, ts)− u′(0, t)+ u′(0, ts) (50)

Substituting eq. (50) in eqs. (39), (40), (41) and (49) and
discretising the resultant results by assumingx → xl , t →
ts+1, we obtain

u′′′(xl , ts+1) = (ts+1− ts)
2M

∑
i=1

as(i)hi(xl)+ u′′′(xl , ts) (51)

u′′(xl , ts+1) =(ts+1− ts)
2M

∑
i=1

as(i)pi(xl)+ u′′(xl , ts)

− (ts+1− ts)
2M

∑
i=1

as(i)qi(1)

+
[

u′(1, ts+1)− u′(1, ts)
]

−
[

u′(0, ts+1)− u′(0, ts)
]

(52)

u′(xl , ts+1) = (ts+1− ts)
2M

∑
i=1

as(i)qi(xl)+ u′(xl , ts)

− u′(0, ts)+ u′(0, ts+1)− xl(ts+1− ts)×
2M

∑
i=1

as(i)qi(1)+ xl
[

u′(1, ts+1)− u′(1, ts)
]

− xl
[

u′(0, ts+1)− u′(0, ts)
]

(53)

u(xl , ts+1) =(ts+1− ts)
2M

∑
i=1

as(i)ri(xl)+ u(xl, ts)

− u(0, ts)+ u(0, ts+1)+ xl(u
′(0, ts+1)−

u′(0, ts))−
x2

l

2
(ts+1− ts)

2M

∑
i=1

as(i)qi(1)

+
x2

l

2

[

u′(1, ts+1)− u′(1, ts)
]

− x2
l

2

[

u′(0, ts+1)− u′(0, ts)
]

(54)

u̇(xl , ts+1) =
2M

∑
i=1

as(i)ri(xl)+
xl

ts+1− ts
(u′(0, ts+1)−

u′(0, ts))+
1

ts+1− ts
[u(0, ts+1)− u(0, ts)]

− x2
l

2

2M

∑
i=1

as(i)qi(1)+
x2

l

2(ts+1− ts)
×

[

u′(1, ts+1)− u′(1, ts)
]

− x2
l

2(ts+1− ts)

[

u′(0, ts+1)− u′(0, ts)
]

(55)

Substituting the above equations in eq. (28) and eq. (29),
we have

2M

∑
i=1

as(i)

[

ri(xl)−
x2

l

2
qi(1)

]

+
x2

l

2(ts+1− ts)
×

((

u′(1, ts+1)− u′(1, ts)
)

−
(

u′(0, ts+1)− u′(0, ts)
))

+
xl

ts+1− ts

[

u′(0, ts+1)− u′(0, ts)
]

+
1

ts+1− ts
[u(0, ts+1)− u(0, ts)] =

1
2

[

(ts+1− ts)
2M

∑
i=1

bs(i)hi (xl)+ v′ (xl , ts)

]

−2((ts+1− ts)
2M

∑
i=1

as(i)

(

ri(xl)−
x2

l

2
qi(1)

)

+ u(xl, ts)− u(0, ts)+ u(0, ts+1)+

xl(u
′(0, ts+1)− u′(0, ts))+

x2
l

2
((u′(1, ts+1)

− u′(1, ts))− (u′(0, ts+1)− u′(0, ts))))

((ts+1− ts)
2M

∑
i=1

as(i)[qi(xl)− xlqi(1)]+ u′(xl , ts)

− u′(0, ts)+ u′(0, ts+1)+ xl((u
′(1, ts+1)

− u′(1, ts))− (u′(0, ts+1)− u′(0, ts)))) (56)
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Fig. 1: Behaviour of numerical solutions for Burger’s equation
(example 1) whenν = 0.01 and △t = 0.001 at timest =
0.1,0.2,0.3,0.4 and 0.5.

2M

∑
i=1

bs(i) [pi(xl)+ v̇(xl , ts+1)] =

1
2

[

(ts+1− ts)
2M

∑
i=1

as(i)hi (xl)+ u′′′ (xl , ts)

]

−2((ts+1− ts)
2M

∑
i=1

as(i)

(

ri(xl)−
x2

l

2
qi(1)

)

+ u(xl, ts)− u(0, ts)+ u(0, ts+1)+

xl(u
′(0, ts+1)− u′(0, ts))+

x2
l

2
((u′(1, ts+1)

− u′(1, ts))− (u′(0, ts+1)− u′(0, ts))))×

((ts+1− ts)
2M

∑
i=1

bs(i)hi(xl)+ v′(xl , ts))

−2((ts+1− ts)
2M

∑
i=1

bs(i)pi(xl)+ v(xl, ts)

− v(0, ts)+ v(0, ts+1))×

((ts+1− ts)
2M

∑
i=1

as(i)(qi(xl)− xlqi(1))+

u′(xl , ts)− u′(0, ts)+ u′(0, ts+1)− u′(0, ts+1)

+ u′(0, ts)+ xl((u
′(1, ts+1)− u′(1, ts))))) (57)

From the above two eqs. (56) and (57), the wavelet
coefficientsas(i) andbs(i) can be successively calculated
using mathematical software. This process starts with

u(xl , t0) =
−1
4 − 1

4 tanh
(

xl−log2
2

)

u′(xl , t0) =
−1
8 sech2

(

xl−log2
2

)

u′′(xl , t0) =
1
8 sech2

(

xl−log2
2

)

tanh
(

xl−log2
2

)

v(xl , t0) =
−1
8 sech2

(

−xl+log2
2

)

v′(xl , t0) =
−1
8 sech2

(

−xl+log2
2

)

tanh
(

−xl+log2
2

)

Fig. 2: Behaviour of numerical solutions for Burger’s equation
(example 1) whenν = 0.01 and △t = 0.001 at timest =
0.6,0.8,1.0,2.0 and 3.0.

Fig. 3: Behaviour of numerical solutions for Burger’s equation
(example 2) whenν = 0.01 and △t = 0.001 at timest =
0.6,2.0,4.0 and 6.0.

Fig. 4: Behaviour of numerical solutions for Burger’s equation
(example 2) whenν = 0.01 and △t = 0.001 at timest =
0.4,1.0,3.0,5.0 and 7.0.

7 Convergence of Haar wavelet
approximation

The convergence of the method may be discussed on the
same lines as given by learned researcher Saha Ray [19].

Theorem 7.1 Let f (x) ∈ L2(R) be a continuous
function defined on[0,1). Then the error atJth level may
be defined as
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Fig. 5: Comparison of Numerical solution and exact solution of
Boussinesq-Burger equation whent = 0.5.
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Fig. 6: Comparison of Numerical solution and exact solution of
Boussinesq-Burger equation whent = 1.0.
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Fig. 7: Comparison of Numerical solution and exact solution of
Boussinesq-Burger equation whent = 1.5.
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Fig. 8: Comparison of Numerical solution and exact solution of
Boussinesq-Burger equation whent = 2.0.

EJ(x) = | f (x)− fJ(x)|

=

∣

∣

∣

∣

∣

f (x)−
2M

∑
i=1

aihi(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞

∑
i=2M

aihi(x)

∣

∣

∣

∣

∣

The error norm forEJ(x) is obtained as

‖EJ(x)‖2 6
K2

12
2−2J (58)

where| f ′(x)|6K,∀x∈ [0,1) andK > 0 andM is a positive
number related to theJth level of resolution of the wavelet
given byM = 2J.
Proof:
The proof of the theorem 7.1 can be found in Ref. [19].
From eq. (58), it can be observed that the error bound is
inversely proportional to the level of resolutionJ. So, more
accurate result can be obtained by increasing the level of
resolution.

8 Numerical Results and Discussions

The error function is given by

Error f unction =
∥

∥uapprox(xl , t)− uexact(xl , t)
∥

∥

=

√

√

√

√

2M

∑
l=1

(∣

∣uapprox(xl , t)− uexact(xl , t)
∣

∣

)2

Global error estimate = R.M.S. error

=
1√
2M

∥

∥uapprox(xl , t)− uexact(xl , t)
∥

∥

=
1√
2M

√

√

√

√

2M

∑
l=1

(∣

∣uapprox(xl , t)− uexact(xl , t)
∣

∣

)2

(59)

In order to measure the accuracy of the numerical
scheme error normL2 and L∞ are calculated using the
following formula

L2 = R.M.S. error

=
1√
2M

√

√

√

√

2M

∑
l=1

(∣

∣uapprox(xl , t)− uexact(xl , t)
∣

∣

)2
(60)
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Table 1: Comparison with present method solution and other numerical methods for Burger’s equation (example 1) at different values
of t with a = 2, ν = 0.01 and△t = 0.001.

x t EFDM [8] EEFDM [8] Least − square Crank−Nicolson Present Exact
△t = 0.001 △t = 0.001 quadratic method Method

B− spline FEM [9] △t = 0.01 △t = 0.001
△t = 0.0001

0.25 0.4 0.34244 0.34164 0.34244 0.34229 0.34224 0.34191
0.6 0.26905 0.26890 0.27536 0.26902 0.26924 0.26896
0.8 0.22145 0.22150 0.22752 — 0.22170 0.22148
1.0 0.18813 0.18825 0.19375 0.18817 0.18837 0.18819
3.0 0.07509 0.07515 0.07754 0.07511 0.07516 0.07511

0.5 0.4 0.67152 0.65606 0.66543 0.66797 0.65106 0.66071
0.6 0.53406 0.52658 0.53525 0.53211 0.52984 0.52942
0.8 0.44143 0.43743 0.44526 — 0.43953 0.43914
1.0 0.37568 0.37336 0.38047 0.37500 0.37476 0.37442
3.0 0.15020 0.15015 0.15362 0.15018 0.15027 0.15018

0.75 0.4 0.94675 0.90111 0.91201 0.93680 0.90980 0.91026
0.6 0.78474 0.75862 0.77132 0.77724 0.76745 0.76724
0.8 0.65659 0.64129 0.65254 — 0.64778 0.64740
1.0 0.56135 0.55187 0.56157 0.55833 0.55647 0.55605
3.0 0.22502 0.22454 0.22874 0.22485 0.22497 0.22481

Table 2: Comparison ofL2 andL∞ errors with other numerical methods for Burger’s equation (example 2) takinga = 100,ν = 0.01
and att = 1.

N Rahman [15] Mittal and Jain [16] M Present Method△t = 0.01 Present Method△t = 0.001
L2 L∞ L2 L∞ L2 L∞ L2 L∞

10 3.455E-7 4.881E-7 3.284E-7 4.624E-7 4 3.267E-8 4.634E-8 1.498E-8 2.157E-8
20 1.013E-7 1.431E-7 8.192E-8 1.164E-7 8 2.288E-8 3.239E-8 5.235E-9 7.452E-9
40 4.003E-8 5.668E-8 2.047E-8 2.907E-8 16 2.042E-8 2.889E-8 2.779E-9 3.939E-9
80 4.003E-8 3.499E-8 5.119E-9 7.271E-9 32 1.981E-8 2.802E-8 2.165E-9 3.064E-9

Table 3: Comparison ofL2 andL∞ errors with other numerical methods for Burger’s equation (example 2) takinga = 100,ν = 0.005
and att = 1.

N Rahman [15] Mittal and Jain [16] M Present Method△t = 0.01 Present Method△t = 0.001
L2 L∞ L2 L∞ L2 L∞ L2 L∞

10 8.819E-8 1.246E-7 8.631E-8 1.215E-7 4 4.266E-9 6.056E-9 1.942E-9 2.799E-9
20 2.403E-8 3.394E-8 2.153E-8 3.062E-8 8 2.999E-9 4.246E-9 6.809E-10 9.701E-10
40 7.942E-9 1.125E-8 5.378E-9 7.644E-9 16 2.681E-9 3.793E-9 3.632E-10 5.152E-10
80 3.918E-9 5.549E-9 1.345E-9 7.644E-9 32 2.601E-9 3.679E-9 2.839E-10 4.018E-10

L∞ = max
∣

∣uapprox(xl , t)− uexact(xl , t)
∣

∣ (61)

The following Table 1 shows the comparison of exact
solutions with the approximate solutions of different
numerical methods for Burger’s equation. Agreement
between present numerical results and exact solutions
appears very satisfactory through illustration in Table 1.
In the following Table 1,J has been taken as 6 i.e.M = 64
with ν = 0.01 and different values oft. Similarly Tables 2
and 3 show the comparison ofL2 andL∞ errors with other
numerical methods forν = 0.01 and 0.005 withα = 100
andt = 1. From Tables 2 and 3, it has been observed that
the present method is more accurate and efficient than the
other numerical methods presented in Refs. [15, 16].

The following Tables show the comparisons of the
exact solutions with the approximate solutions of
Boussinesq-Burger equation at different collocation
points. In the following Tables 4-6,J has been taken as 4
i.e.M = 16 and△t is taken as 0.0001.

The R.M.S. error between the numerical solutions and
the exact solutions ofu(x, t) for Boussinesq-Burger
equations for t = 0.5,1.0 and 1.5 are 0.000142255,
0.000216937 and 0.000935793 respectively and forv(x, t)
the R.M.S. error is found to be 0.0118472, 0.0236667 and
0.0346156 respectively.

Figures 1-4 cite the behaviour of numerical solutions
obtained for Burger’s equation atν = 0.01 and different
values of t. Similarly in case of Boussinesq-Burger’s
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Table 4: The absolute errors in the solution of Boussinesq-Burger equation at various collocation points ofx with t = 0.5.
x uapprox vapprox uexact vexact

∣

∣uexact −uapprox
∣

∣

∣

∣vexact −vapprox
∣

∣

0.015625 -0.197367 -0.118653 -0.197359 -0.119458 8.3598E-6 8.05119E-4
0.046875 -0.201157 -0.119271 -0.201104 -0.120218 5.29589E-5 9.47342E-4
0.078125 -0.204944 -0.122 098 -0.204872 -0. 120927 7.19897E-5 1.17066E-3
0.109375 -0.20869 -0.12456 -0.208662 -0.121582 2.82735E-5 2.97813E-3
0.140625 -0.212446 -0.124475 -0.212471 -0.122183 2.42459E-5 2.29235E-3
0.171875 -0.216279 -0.123392 -0.216297 -0.122728 1.87152E-5 6.63754E-4
0.203125 -0.220164 -0.124375 -0.22014 -0.123217 2.37371E-5 1.15814E-3
0.234375 -0.224021 -0.127389 -0.223998 -0.123648 2.32677E-5 3.74124E-3
0.265625 -0.227829 -0.129227 -0.227868 -0.12402 3.87521E-5 5.2064E-3
0.296875 -0.23166 -0.128271 -0.231749 -0.124334 8.83945E-5 3.93697E-3
0.328125 -0.23557 -0.127024 -0.235638 -0.124587 6.77895E-5 2.4362E-3
0.359375 -0.239511 -0.128457 -0.239535 -0.124781 2.37165E-5 3.67564E-3
0.390625 -0.243396 -0.131492 -0.243436 -0.124914 4.01933E-5 6.57804E-3
0.421875 -0.24723 -0.132477 -0.247341 -0.124986 1.11453E-4 7.49073E-3
0.453125 -0.251101 -0.130649 -0.251247 -0.124997 1.46677E-4 5.65231E-3
0.484375 -0.255048 -0.129425 -0.255153 -0.124947 1.04846E-4 4.47776E-3
0.515625 -0.258996 -0.131357 -0.259056 -0.124836 5.93702E-5 6.52131E-3
0.546875 -0.262864 -0.134199 -0.262954 -0.124664 9.07736E-5 9.53507E-3
0.578125 -0.266683 -0.134123 -0.266847 -0.124432 1.63839E-4 9.691E-3
0.609375 -0.270555 -0.1315 -0.270731 -0.12414 1.76238E-4 7.35999E-3
0.640625 -0.274493 -0.130521 -0.274605 -0.123789 1.11967E-4 6.73224E-3
0.671875 -0.278397 -0.132961 -0.278467 -0.123379 6.97724E-5 9.58204E-3
0.703125 -0.282198 -0.135353 -0.282315 -0.122911 1.17448E-4 1.2442E-2
0.734375 -0.285962 -0.13405 -0.286148 -0.122387 1.86803E-4 1.16634E-2
0.765625 -0.289792 -0.130795 -0.289964 -0.121806 1.71833E-4 8.98884E-3
0.796875 -0.293671 -0.130309 -0.293761 -0.12117 8.93953E-5 9.13864E-3
0.828125 -0.297477 -0.133207 -0.297537 -0.120481 5.94947E-5 1.2726E-2
0.859375 -0.301163 -0.13486 -0.30129 -0.119739 1.2673E-4 1.51218E-2
0.890625 -0.304831 -0.132242 -0.30502 -0.118946 1.88492E-4 1.32964E-2
0.921875 -0.308579 -0.128677 -0.308724 -0.118103 1.44573E-4 1.05737E-2
0.953125 -0.312353 -0.129219 -0.312401 -0.117212 4.80031E-5 1.20066E-2
0.984375 -0.316031 -0.13366 -0.316049 -0.116275 1.80034E-5 1.73849E-2

equation, the Figures 5-8 cite the comparison graphically
between the numerical and exact solutions for different
values oft.

9 Conclusion

In this paper, the Boussinesq-Burger and Burger’s
equations have been solved by Haar wavelet method. The
obtained results are then compared with the exact
solutions as well as solutions available in open literature.
These have been cited in Tables and also graphically.
These results demonstrated in Tables justify the accuracy
and efficiency of the proposed schemes based on Haar
wavelet. The numerical schemes are reliable and
convenient for solving Boussinesq-Burger and Burger’s
equations. The main advantages of these schemes are its
simplicity, applicability and less computational errors.
Moreover, the errors may be reduced significantly if we
increase level of resolution which prompts more number
of collocation points.
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Table 6: The absolute errors in the solution of Boussinesq-Burger equation at various collocation points ofx with t = 1.5.
x uapprox vapprox uexact vexact

∣

∣uexact −uapprox
∣

∣

∣

∣vexact −vapprox
∣

∣
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0.078125 -0.26693 -0.127938 -0.266847 -0. 124432 8.3701E-5 3.50573E-3
0.109375 -0.270783 -0.130401 -0.270731 -0.12414 5017642E-5 6.26042E-3
0.140625 -0.27462 -0.130316 -0.274605 -0.123789 1.53796E-5 6.52672E-3
0.171875 -0.278509 -0.129233 -0.278467 -0.123379 4015244E-5 5.85325E-3
0.203125 -0.282425 -0.130215 -0.282315 -0.122911 1.09137E-4 7.30402E-3
0.234375 -0.286287 -0.13323 -0.286148 -0.122387 1.38385E-4 1.08429E-2
0.265625 -0.290075 -0.135067 -0.289964 -0.121806 1.10593E-4 1.32615E-2
0.296875 -0.29386 -0.134111 -0.293761 -0.12117 9.95855E-5 1.29412E-2
0.328125 -0.2977 -0.132864 -0.297537 -0.120481 1.63072E-4 1.23836E-2
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