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Abstract: Clustering analysis seeks to partition a given datasefgraaps or clusters so that the data objects within a clustéamare
similar to each other than the objects in different clust&rgery rich literature on clustering analysis has devetbpeer the past three
decades. But a crucial question still remains unanswerd:rhany clusters are contained in the population on eartmveinéy an
observed set of samples is available? The goal of this pagerprovide a comprehensive review of approaches on detemgnihe
"correct” number of clusters. In particular, we divide teegpproaches into three categories: internal measuresnakimeasures, and
clustering stability based methods. Then, we introducers¢vepresentative examples, and present specific chaligpertinent to
each category. Finally, the promising trends are suggestenis field.
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1. Introduction and some early papers ar@2[12,26] and references
therein. In fact, part of the difficultyg7] comes from the

As the amount of data we nowadays have to deal with@bsence, in general, of an objective way to assess the
becomes larger and larger, clustering analysis is theslustering quality and to compare two clusterings of the
formal study of algorithms and methods that help us todata. The goal of this survey is to provide a
detect structures in the data and to identify interestingcOmprehensive review on how to determine the "correct”
groups or clusters so that the data objects within a clustefumber of clusters in the population when only an
are more similar to each other than the objects in differenfserved set of samples is available, also known as
clusters B5]. Adopting a machine learning perspective, cluster validatior{35,34].
clusters correspond toidden patternsand the search for The broad question "How to determine the number of
clusters is unsupervised learning Algorithms and clusters” is addressed in two ways: (1) to run clustering
methods for clustering analysis provide core techniquesalgorithms with different number of clusters, and use
for exploratory data analysis and play an outstanding rolecluster/model validity indexes to select one of them, and
in numerous applications, such as information retrieval(2) to automatically fit a particular number of clusters.
and text mining 14], web log analysis§2], and many  The paper mainly focuses on the first way. Our main
others. contributions in the paper include: (1) This paper provides
While people are extremely good at pointing out the a comprehensive review of approaches on determining the
relevant structure in the data just by looking at the 2-D”correct” number of clusters with a goal of providing
plots, it is not easy to automatically reorganize undedyin useful advice and references to broad community of
clusters from the data. A major challenge is to estimateclustering practitioners. (2) This paper presents a
the "correct” number of clusters in the population as well taxonomy of corresponding approaches, introduces
as the interpretation of the clusters. The idea of directlyseveral representative examples and challenges & recent
asking the question has its origins in population stasistic advances.
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The organization of the rest of this paper is as follows. Clustering?’
After the related concepts and notations are introduced in QS 1913
Section 2, we divide cluster validation into three Ci|Mma|m2 |- |y ||
categories: the internal measures in Sec8athe external G2 M M2 | [y | [C
measures in Sectiod, and the clustering stability based ~ ClUStering?’ | o] : :
methods in SectioB. In respective section, we introduce Ck nk-l n|;2 n|;| Iékl
several representative examples, and present specific 5 ‘C}l‘ ‘C;z B |C|}\ N

challenges pertinent to each category. Finally, we
conclude this paper and suggest the promising trends in Figure 1: The Contingency Table of the Paif, ¢”.
this field.
Note that strictly speaking, the internal measures
should not belong to cluster validation, since a general
principle for cluster validation should not be restricted t clusterings ofS. Of course, bothk andl must be less than
a specific group of clustering algorithms, that is, modelor equal ton. Let n; ; denote the number of objects that
free, but internal measures usually assume compacire common to clustefd in ¥ andC; in ¢”, viz.,
clusters tightly packed around cluster centroidis].[ The ) ) .
internal measures are contained here only fornij =[GNCj,1<i<knl<j<I. (2)
completeness. Apart from the cluster validation A trvial clustering is either the one-clustering,
approaches described in this study, the Akaikegenoted asi, that consist of just one cluster or the
information criterion (AIC) ], the Bayesian information  singleton clustering, denoted @sin which every element
criterion (BIC) [62), the minimum description length  forms its own cluster. In fact, all criteria for comparing
(MDL) [59], and so on, are also often used to score each:|ystering can be described using the so-catieafusion
model, and then the appropriate model is selectednatrix, or association matrior contingency tablef the
according to corresponding scores. But due to space “m'tpair ¢.¢' € 2(S). The contingency table is & x |
they are excluded in this review. matrix, whosg(i, j)-th entry isn; j, as shown in Figl.
For a given clustering ddinto 1 < k < nclusters@ =
{C1,Cy,--- ,Ck}, each cluster with covariande, By and

2. Definitions and Notations W are defined to be the x m matrices of between and
within k-clusters sums of squares and cross-products.

Given a set oh objectsS= {01,02,--- ,0n}. Suppose the K

objectso; can be described byn explanatory variables, W = (Xi — %) (X — X ! 3)

denoted asxi = (Xi1,%i2, " ,Xm),i = 1,2,---,n. Let r=1xgo

X = (X1,X2,--+, Xn)! be data matrix fon objects. Here "

denotes the transpose of a vector or matrixcléstering Bu=S |G| — %) (X — X", (4)

is a set of non-empty disjoint subsets, calledlaster, of r;

S such that their union equa% Of course, clusters need wherex. andx denote centroid or medoid of clusteand

not be. disjoint. Soft—cluster mempersh|p$41, fuzzy the whole data set, respectively. Note tHat is not
clustering p] and overlapping clusterind] are instances defined

where each object can actually belong to two different The clustering %’ € 2(S) is a refinement of
clysters, and are qften used in cluster analysis. Though i € 2(S) (or % is acoarseningof ), if each cluster of
this study we restrict ourselves to hard-cluster case, SOME-/ i< contained in a cluster &f formally:
methods can be applied directly to soft-cluster case, such ' '
as variation of information (see further), etc. Additidgal VC} €€, ICec¥ s.t.Cj CG. (5)
one can also convert soft-clusters later into disjoint e . ,
subsets, then utilize the corresponding methods in the Theproduct?’ x ¢” of two clusteringss’, " & ‘@(S). )
work. is the coarsest common refinement of the two clusterings:
Forab e Sand a clusterings’ of S we writea~¢ ¢ x %' = {CiNCj|C € ¥,C| € ¢',GiNC] # 0}. (6)
b whenevera andb are in the same cluster of clustering
¢ anda 44 b, otherwise. The set of all clusterings 8f
is denoted by (S). In addition, for any clustering”
Z(S), one can define a discrete random variakje as
follows:

The products’ x ¢’ is again a clustering if?(S), and if
¢ is arefinement o, thené x ¢ = ¢

3. Internal Measures

1 2 k
X - (|Cl|/n ICo|/n - |Ck|/n> : (1) To estimate the number of clustekson the data seS§,
one intuitive approach is to look fd¢ that provides the
Suppose ¢ = {C1,Cp,---,C} € £(S) and  strongest significant evidence against the null hypothesis
¢ ={C,C5, ---,C} € Z(S) represent two different Hg of k=1, that is, "no clusters” ir§. Two popular null
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hypotheses are unimodality hypothesi$6i][ and
uniformity hypothesis 35,13,30]. Under the former

3.3. H Index

hypothesis, the data are thought to be a random sampleor each number of clusteks> 1, Hartigan 9 defines

from a multivariate normal distribution. Under the latter

hypothesis, the data are sampled from a uniform

distribution in mdimensional space. For both types of
hypotheses, evidence againsg ldan be summarized
formally under probability models forS or more

informally by using internal measures as described hereZ> '\ ™ * ‘ .
y oy g ([j:—d|str|but|on cut-off, instead Hartigan suggested that a

By internal measures, we mean that they are calculate

from the same data set that are used to create th

clusterings.

Many approaches have been put forward for testing
Hop and estimating the number of clusters in a data set

Jain & Dubes 85| provided a general overview of such
methods and Milligang2] and Milligan & Cooper b3

conducted an extensive Monte Carlo evaluation of 30
internal measures. However, the majorities of existing

methods do not attempt to formally tesp,Hout rather

look for the clustering structure under which a summary

statistic of interest is optimal, being large or small
depending on the statistic. The following 6 internal
measures are commonly used to estimate the number
clusters in a data set.

3.1. CH Index

For each number of clusterk > 2, Calinski &
Harabasz17] define the index:
CH(k) _ tr(Bk)/(k_ 1) (7)

—tr(Wi)/(n—K)’

wheretr(-) denotes the trace of a matrix, that is, the sum
of the diagonal entries. The value kafwhich maximizes
CH(k), is regarded as specifying the number of clusters
Note thatCH(1)
for testing one cluster versus more than one. Even if it wer
modified by replacind — 1 with k, its value at 1 would
be zero. Sinc€H(k) > 0 for k > 2, the maximum would
never occur ak = 1.

3.2. KL Index

For each number of clusteks> 2, Krzanowski & Lai 1]
define the index:

| DIFF (k)
KL(K) = m‘, (8)
where
DIFF (K) = (k— 1)%™tr (W_1) — K/ ™r (W,). 9)

The value ofk, which maximizesKL(k), is regarded as
specifying the number of clusters. Note tht(k) is not
defined fork = 1.

7

is not defined and hence cannot be usededefined fork — 1.

the index:
_ tr (W)
(k) = (n—k-1) (m—l>.

The idea is to start with = 1 and to add a cluster as long
asH (k) is sufficiently large. One can use an approximate

H (10)

gluster be added ifi (k) > 10. Hence, the smallest value
of k > 1, such thaH (k) < 10, is regarded as specifying
the number of clusters. This estimate is definedkfer 1

and can potentially discriminate between one versus more
than one cluster.

3.4. Silhouette Statistic

For objecti, leta(i) be the average dissimilarity between
objecti and all other objects in the cluster to which object
i belongs. For any other clusté, let d(i,C) denote the
age dissimilarity of objectto all objects ofC and let
denote the smallest of thesé(i,C). Then the

silhouette statistic3d8,60] of objecti is defined by
o b(i)—a(i)

0= aai. b}

And the overall average silhouette statistic is simply the

average of(i) over all objects, namely,

_;s(i).

Intuitively, objects with large silhouette statistic areliv
clustered, whereas those with small silhouette statistic
tend to lie between clusters. Kaufman & Roussee88 [
proposed to choose the valuelpfvhich maximizes the,

as specifying the number of clusters. Note t5@t is not

(11)

§==

; (12)

3.5. Gap and GapPC Statistic

The Gap statistic 13] investigates the relationship
between the lo@r(Wy)) for different values ok and the
expectation of logr(Wy)) for a suitable null reference
distribution, which is defined:

Gap(k) = Eflog(tr (Wi))] — log(tr (W). (13)

Here E denotes the expectation under the null
distribution. To estimate the expectation of (ogdWy)),

generateB reference data sets under the null distribution
and apply the clustering algorithm to each, calculating the

within-cluster sums of squares

tr(Wi),tr(wg),--- ,tr(WB).  Thus, compute the

estimated Gap statistic

_ 1B

Gapk) = = 3 log(tr(W) —log(tr (Wi)). (14)
b=1
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Let sdk) denote the standard deviation of 3.7. General Remarks
log(tr (Wi)),log (tr(W2)),---,log(tr(WE)) and define
The preceding measures all depends on a very strong null

s(k) = sd(k)\/1+1/B. (15)  nhypothesis. However, the unimodality hypothesis
The smallest value d€ such thaG/a\p(k) > égp(k+ 1)— typically gives a high probability of rejection of Hf the

data are sampled from a distribution with a lower kurtosis
than the normal distribution, such as the uniform
distribution [1]. Measures based on the uniformity
hypothesis tend to be conservative, that is, lead to few
rejections of H, when the data are sampled from a

variable, 1< j < m, is the range of the observed valued strongly unimodal distribution such as the normal

for that variable. In the second approach, the variables ardistribution. In two or more dimensions, and depending
sampled from a uniform distribution in a box aligned with ©N the test statistic, the results can be very sensitivegto th

the principal components of the centered designed matrix/€9i0n of support of the reference distributi].
These measures can only make comparisons between

Specifically, suppose that the columnsXthave mean 0 ° i -
and compute the singular value decompositiond“Ste””gs generated using the same model/metric.
X = UDV!. Tibshirani et al. 73 transformed via Furthermore, they often make assumptions about cIust'er
X' = XV and then drew uniform feature®’ over the  Structure. Eor example, if the particular data set that. is
ranges of the column oK’, as in the first approach. being studied consists of several clouds of data point,
Finally to back-transform vi@ = Z'V! to give reference with each cloud spherically distributed about its center,

data seZ. Whereas the first approach has the advantag&i€@sures that assume such structure will work well.
Otherwise, the same measure will possibly mislead. On

of simplicity, and the second one takes into account the i
shape of the data distribution, and makes the procedur&ﬂe other hand, since these measures are calculated from
' the same observations that are used to create the

rotationally invariant, as long as the clustering method . S
clustering. Consequently, the distributions of these

itself is invariant. ; ) ;
Note that in both approaches, the variables argn€asures are intractable. In particular, as clustering

sampled independently. The version of the gap methodn€thods attempt to maximize the separation between
that uses the original explanatory variables to construcf!USters, the ordinary significance tests such as analfsis o
the region of support is referred to as Gap statistic and th%arlance F-tests are not valid for testing differences

second version as GapPC statistic, where "PC” stands fo etween the clusters. Although many inte.rnal measures
principle component<2{. ave been proposed, none of them is completely

satisfactory 20].

s(k+1), is regarded as specifying the number of clusters.
Tibshirani et al. 73] chose the uniform distribution as
null distribution and considered two approaches for
constructing the region of support of the distribution. In
the first approach, the support fojth explanatory

3.6. Distortion Index . .

3.8. Axiomatic View
Motivated by ideas fromrate distortion theory[18], . ] ]
Sugar & JamesTl] define a quantity that measures the The authors of the respective literatures had different
average distance, per dimension, between each object afgotivations for looking for a "good” measure. What's
its closest cluster centroid or medoid, named as distartion™ore, now new internal measures still - emerge
Formally, for each number of clusteks> 1, the distortion ~ continuously. But what does a "good” internal measure

is defined as follows. look like? Stated differently, what requirements or axioms
K should a "good” internal measure meet? One usually
.1 1 L _ ; .
==Y — (Xi — %)t L% — %), (16) considers that a good internal measure should reflect our
mr; ICr| Xi;r intuitions, e.g., scale invariance (see further). Howeter

which is simolv the average Mahalanobis distance eris not easy to formalize the intuitions and design a new
Py 9 ' Peheasure that meets these intuitions. Fisher & Van

glemntergisollogr’ nt?lgtc\i/\(l)?;nNi?g':hg?JiﬁCtthanisltes V\frl]%sr?sftthCEiUSteNess R1] was one of the earliest attempts to axiomatize
identity matrix distértion is simply mean squared error what is a "good” clustering, though it does not explicitly
y : Py d ', axiomatize a measure of clustering validity. Ackerman &

Sugar & James7l] show, both theoretically and Ben-David [l] proposed 4 axioms, and the set of these
empirically, that for a large class of distributions the axioms is a consistent set of axioms

distortion curve, when transformed to an appropriate

negative powerp (a typical value isp = m/2), will

exhibit a sharp jump at the "true” number of clusters. 3.8.1. Axioms

Thus, the value ok, which maximizesk = d, * —d, ", B

is regarded as specifying the number of clusters. Note thajs described above, internal measures are typically
dgp = 0. Therefore, the distortion index can detect thefunctions of the within-clusters, and possibly

absence of clustering, i.d., between-clusters, sums of squares. Therefore, a distance
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functiond overSis implicitly defined. In fact, an internal This is the requirement that clustering should be

measureindex is a function that is given a clustering indifferent to individual identity of clustered objectbat

¢ € Z(S) over (Sd) and returns a non-negative real is, permutation invariancg56.

number, namelyindex: 2(S) x Sx 2(SS) — R,

where Z(S,S) is the set of all interested distance

functions overS, andRJ is the set of all real number 3.8.2. Two Novel Internal Measures

greater or equal to 0.

Two novel internal measuresjeakest linkand additive

margin are proposed by Ben-David & Ackermaf],

which reflect the underlying intuition of center-based and

. linkage-based clustering, respectively. What's morehbot

every clustering )(5 € 2(9 of S of them satisfy the four axioms as described above, and

index(,S,d) = index(?', S Ad). given a data clustering, can be calculated in polynomial
This is simply the requirements that the internal time. Analyzing which internal measures above meet

measure should not be sensitive to changes in the units ghese axioms is the subject of our next work.

distance measurement; that is to say, it should not have ?a)Weakest Link Measure

build-in "length scale” [,39. In linkage-based clustering, whenever a pair of

Let & € #(S) be a clustering oves, andd andd’ objects shares the same cluster they are connected via
X . T i
2(S ) be two distance functions ovéywe sayd’ is a%” a tight chain of points in that cluster. The weakest link

consistent varianof d, if d’(a,b) < d(a,b) foralla~ b, f the | iRk | h a chai
andd’(a,b) > d(a,b) for all a £ b. measure focuses on the longest link in such a chain.
Particularly, Let% = {C1,Cp,---,Ck} € Z(9S) be a
Definition 2(Consistency []). Given two distance clustering overS, and d € 2(S,S) be a distance
functions dd’ € 2(S,S) over S, an internal measure function overS, Ben-David & Ackerman]] define the

Definition 1(Scale Invariance [l]). Given a distance
function de Z(S,S) over S and a positive numbar, an
internal measure index satisfiegale invariancef for

index satisfies consistency if for every clustering measure:
% € 2(S) of S, whenever'ds a ¢-consistent variant of MaXa..,b %W L(a,b)

, ' 4 S i WLE) = ——2 —, 17
d, then indek#, S, d’) > index%,S,d). (¢) Ming.._5d(a,b) (17)

Intuitively, consistent changes tbshould not hurt the where
quality of a given clustering. In other words, the .
clusterings arise from the distance functiothsand d’ “WL(a.b) = min max{d(a.x).d(x.v).d(v.b
should be same3P]. Though this intuition is captured, it (ab) i=1 x,yeCi{ (8,X),d(xy), d(y.b)}-
allows the possibility that some clusterings will improve (18)
more than others as a result of such charige [ .
Note that the range of values of weakest link measure

Definition 3(Richness [l]). An internal measure index
satisfies richness if for each non-trivial clustering
¢ € Z(S) over S, there exists a distance function
d € 9(S9 over S such that
¢ = arg MaXe » (s {index(¢,S,d)}.

is (0, ).
(b)Additive Margin Measure
Let ¢ = {C1,Cy,--- ,C} € #(S) be a clustering
overS, d € Z(S,5) be a distance function ové&and
J C S be a representative set &f. Of course,
|7 = k and for alli, # NC; # 0. Ben-David &
Ackerman [] define the measure:

i Sxes(d(x,60) —d(x,6))

1
SGIG =y Za~ebd(@D)

Another way to say this is that the output of the
clustering function should be "rich"—every clustering in
Z(9) is a possible output. In other words, suppose we are
only given the objects irg but not the distance between
them. Richness requires that for any desired clusteging
it should be possible to construct a distance functipn
such that the value oindex for ¥’ is maximum over
2(9).

Let ¢, ¢’ € 2(S) be two clusterings oves, andd €
2(S,S) be a distance function ov&r we says and%” are
isomorphi¢ denoteds =~y ¢”, if there exists a distance-
preserving isomorphis : S— S, such that for alg,b €

Sa~g bifand only if ¢ (a) ~4 ¢ (b).

Definition 4(lsomorphism Invariance [1]). Given a
distance function & 2(S,S) over S, an internal measure
index satisfiegssomorphism invarianif for all clusterings
¢, ¢ € Z(S over S where ¥ =y ¢,
index(%¢,S,d) = index(¢”,S,d).

AM(%) = min (19)

wherecy, ¢, € ¢ are the closest and second centers to
X, respectively.

4. External Measures

The term cluster validation usually refers to the ability of
a given clustering approach to recover the true clustering
structure in a data set. Bockl3y] and Hartigan B1]
attempted to assess validity on theoretical ground.
However, these methods turn out to be of little
applicability in real-life tasks, especially in the contex
high-dimensional complex data set0]. In many
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validation studies, the performance of a clustering4.1.1. Rand Statistic, Mirkin Metric and Hurbert Statistic
approach is evaluated on some data sets witpriori I

known clustering structure. In order to assess the ability

of a clustering approach to recover true clusteringintuitively, two clusterings that are similar produce
structure ofS, it is necessary to define a measure of relatively large values afy 1 + Mg and small values for
agreement betweefs’ = {C;,Cp,--- .G} € Z(S) and  my g+ mgs. Thus, depending on howy 1 + Mmoo and
¢' = {C,C5,--- .G} € Z(9) of S, where the formeris m + mp1 are normalized, different measures are
thea priori known clustering structure @&, and the latter  possible, e.g., Rand statistic (denoted R)s [67,58],
comes from some clustering approach. In the clusteringvirkin metric (denoted a) [54,4], and Hurbert statistic
literature, such measures are referred to as external(denoted a$i1) [33] as follows:

measures.

Though a common ground of these measures is that R(%,¢”) = M, (25)
they can be calculated from the contingency matrix, they m E‘:
base on different ideas: pair-counting based measuresM(%,¢") = 1’07%’1, (26)
set-matching based measures and information theoretic m
based measures. The division also reflects theyq(¢, ') — ML M0~ Mo~ Moa @7)
chronological development of the measureg7|| m

pair-counting based measures date from the 1970s and All three of these measures have straightforward
1980s, set-matching based measures from the 1990s astobabilistic interpretations with respect to picking arpa
information theoretic based measures have beewf objects at random. For exampl®(%,%’) is the
developed in the 2002/2003. probability of an agreemeni(%,%") is the probability
of a disagreement, anti1(%,%”’) is the difference
. i between the probabilty of an agreement and a
4.1. Pair-Counting based Measures disagreement.

In addition, Mirkin metric p4,4] is also known as
Equivalence Mismatch Distancevhich corresponds to
$he normalized Hamming distance for binary vectors if
the set of all pairs of elements is enumerated and a
clustering is represented by a binary vector defined on
this enumeration7,10]. An advantage is the fact that
This distance is a metric i#2(S) [77]. As a matter of fact,
Mirkin metric is a variation of Rand statistic, since it can
Be rewritten aM(¢,¢")=1—-R(¢,%").

A very intuitional approach to comparing clusterings is
counting the number of unordered pairs of objects that ar
(or are not) placed into the same cluster according’to
and ¢’. Consequently, a 2 agreement/disagreement
table [Lg] is formed, as shown in Fig, wheremy 1 is the
number of unordered pairs that are placed in the sam
cluster according to botk’ and ¢”, myo (mp1) is the
number of unordered pairs that are placed in the sam
cluster according t& (¢”) but not according t&” (%),
and finallymg o is the number of unordered pairs that are
not in the same cluster according to either@fand ¢”.
Types (m 1) and frpp) are typically interpreted as
agreements in the classification of the objects fromapair'For comparing hierarchical clusterings, Fowlkes &
types (o) and (1) represent disagreement8Z]. o y

Note that for simplification,m,p,a,b € {0,1} is also Mallows [23] proposed their index, denoted dsM.

referred to the type that the corresponding unorderedOWeVer, it can also be used for flat clusterings since it
pairs belong to. consists in calculating an index for each level of the

Since each unordered pair of objects must fall into onglli€rarchies in - consideration, which can be easily
of these four types, we have generalized to a measure for clusterings with different
’ numbers of clusters.

4.1.2. Wallace Index | and Il, Fowlkes-Mallows Index

M= My 1+Myo+My1+ Moo= (n)’ (20) Wallace [/8] in commenting on Fowlkes & Mallows'.

2 paper R3] suggested two other measures of clustering
where validation, denoted adVvl and W2, respectively. In
e (m) @  ©ssence, the symmetric measure, Fowlkes-Mallows index,

‘ .;,Zx 2) is the simple geometric mean of the two non-symmetric
e &Ly - Wallace indices. The definitions of these three measures
Mo = ;( 2 ) *,Zh: ( 2 ) @) are as follows:
_ 5 (G s 5 (M WUZ. ¢ — 1 28
* ;( 2 ) 21,:1( 2)’ @) (€.¢) m1,1+m1,o’ (28)
_ Lo mi) < (G _ < (lc W2 o M1 2
%'Oim+i;%<2> 21(2) j;<2)' (Cg’%) m1,1+mo,1’ (29)
@4 N M1
Note that($) is defined as 0 whea= 0 or 1. FM(#.¢) = V(M +myo) (Mg +mog) (30)
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Clusterings”
#unordered pair§ same cluster different cluster >
. same cluster my 1 My o mp1+Mo
Clustering? different cluster rrbl rrb;o lTbl + mo_:o
> my1+ Mo my 0+ Moo m
Figure 2: 2 x 2 Agreement/Disagreement Table.
In the context of information retrieval, all three of Cy 3 Ci
measures have definite interpretatiorg][ For instance, 0 1
W1(%, ¢') can be interpreted as ratio of the number of o) \ 0 0
retrieved relevant documents to the total number of 1 0
relevant documents, i.e., recalv2(¢,¢’) can be
interpreted as ratio of the number of retrieved relevant o 1
documents to the total number of retrieved documents, G 0 1\0 0
i.e., precision;FM(%,%’) can be interpreted as the
geometric mean of precision and recall.
4.1.3. Jaccard Index 0!
G| o 0 \
1 0
The Jaccard index3f)], also known aslaccard similarity
coefficient is very similar to the Rand index, however it
disregards the unordered pairs of objects that are in Figure 3: Partitioned Binary MatrixP.
different clusters for bothg and ¢”. It is defined as
follows:
/ My 1 .
&, ¢") = ~ (31)  m(s)) from P(r,s) using least-squares, 6= 1,2,--- ,n).
M1+ Mo+ Moy The regression coefficient obtainds, can be written as
sk sl My _sk (Gl (1G]
4.1.4. Hurbert Statistic Il by = o z'flzjfl( 2) 3 () 2171( 2 )

A CONUESICD]

In order to define Hurbert statistic IBP], one need to (32)
define twon x n partitioned binary matrices? and Q,
based on the cluster of theeobjects inS according to¢
and%”, respectively. See Fi@ for the partitioned binary
matrix P, which is assumed to have zeros along its main -~
diagonal with the indicated ones and zeros defining all the*1-

entries in the corresponding sub-matrices. The rows and @ sk 5! (") — sk (\Ci\) 5! (\cj\)
columns ofP are partitioned according to the row sums of p, — 2 i=12j=1 L 2 =112 - =112
the original contingency table (Fidl), whose (i, j)-th z'jzl(‘czj) [(2) —Z|j=1 (‘CZJ‘)}
entry is denoted(i, j). Q can be defined similarly.

Likewise, we also can predi€(r,s) from Q(mo(r), mo(s))
using least-squaresr,§ = 1,2,---,n). The regression
ncoefficient obtainedb,, has almost the same form with

Without loss of generality, we can assume that the (33)
objects in S that are indexed by To obtain a symmetric measure, Hub&8][took the
ICi—1| + 1,|Gi_1] +2,---,|Ci| belong toCi(1 <i < k).  geometric mean of the two regression coefficients, namely
Note that|Cp| = 0. Obviously, then row/column objects
of Q are the same as the row/column objectsPobut ~ H2(¢,¢”) = \/bibs. (34)

reordered to be consistent with the partition represented

by Q. Therefore, letp(-) denote the permutation on the

first n positive integers, such that ifp(r) = t, then the  4.1.5. Minkowski Score

r-th row (and column) irP, which corresponds to object

or, is actually the-th row (and column) irQ. The Minkowski score 36] calculates the agreement
Hurbert statistic Il evaluates the similarity between the between a reference clusterifig and a clustering result

two clustering# and%”, based on predicting one matrix ¢”, based on their cophenetic matrict? andM?’. A

from the other. For example, suppose we preQiatp(r ), cophenetic matrix of ¢ is a binary matrix with
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Mf‘l =1(i,j = 1,2,---,n) if and only if objecti and  pij = n;;/|Cj| and recallri; = nj;/|Ci, for Cj andC;,
object j are in the same cluster it (i # j). Similarly, namely
one can construct the corresponding cophenetic matrix o Zrijp o 2 (36)

M?" for ¢”. The Minkowski score is defined as ey G ICil’

M? — M% The overall F-measure is then defined as the weighted
MS(%,%") = IM” — _ Mo+ M1 (35)  sum of the maximum F-measures for the clusterg'in
7 ||M(/ M1+ Mo

1k |
F(€,¢)==5 |C|max{F }. (37)
Note that it is limited to the interva0, +) ( ) n i;' | J'Zl{ il
As we know, the range of the F-measuré@sl]. Wu
et al. BQ] proposed a procedure to find a tight lower bound
for the F-measure, denot&d. The readers are invited to

For different reasons, these measures do not seem to tgé)nsult BO) for details.
very appealing. Many of them are sensitive to cluster
sizes and number of clusters, which are undesirable for g 5 > Meila-Heckerman Criterion
similarity measure. For example, the Rand statistic has
been shown to be highly dependent upon the number of/eila-Heckerman criteriord1], also known asnaximum
clusters p5]. Fowlkes & Mallows R3] showed that in the match measurecan be calculated as follows: look for the
(unrealistic) case of independent clusterings, the Randargest entryn,, of the contingency table and match the
statistic converges to one as the number of clustergorresponding cluste in ¢ andC{ in ", which is the
increases. As another example, the Mirkin metric is alsocluster pair with the largest (absolute) overlap. Denote by
very sensitive to cluster sizes, such that two clusteringsmatch(a) the index of the clusteg;, that matches cluster
for which each cluster in one clustering contains the samez,. Afterward delete the-th row and theb-th column and
amount of elements of each of the clusters of the othefepeat this step until the matrix has size 0. Finally, sum up
clustering, are closer to each other than two clusteringshe matches and divide it by the total number of objects:
for which one is refinement of the othét4]. _

Other measures, like the Fowlkes-Mallows index, o min{l}
make use of a very strong null hypothesis, that is, MH(¢,¢") = n zl M match(i)- (38)
independence of the clusterings, fixed number of clusters, =
and fixed cluster sizes. When comparing clustering result§ his measure is symmetric and takes value 14or ¢”.
provided by clustering methods, these assumptions (apaNote that in the case d +# |, this measure completely
from the number of clusters that is fixed for some disregards thé—I| "remaining” clusters in the clustering
methods) do not usually hold. None of the algorithmswith the higher cardinality.
works with  fixed cluster sizes. Furthermore,
independence of the clusterings is against our intuition o
when comparing clusterings, since the aim of our4.2.3. Goodman-Kruskal Coefficient
comparison is that we suppose a certain relationshi
between them and we want to know how strong itig] [

4.1.6. General Remarks

prhe Goodman-Kruskal coefficient27,37] takes a
classification view on clustering. Specially, the follogin
classification rule is adopted: (a) In the absence of
knowledge abouXy, the objecia € Swill be classified in
the cluster argmgP(Xy» = Cj) = argmax [Cj|/nin €,

L , (b) Otherwise, if one has known in advance that the object
This kind of measures tries to match clusters that have & ¢ Sbelongs to the clustes; in ¢, a will be classified in

maximum absolute or relative overlap, which is also anq cluster

quite intuitional approach. The following 5 measures areargmax P(Xy = Cj|Xy = Ci) = argmaxn; /|G| in €.

popularin the literatures. The probability of misclassification committed by
applying this rule is - max P(X4 = Cj|X¢ = G;). The
Goodman-Kruskal coefficient is the expected value of this

4.2. Set-Matching based Measures

4.2.1. F-measure

error:
The F-measure has its origin in the field of document GK(%,%")

clustering f16,24,68]. Each cluster of¢” is a (predefined) k | ,

class of documents and each clustezbiis treated asthe = 21 P(X¢ =G)(1-max Xy =Cj[Xys = G))

result of a query. The F-measure tbgrwith respect ta;, =

Fij, indicates how "good"C; describesGC;, which is  _ 1_} K mlaxni . (39)
calculated with the harmonic mean of precision n i; j=1 "

(@© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 4, 1493-1512 (2016)www.naturalspublishing.com/Journals.asp NS = 1501

GK(%,%") has an upper bound of 4.2.6. General Remarks
1-(1/n) x max |Cj|. And GK(%,¢") = 0 if and only if
¢ is a refinement of%”’. Furthermore,GK(-,-) is It is very easy to see that set-matching based measures
monotonic increasing in its first argument and monotonichave the common property of just taking the overlaps into
decreasing in its second37]. In other words, if accountand completely disregarding the unmatched parts
€,¢',¢" € 2(S) such thatz is a refinement o%”, then ~ of the clusters or even complete clusters. Meu] [
GK(%,%¢") < GK(¥¢',¢"), and if €,¢",¢" € 2(S presented a nice example that pointed out the negative
such that ¢’ is a refinement of ¥”, then effectof this"behavior” of a measure: suppase Z(S)
GK(%,%") > GK(%,%"). In addition, the purity and Is a clustering withk equal size clusterss” is obtained
micro-averaged precision (MAP) i8(] are equivalentto  from <" by shifting a fractiona of the objects in each
this measure. clusterGC; to the "next” clusteiC; ;1) modk- The clustering
¢" is obtained fron¥” by reassigning a fractioa of the
elements in each clustez; evenly between the other
4.2.4. van Dongen Criterion clusters. If a < 0.5, then F(¢,%¢') = F(¢,¢"),
MH(¢,¢’) = MH(C,C"), VD(¥¢,¢’) = VD(¥¢,%¢"),
- . . ., GK(%,%') = GK(¥,¢"), and ¢(¥¢,¢") = €(€,¢").
van Dongen criterion74] is a symmetric measure, Which g’ contradicts our intuition that” is a less disrupted

is also based on maximum intersections of clusters. It IS/ersion of¢ than%”’, which is therefore not desirable.

defined as follows: Another drawback is the asymmetry of some of the
ko I measures, such as F-measure, Goodman-Kruskal
VD(¢,¢") =2n— % maxn;j— % maxn;;. (40)  coefficient. These may be appropriate indices for
= 1=t == comparing a clustering with an optimal clustering
solution. However, in general the optimal solution is not
known, which makes an asymmetric measure hard to
interpret.

It can seen as a symmetric version®K(-,-), since
VD(%,¢') = nx (GK(%,%¢') + GK(¥¢',%)) [80.
Therefore VD(¢,%") < 2n—max |Ci| — max; [Cj| [80].
Additionally, this measure has a nice property that it is a

metric in £(S) [37]. However, it ignores the parts of the . .
clusters Out(siéé ﬂ:]e intersections? P 4.3. Information Theoretic based Measures

Here we first review some of the very fundamental
concepts of information theory. For more details we refer
the readers tol[g]. As stated in the section Introduction,
for any clusteringg’ € #(S), one can define a discrete

Similar  to  Goodman-Kruskal  coefficient,  the random variablé, theentropyof which is defined as
classification error metriclfl,50] takes a classification ‘

view on clustering, too. Nevertheless, it tries to map eac (%) = — .ZLP(X% — Gi)logP(Xy = C)
1=

4.2.5. Classification Error Metric

cluster in one clustering with the lower cardinality to a
different cluster in the other clustering in order to K
minimize the total misclassification rate. In specific,det _ _ @ Iog@ (42)
be an injective mapping of1,2,--- ,min{k,1}} into I; n n’

{1,2,--- ,maxXk,|}}. Thus, eacho can be seen as a
(partial) correspondence between the cluster labels in
and¥%”, so one can calculate the "classification error” of
one clustering with the lower cardinality with respect to
the other clustering. The classification error metric,
denoted aseg, is defined as the minimum possible
"classification error” under all correspondences:

where log bases 2. We can understand it as follaV& [
assuming that each object8has the same probability of
being picked and choosing an object®&t random, the
probability that this object is in clust€; € € is P(Xy =

Ci) = |GCi|/n. The uncertainty in this context is equal to the
entropy of random variabl¥, . Usually,H (%) is called
the entropy associated with clusterirg. H(%) is always
non-negative, which takes value 0 only whéns a trivial

(41) clustering.

1 { maXe TK 1 i gy, K<
n

N _1_Z=

£(%¢,%’) has an upper bound of-11/max{k, |} [80]. 4.3.1. Entropy

Though the number of all correspondences are order

min{k, I }! x (mﬁl‘::b the maximum can be calculated in To calculate this measuré§,81], for each cluste€; € ¢,
polynomial time as the solution of a linear program the conditional probabilityy; ; = P(Xy = Ci|Xys = Cj) =
identical to the maximum bipartite matching algorithm in n; j/|C;| is first computed, and then the entropy of cluster
graph theory25]. CE using the standard entroy, = — 3 py; log(pjjj)- The
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total entropy, denoted &8, is computed as the weighted
sum of the entropies of each clusterd, namely

[
=1
L (& n n
- _ 5 U Ak)gi ) (43)
le n <i= ICi| |G

In fact, this measure is nothing but tlenditional
entropy[18] of ¥ on %", H(%|¢”), which implies that if
the objects in each large cluster@f are mostly from the
same cluster ir¢’, this measure tends to be sma(].
Furthermore, this measure is always non-negative, les
than or equal to log [80], but asymmetric.

4.3.2. Mutual Information

Themutual informatiorbetween two clusterings, denoted
asMl, is the information that one clustering has about the
other, which is equal to the mutual information between
the associated random variabl@§,69], namely

MI(E,%") = MI (Xg, Xqrr)

k 1
42
H(¢

M
n

N j
IGilIC;|
Y+H(€)—H(¥,¢") (44)

where H(%,%") is the joint entropy [18] of the two
clusterings. IntuitivelyMI(%,%”) can be interpreted as
follows [49]: Given an object inS, the uncertainly about
its cluster in& is measured by (%’). Assume that it is
known that which cluster the object belongs t&gih This
knowledge often reduces the uncertainty about its cluste
in €. This reduction in uncertainty, averaged over all
objects inS, is equal taM1 (%, %”).

MI(%,%") is always non-negative and symmetric,

log

and never exceed the total uncertainty in a clustering, so

MI(€,¢") < min{H(¥),H(¢")}. Equality in this

formula occurs when one clustering is a refinement of the

other. Another way to say this is that4f’ is a refinement

of ¢, then MI(¢,¢") = H(¥) < H(¥¢'). And
MI(€,€¢")=H(€)=H(¥¢")ifand only if € = ¢".
By simple transformation, MI(%,%") =

H(%) — (H(%) — MI(€,%")) = H(€) —H(€|¢"), one
can easily find thaM|(#,%”) is equivalent toE(¢,%¢”)
for any given data seS if ¢ is the a priori known
clustering structure o, sinceH (%) is a constant in this
case 80].

4.3.3. Variation of Information

By analogy with the total variation of a function, variation
of information [9,50,75 between two clusterings

€,¢ € 2(9)is defined as
VI(€,€¢") =H(€)+H(E")—2MI(¢,¢")
= [H(€)—MI(€, %)+ [H(E") —MI(¢€,¢")]
(45)

Informally, when going from clusteringé to
clustering ¢’, the first term in the above formula
measures the amount of information abdfitthat we
loose, which corresponds to the conditional entropy
H(%|¢"), while the second term measures the amount of
information about%” that we have to gain, which
corresponds to the conditional entropl(¢”|¢") [49.
This implies that the variation of information is a
§ymmetry version of the entropy measuréQ|[
Additionally, by Equation 44), VI(¥,%¢’) can be
re-expressed as

VI(E,€') = 2H(Z,%") — H(€) — H(E). (46)

Meila [49 analyzed in detail the variation of
information between two clusterings, and summarized
many properties. Here, we briefly review several main
ones:

(@VI(¢€,¢") is ametric inZ(9).

(bW 1(#,¢") < min{logn,2logmaxk,l}}. This means
that for large enoughm, clusterings of different data
sets, with different numbers of elements, but with
bounded numbers of clusters are on the same scale in
the metricVI. This allows us to compare, add or
subtractV| metric across different clustering space
independently of the underlying data set.

(c)The product of two clusterings’, ¢’ € 2(S) is
collinear with these two clusterings, namely

VI(E,€) =VI(€,€ x € )+VI(€ x €', €"). (47)

This also impliesVI(€,¢") > VI(€,%¢ x ¢') with
equality only if €' = ¢ x ¢'. Thus, the nearest
neighbor of ¥ is either a refinement of¢ or a
clustering whose refinement i&. In essence, the
nearest neighbor of a clustering is obtained by splitting
one element off the smallest cluster (or by the
corresponding merging process). This means that small
changes in a clustering result in sm¥ll metrics.
(d\VI1(%,¢") > 2/n. Thus, with increasing, the space of
clusterings gets a finer granularity.
(eNVI1(¥€,¢") can be calculated i#(n+kx |): &'(n) for
computing the confusion matrix and’(k x I) for
computingV I(#,%”) from the matrix.

r

4.3.4. General Remarks

At present, though there is no consensus on which is the
best measure, information theoretic based measures have
received increasing attention for their solid theoretical
background. Another reason that these measures seem to
be quite promising is that they do not suffer from the
drawbacks that we can find for measures that are based on
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counting pairs or on matching set. However, they possibly Based on 48), one can easily calculate the
suffer from other disadvantages that we do not knowexpectation forRM,H1L, W1, W2 FM,J H2 and MS,
yet [77]. since they are linear functions ozm-nfj under the
hypergeometric distribution assumption. Just as many
authors 80,3,79] observed, after correction for chance,
4.4. Correction for Chance many of these measures become equivalent, e.g.,
Riorm = Mnorm = Hlpom = Jom = MSom and
On close examination, one can find that precedingH2norm = H2 = vWlhom X W2norm [32. It is worth
external measures either do not have a fixed bound, or dgientioning that it is not trivial to calculate the
not have a constant baseline value, i.e., average valuexpectations foMl andV . Nevertheless, Vinh et al7§,
between random clusterings of a data set. Since a measur@] derived an analytical formula for the expected value
is meant to provide a comparison mechanism, it isof Ml and V1 under the hypergeometric distribution as
generally preferable that it lies within a predeterminedfollows.
range and has a constant baseline value, so as to facilitate
comparison and enhance intuitivenes§|[ Otherwise, if E(MI)
they have a considerable inherent bias attributable solely .
to chance, it may potentially reduce their usefulness in a__ a i High mlog( nnj )
;J:lni,j;ow

number of common situations. Therefore, it is necessary n ICi||C|
to correct these measures for chance, also known as

normalization in the literature. IGIHCilH(n— |G (n—|Cj)!

Generally speaking, normalizing techniques tend to  nin; j!(|Ci| =N HIC)| =i )t (n— |G| — [Cj[ +ni j)!
fall into two kinds: one (Type-l in short) is based on a (50)
statistical view, which formulates a baseline distribotio
to correct the measure for randomness; the other (Type-iwhere  Low = max{0,|Ci| + [Cj| — n}  and

in short) uses the minimum and maximum values toHigh= min{|Ci,|C;|}.

normalize the measure into thf®,1] range. Fig.4

illustrates the normalization scheme for various externa /

measures, where m@rdex, min(indeX is the IE(VI) =H(@)+H(@) - 2EMI) (51)

maximum, minimum value of the measumedex and Note that there exist some criticism$( for

E(indeX is the expected value dhdex based on the artificiality of the randomness model in Type-I

baseline distribution. In this study, we consider 17 normalization technique. Since the "amount” of similarity

external measures in total, as shown in Fig. By of two clusterings corresponds to the deviation from the

positive/negative measures, denoted-ds-, respectively, expected value under the null hypothesis of independent

we mean that a higher value indicates a better/worselusterings with fixed cluster sizes. Again, the strong

clustering performance. assumptions on the distribution make the result hard to
As for the baseline distribution, Hurbert & interpret.

Arabie [32] proposed to use the exact generalized

hypergeometric distribution 75,43] as the baseline

distribution in which the row and column sums are fixed, 4.5. Axiomatic View

but the clusterings are randomly selected. Morey & o .

Agresti [55J Suggested an asymptotic form based on theAS. like internal measures, one Usua”y COI’)SIer what

multi-nominal distribution. These lead to the following axioms a "good” external measure should satisfy in order

expected values as follows, respectively. to better understand their properties, their limitaticars
the implied assumptions underlying them. MeilaQ|
E Kl 2 1 K |Q|2|C’-|2+n—2 proposed the following 6 axioms, and derived an
i;j; b n(n—1) i;gl I Tho1 impossibility result for external measures: no measure in

) | the space of clustering®’(S) can simultaneously satisfy
1 GP+ Z 2 three desirable properties (§ee further), each of which
n—1 izl & ] makes the measure intuitive in some sense.

(48) Definition 5(Symmetry [80,50]). An external measure
Ko 1k | index satisfiessymmetry if for any two clusterings
E (zi Z nﬁj.) ~ ziz |Q|2|C3|2' (49) €.¢' € Z(9),index?,¢") = index¢",%).

I=11=1 I=1=1 In order words, transposing two clustering in the
The difference between expectatiod8)(and @9) pointed  confusion matrix should not bring any difference to the
out by Hubert & Arabie 32], can be apparent only when measure valued]. Obviously, this axiom is not true for
the data sizen is small; otherwise they are slight. In this the F-measure, the Goodman-Kruskal criterion, the
study, the expectatio8) is adopted. classification error metric and the entropy.
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Positive Negative
. index-E(index . E(index—index
Type-| I" axindex —E(index I Eindex_min(index
Type-Il II: index-min(index IV: max(indeX —index

max(indeX —min(index

" max(index —min(index

Figure 4: The Normalization Scheme for Various External Measures.

Measure Range

Pos./Neg. Normalization

R (0,1] ¥ 1132

M [0,1) - 1132
H1 (-1,1] + 1 [80]
w1 [0,1] + 1[3]
W2 [0,1] + 1[3]

FM [0,1] + 1[3]

J [0,1] - 1180
H2 [0,1] + 1[32,80]
MS [0,) - 1[8q

F [F_,1] + 11 [ 80]
MH (0,1] + I

GK (0,1~ (1/n) x max; [Cj|] - \%

VD [0, 2n — ma [Ci| — max; [Cj]] - IV [80]
£ [0,1—1/max{k,!}] - IV [80]
E (0,logk] — Y

M 0,min{H(%),H(¢")} + 1[75], 1l
Vi [2/n,min{logn,2logmaxk,}}] — I[75, v [80]

Figure 5: Summary on External Measures.

Note: Let) = (1—J)/(14J) andMS = MS? sinceJ andMSare not linear functions i nﬁj, which implies that it is very
complex to calculate the expectation for them. But it is ¢assee thad’ andMS are equivalent td andMS, respectively §0].

Definition 6(n-Invariance [80,50]). Let
¢, 6", 6", ¢" € (S and denote byM; and M, the
confusion matrices of¢ and ¥’, ¢” and ¥,

Definition 9(Convex Additivity [ 50]). Let ¢, 4" € 22(S)
such thaté” be a refinement o%. Denote by%; the
partitioning induced by%¢” on G(i = 1,2,---,k). An

respectively. An external measure index satisfiesexternal measure index satisfiesnvex additivityif

n-invariance if for any A € R,
index¢,¢") =indeX¢”,¢"") wheneveM 1 = AM>.

Intuitively, an external measurendex should not

directly depend om, but depends only on the relative

o]

index%,¢") = Z G

Tind@(ip\fﬁ/)v (52)
i=

valuesn; ; /n. However, some measures cannot fulfill this Wherel is the one-clustering of the data set C

axiom, such a&norm, F Mnorm andH 2norm.

Definition 7(Additivity w.r.t. Refinement [50]). An
external measure index satisfiesdditivity w.r.t.
refinement if for any clustering ¢ € £(9),
index0,%) +index%,1) = index(0,1).

Definition 8(Additivity w.r.t. Production [ 50]). An
external measure index satisfiesdditivity w.r.t.
production if for any two clusterings¢,%”’ € 2(S),
index¢,¢") =indeX¢, ¢ x ¢") +indexX¢”’,¢ x¢").

Definition 10(Non-decreasing $0]). Denote by‘ﬁkU the
"uniform” clustering, i.e., the clustering with k equal
clusters. An external measure index satisfies
non-decreasing if f(k) = index1,%’) is a
non-decreasing function of k whenegY exists.

The preceding two axioms set the scale of an external
measure indexd0]. Particularlyconvex additivityequires
that index should show additivity along the lattice of
clustering. Some un-normalized measures meet this
axiom, such as the F-measure, van Dongen criterion, the

Intuitively, the preceding two axioms describe the variation of information and the classification error
geometric properties of an external measure, i.e., that it i metric. However, none of the normalized measures above

aligned with the lattice of clusterin{).

satisfies this axiomgQ].
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Furthermore, Meilag0] shown any external measure the squared error iK-means clustering, in the case of a
satisfying Axiom 5 and Axiom 7-Axiom 10 is identical to unique global minimizer, the clustering solution is stable
the variation of information up to a multiplicative constan with respect of complete changes of the data, while for
which is closely matched to the lattice of clusterings. Fromthe case of multiple minimizers, the change ®f./n)
this point, Meila pQ] obtained the following impossibility samples defines the transition between stability and
result: instability.

There is no index symmetric, n-invariant, with
index1l, %) non-decreasing, that satisfies
simultaneously the following three properties: (a) indexi 5.1. Levine & Domany’s Resampling Approach
aligned to the lattice of clusterings; (b) index is convexly
additive; (c) index is bounded. At first, Levine & Domany’s resampling approachg

randomly constructs sub-sample$;, S, ---,S of size
[fn] (f € [0,1]) from S And then for S and all
5. Clustering Stability based Methods sub-samplesS;, S, ---,S of S, clustering solutions are
calculated. Finally, a stability measut® is defined to
Clustering stability based methods are a family of widely assess the average similarity of the solutions obtained on
usedmodel selectiortechniques. Their unifying theme is theS;,S,,--- ,S with the one obtained o&
that an appropriate model should result in a clustering In order to define the measuleD, the clustering
which is robust with respect to various kinds of solutions need to be represented as thkister
perturbations. In other words, the clustering algorithmconnectivity matrix M, whose(i, j)-th entry is denoted
should be stable with respect to input randomization. InM(i, j). Specifically, the matris for Sis a binary square
past few years, these methods are often utilized to choosmatrix of sizen x n, whereM(i, j) = 1 if i # j and thei-th
a suitable number of clusters along with stability and j-th objects are in the same cluster, and zero
measures. The rational9][ behind is that when the otherwise. SimilarlyM1,M>,--- M, of size[fn] x [fn]
number of clusters is too large, the algorithm has tocan also be defined for sub-samplesS,---,S. For
"randomly” split some true cluster, and the choice of the each number of clusteis > 1, Levine & Domany 48]
cluster it splits might change with the randomness of thedefineLD as:
sample, in which case instability occurs. On the other
hand, when the number of clusters is too small, we have | ) 1 & Yacs Sbesio 0(M(a,b), Mi(a,b)) (53)
to "randomly” merge several true clusters, the choice of ki; Saes | Mal ’
which might similarly change with each particular
random sample, resulting in instability again. where {5 (a € S) defines a neighborhood between

Generally speaking, clustering stability based objects in sub-sampl§, and d(x,y) = 1 if x =y, and
methods can be divided into two categories. One is basedero otherwise. The neighborhood definition, such as
on resampling, the basic idea of which clustersk-mutual nearest neighbor neighborhood definition
non-disjoint sub-sample of in order to measure the in [47], is left as a free parameter, which should be
similarity of the clustering solutions obtained for the supplied externally by user.
intersection of both samples. Levine $ Domany’s It is easy to see thdtD(k) measures the extent to
resampling approach4f] and the model explorer which the clustering calculated on the sub-samples is in
algorithm [LQ] fall into this category. The other is based agreement with the clustering on the full data set.
on prediction, which is pioneered in an early work by Therefore,LD(k) = 1 for perfect agreement. Levine &
Breckenridge 5. The basic idea is to measure the Domany R8 suggest that the value ok, which
agreement of clustering solutions generated by amaximizesLD(k), should be regarded as specifying the
clustering algorithm and by a classifier trained using anumber of clusters. But when several maxima can occur,
second (clustered) sub-sample &f Though a specific it is not clear how to choose a single number of
implementable procedure for choosing the number ofclusters #5].
clusters did not proposed by Breckenridge, his study
suggests the usefulness of such kind of approaches. The
prediction strength method ), clest [20], and Lange et  5.2. Model Explorer Algorithm
al.'s method 45,44] build on the Breckenridge’s ideas but
generalize his work. Firstly, the model explorer algorithm1{] randomly

But Lange et al.45] pointed out that the overlapping constructs two sub-samples of sizén] (f € (0.5,1))
sub-samples in the first kind of methods may lead to arfrom S. Then, the similarity between the solutions for
undesirable, artificially induced stability. Rakhlin & these sub-samples is calculated at the intersection of the
Caponnetto 7] gave a precise characterization of sub-samples. The similarity measure can be set as some
clustering stability with respect to both complete and external measure, such as the Fowlkes-Mallows index
partial changes of the data. Specially, for clusteringabove, which is a free parameter. This procedure is
algorithms that minimizes an objective function, such asrepeated times.
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To estimate the number of clusters, the experimentab.4. Clest
section of [L0] suggests choosing the value where there is a
transition from a similarity distribution thatis conceatied ~ The first step in the Clest procedur2(] is similar to
near 1 to wider distribution. This can be quantified by a(a)-(d) in the prediction strength method. The differences
"jump”in are that the sizes o0&, and Se, the classifier and the
similarity measure between two clusterings are all free

1.0 ) parameters. Given a fixdd suppose that the first step is
Plscz=n)~ - 215(50, k) >n), (54)  repeated B times, thus B similarity scores
1= S1:52; " »SkB can be obtained. Let

tx = mediansc1,52, - ,Sps) denote the observed
wheresy is a random variable that denotes the similarity similarity statistic for the clustering o into k clusters.
between clusterings intk clusters,3(-) is a Dirac delta  And then By data sets are drawn from a suitable null
function, s(i,k) denotes the empirically measured reference distribution. Similar t&, one can obtain a
similarity between clusterings for the two sub-samplessimilarity score for each data set, denoted

into k clusters in the-th loop, and is a pre-set constant. ﬁb, b=1,2,---,Bg, respectively. Letl? be the average of

Since looking for a "jump” in the cumulative theseB, similarity scores, namel = (1/Bo) S ptkb-
distribution is qualitative in nature, it is not a well-degfih In order to find an appropriate number of cluster§;in
criterion for determining the number of clusters. It is |gt de denote the difference between the observed
possibly very difficult to choose an appropriate value in gimjlarity statistic and its estimated expected value unde
some situation43). the null hypothesis of one-clustering, nameky= t, — t2.

And let px denote the p-value for ty, that Is,
Pk = (1/Bo){b|tk!b > tx}. Define the seK™ as

5.3. Prediction Strength Method K™ ={2<k<M|pk < Pmax, dk > dmin}, (55)

whereM is some pre-defined upper bound for the number

The main idea of prediction strengtiig] method is to:  Of clusters,pmax anddmin are pre-set thresholds. K~ is
(a) split randomly the whole data se into two  hon-empty, the value dfin K~ , which maximizesl, is
non-empty disjoint subsets: a training Sgtand a testing  regarded as specifying the number of clustersSn
setSe. In real-world applications-fold cross-validation ~ Otherwise, the number of clusters&is one. In fact, the
is utilized. That isSis randomly divided into subsets of ~ setK™ is determined fully bypmax anddmin, which can be
nearly equal size. The first— 1 subsets represeft, and  chosen badly so thatk™ is always empty, for
the last one isSe. (b) the clustering solutions are example #5].
calculated oIS, andSe, respectively; (c) A nearestclass ~ One can easily see that there are a large number of
centroid classifier is built using, and the clustering free parameters in the Clest procedure, which have to be
solution onS;; (d) The resulting classifier is employed to set by the user. But little guidance i is given on how
predict the clusters of objects Be. Specially, for each to reasonably select the values for these parameters in
pair of objects inSe that are assigned to the same testreal-world applications. Lange et a#tf] pointed out that
cluster, to determine whether they are also assigned to théis lack of parameter specification poses a severe
same cluster based on the classifier. This procedure igractical problem since the obtained statistics are dé litt
repeated multiple times. value for poor parameter selection. For example, very

In order to assess the similarity of clustering solutionsUnbalanced splitting schemes can lead to unreliable
by the classifier and the clustering algorithm®g often ~ 'esults, since the group structure might no longer be

known as thepredicted labelsand theclustered labels Visible for a clustering algorithm if there are too few
respectively, Tibshirani et al.7p] defined a similarity ~ OPjects in one of the two subset]. Another example is

index, named as prediction strength. This indexthat an inappropriate classifier may result in decreasing
essentially measures the intersection of the two clusters i largely the similarity scores. Therefore, Lange et 48]
both solutions that match worst. The largest valug i~ consider that the Clest is only a conceptual framework,
regarded as specifying the number of clusters, such thatot & fully specified algorithm.

the average similarity score is above a pre-set threshold.

However, this procedure has two severe disadvantages
pointed out by Lange et al4f]: (1) it is reasonably 9.5. Lange et al’s Method
applicable to squared-error clustering algorithm only due
to the use of the nearest class centroid classifier; (2) Th&he first step in Lange et al’'s method544] is still
prediction strength measure can trivially drop to zero forsimilar to (a)-(d) in the prediction strength method. But
the larger number of clusters. In particular, the lattenpoi there are three differences between these two methods as
severely limits its applicability in practice. follows:
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(a)S is split into two disjoint subsetsy; and Se, of To estimate the expectation, generatpairs of §; and
approximately equal size. Se, and apply the above procedure to each. Thus, an
(b)Intuitively, a good classifier should mimic the estimate S(«%) can obtain by averaging values of
clustering algorithm. Based on this point, further LRBE(-,").
guidance is given on how to reasonably choose the However, the range of possible stability values
classifier in practice. Specially, for clustering S(%) € [0,1— 1/k] depends on the number of clustérs
algorithms that minimizes an objective function, the which implies that stability indices are not directly
classifier, which uses the least-cost increase criterioncomparable for different values ok. To enable
can mimic their grouping strategies. The same strategyomparability, Lange et al. 44,45 normalize the
is applicable for agglomerative algorithms. For empirical misclassification rate of the clustering
K-means clustering, the nearest centroid classifiealgorithm S(e) with the asymptotic misclassification
becomes the classifier of choice up to (negligible)rate of random labelingS(%x), where the random
0 (1/n) corrections. For single linkage, this strategy labeling algorithm%) assigns an object to clustemwith
leads to the nearest-neighbor classifier. Of courseprobability 1/k, namely
there exist some algorithms that cannot be easily _
understood as mimimizers of a cost function, e.g., S(ak) = S() | (k). (59)
CLICK [66€]. For these cases, th€-nearest-neighbor
classifier can be safety chosen, since it is  Note that the stability measure is not defined koe
asymptotically Bayes’ optimallQ], at least for metric 1. Similar toS(.e%), an estimates(Z) for S(%x) can be
data. obtained by sampling s randdabelings and calculating
(c)In order to quantitatively compare the two solutions, the empirical average of the dissimilarities. Thus one can
the predicted labels and the clustered labels, Lange &jet an est|mat6(( A)y) for s(g{k) by normallzmgA(dk)
al. [44,49] proposed a novel dissimilarity index on the with §7%,). Lange et al.45] proposed to choose the value

basis of their normalized Hamming distance. Without
loss of generality, we can assume that the objec&in glfulét\grrémh m|n|m|ze§(,a%k) as specifying the number of

are indexed by 2. --- ||Se|. Since either solution can
be formally represented by a vector of labels, let the

predicted labels and the clustered labels be, . .
respectively 5.6. Theoretical Understanding

P— (WP P ... WPt ye— t
Y (v1,¥2: ’y\Se\) YE=04Ys ’nye\) ’ Clustering stability based methods have been shown to be
(56)  rather effective in practice, and gain more and more
where yP \¢ € {1,2,--- .k} and yP/y¢ = v if o is mfluenc_e in applications. However, their theo_retl_cql
predictﬁd/)écluste{red to clastm ,:Bgr/)é'cach numbler of foundations are not yet well understood so far. While it is
clusters k > 2, Lange et al. 44,45 define the reasonable to require that a clustering algorithm should

dissimilarity_index: demonstrat(_a stability in general, it is not obvious whether
the one, which is the most stable, also must have the best

o [Sel performance. Over the past few years, related theoretical
LRBB(YP,Y¢) = ngnn'n ISeI Z () # ¥), study has been initiated in a framework, where the data

are assumed to be drawn independently from some
(57) underlying distribution.

where I1(k) is the set of all permutations of the However, a fundamental hurdle is the following
elements in{1,2,--- ,k} and &(-) is a Dirac delta observations, made and rigorously analyzedd¥][and
function. Though the number of all permutationkiis  also pointed out in40]. Under mild conditions, stability
the minimization can be performed in time is asymptotically fully determined by the behavior of the
0(|Se| +k3) by using the Hungarian methodZ] for objective function which the clustering algorithm
minimum weighted bipartite matching, which is attempts to optimize. In particular, the existence of a

guaranteed to find the globally optimat € 17(k), unique global/local optimum for some model choice
where 0(|Se|) is required for setting up a weight implies stability as sample size tends to infinity and
matrix and¢’ (k%) for the matching itself. instability otherwise. Furthermore, this kind of instéyil

In order to measure the stability of a clustering is usually not related to the correct number of clusters, but

algorithm.a#, Lange et al.44,45] define a stability index g r::g:gtﬂggei?]d t%r:a cg;glet%yel;ler}gerfte% rcr;'z[ierrlg, SeLrIg:J aﬁ
as the average similarity between solutions, namely y . ' ! 9 9
samples one might get a stable solution regardless of the

S(#) = Eg, 5. (LRBB(YP,Y®)), (58)  chosen model. As a result, it is quite possible that there
’ exists some hard-to-compute sample size, beyond which
where the expectation is taken with regard to pairs ofclustering stability estimators 'break down’ and become
disjoint subsetss, and Se, of approximately equal size. unreliable in detecting the most stable model.
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A possible solution to this difficulty is proposed same model/metric. The external measures assess
in [63,64], where the scaling constant in the definition of agreement between a clustering solution generated by a
stability is chosen as/4/n rather than In. The authors clustering algorithm and a pre-defined reference
show that the important factor in the way clustering clustering. But since a pre-defined reference clustering is
stability based methods work may not be the asymptotidypically unavailable in real-world unsupervised tasks,
stability of the model, but rather how fast exactly does it they do not directly applicable in practice. Though new
converge to this stability. With this more refined analysis, internal/external measures still emerge continuously, we
stability criteria might actually be able to discern the think that a "good” measure should meet a set of axioms
stability of different models, no matter how large is the in [1])/[50] as possible as one can. That is, a set of axioms
sample, despite the universal convergence to absoluts [1]/[50] should be helpful in detecting and defining
stability. "good” measures.

However, the work in §3,64] only concentrates on While the popularity of clustering stability based
specific toy distribution or specific idealized clustering methods has grown in the past few years, they have an
frameworks, which still do not give us general sufficient inherent drawback: high computational cost of generating
conditions for the reliability of clustering stability and assessing multiple clusterings of the data set, which
estimators in the large sample regime. Such a set oprohibit them from being applied to large,
conditions is presented in6% with making no such high-dimensional data sets, such as text corpora. In our
assumptions. The main condition is the existence of aopinion, one of future research directions is to tacklerthei
central limit theorenfor the clustering framework, in an computational issues. As a first step, Greene &
appropriately defined sense. Additionally, non-trivial Cunningham 28] present an efficient prediction based
asymptotic behavior of these estimators is explicitly cluster validation for kernel clustering algorithm by
characterized for any framework satisfying thesemeans of a prototype reduction strategy.
conditions. A similar characterization was given 4] In addition, although the central limit approach 5]
for the K-means framework. proved to be a convenient framework, it remains an open

Ben-David & von Luxburg 8] relate the stability of  question how far it is from beingecessaryor stability
clustering algorithms (on finite sample sizes) to propsrtie estimators not to 'break down’ in the large sample regime.
of the optimal data clustering itself. Specifically, the As we known, the reasons, why a certain clustering tends
guantitative value of stability can be upper bounded byto be more stable than another one, are not very useful for
the mass in a small tube around the optimal clusteringdrawing conclusions about stability measures of any
boundary, which has already been implicitly utilized given finite sample size 8. Nevertheless, better
in [63] only in a very simple one-dimensional setting. understanding the meaning of the asymptotic value of
Unfortunately, the reverse statement is not true in generalclustering instability in §5] may help to understand the
That is, there can usually be clusterings whose decisiorbehavior of clustering stability on finite samples.
boundary lies in a high density area, but we have high
stability.
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results. No matter how large the sample size is, we can

always find distributions where the stability evaluated on

that particular sample size is misleading, in the sense thaﬁeferences
it is far from the "true stability” B].
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