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Abstract: In this study, by constructing different equivalent forms of the continuous algebraic Riccati matrix equation (CARE) and
using some linear algebraic techniques, we present the upper matrix bounds which depend on any positive definite matrix for the unique
positive semidefinite solution of the CARE. Based on these bounds, we develope iterative algorithms to obtain more sharper solution
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Keywords: Continuous algebraic Riccati matrix equation, iterative algorithm, matrix bound, matrix inequality.

1 Introduction

The algebraic Riccati and Lyapunov matrix equations are
widely used and they play an important role in various of
engineering such as control system design and analysis
[12,13,19,23], and signal processing [32]. The
continuous algebraic Riccati and Lyapunov matrix
equations that we generally encounter in the literature are
defined as below:

The continuous algebraic Riccati matrix equation
(CARE) is

PA+ATP−PBBTP=−Q (1)

where A ∈ R
n×n and B ∈ R

n×m are constant matrices,
Q ∈ R

n×n is a given positive semidefinite matrix, and the
matrix P ∈ R

n×n is the unique positive semidefinite
solution of the CARE (1). When B = 0 andA is stable
matrix, the CARE (1) becomes the continuous algebraic
Lyapunov matrix equation (CALE)

ATP+PA=−Q.

It is well known that the unique positive semidefinite
solution P to the CARE (1) exists if the pair(A,B) is
controllable (stabilizable) and the pair

(

A,Q1/2
)

is
observable (detectable).

The characteristics and structures of these equations
have considerable role in many areas of modern
engineering such as optimal control [2,13], robust control

[2,15], filter design [25], stability analysis [1,27] in
control theory [6,13,22,23] including optimization
stability theory. For example, consider the following
linear system:

{

ẋ(t) = Ax(t)+Bu(t) ,
x(0) = 0 (2)

For the continuous-time linear quadratic regulator (LQR)
problem, suppose the pair(A,B) is stabilizable and the pair
(

A,Q1/2
)

is detectable, then there exists a unique optimal
controlu0(t) which minimizes [5]

JC (x) =

∞
∫

0

[

xT (t)Qx(t)+uT (t)u(t)
]

dt.

The vectoru0(t) is given by

u0(t) =−Kx(t)

whereK = BTP andP is the unique positive semidefinite
solution of the CARE (1).

Moreover, as known by [12], it can be seen that in the
optimal regulator problem, the optimal cost can be written
as

J∗ = xT
0 Px0

wherex0 ∈ R
n is the initial state of the considered system

(2) and P is positive definite solution of the CARE (1).
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Then as it is denoted by [21] an interpretation oftr (P) is
thattr (P)

/

n is the average value of the cost given byJ∗ as
x0 varies over the surface of a unit sphere.

Also, we should denote that many of numerical
algorithms for obtaining the solutions of these equations
have been reported in the literature [5,6,7,8,9,10,24,32].
The computing of these equations’s analytic solutions are
rather complicated in applications when the dimensions
of system matrices are high. The exact solutions of these
equations require a lot of heavy computational burdens
and have time consuming. Therefore, in order to save time
and decrease the burden of computation, instead of the
exact solution, only the bounds as an approximation of
the exact solution are sometimes needed. For example, for
some applications such as stability analysis [27], without
the burden of hard calculations, bounds are needed only
for solution matrices. Furthermore, the solution bounds of
the CARE (1) can be used to treat many control problems.

Therefore, during the past decades, numerous
researchers have been devoted to obtain the bounds for
the solution of the continuous algebraic Riccati matrix
equations and a number of results have been reported in
the literature. These results include matrix bounds for the
solution matrix [4,8,16,17,20,21,26,30,32] and some
characteristics of the solution matrix, specially
eigenvalues [11,14,18,22], trace [14,22] and determinant
[14,22] bounds are derived. However, matrix bounds are
more general and usefull since they can be used to derive
the other quantities.

This work is organized as following: Firstly, by
generating the equivalent forms of the continuous
algebraic Riccati matrix equation, using matrix
inequalities, matrix identities, and some linear algebraic
techniques, we propose new upper matrix bounds for the
solution of the CARE (1). Also, we improve the
algorithms which similar to previous studies to obtain
tighter solution bounds. Lastly, we give illustrative
examples to show that our results are more effective and
less restrictive having compared with the some previous
results in some cases.

In the following, letRn×n andRn×m denote the sets of
n× n and n × m real matrices. LetX ∈ R

n×n be an
arbitrary symmetric matrix, then the eigenvalues ofX are
arranged so thatλ1(X) ≥ λ2(X) ≥ ·· · ≥ λn(X). For any
X ∈ R

m×n, the singular values ofX are arranged so that
s1 (X) ≥ s2 (X) ≥ ·· · ≥ smin{m,n} (X). If X ∈ R

n×n, let
XT ,X−1, tr (X) , and det(X) denote the transpose, the
inverse, the trace, and the determinant ofX, respectively.
Write X ≥ (>)0, if X is a positive semidefinite (positive
definite) matrix. ForX andY are symmetric matrices of
the same size, ifX −Y ≥ 0, then we writeX ≥ Y. If
X ≥ Y, then we haveλi (X) ≥ λi (Y) , i = 1,2, . . . ,n. This
expression is called Weyl’s monotonicity principle. If
X ≥ 0, thenX1/2 denotes the unique positive semidefinite
square root ofX. The identity matrix inRn×n is shown by
I .

The following Lemmas are used to prove the main
results of this study.
Lemma 1.1. [3] If X ∈ R

n×n is a symmetric matrix, then
the following inequality holds:

λn(X)I ≤ X ≤ λ1(X)I .

Lemma 1.2. [28] For any matrixA ∈ R
n×m and positive

semidefinite matrices X,Y ∈ R
n×n such that

X ≥ Y ≥ (>)0, it holds thatATXA≥ ATYA, with strict
inequality if X andY are positive definite andA is of full
rank.
Lemma 1.3. [29] Let X,Y ∈ R

n×n be two symmetric
matrices and there exist an integerk such that 1≤ k ≤ n.
Then for any index sequences 1≤ i1 ≤ i2 ≤ ·· · ≤ ik ≤ n,
we have

k

∑
t=1

λit (X)λn−t+1 (Y)≤
k

∑
t=1

λit (XY)≤
k

∑
t=1

λit (X)λt (Y).

Lemma 1.4. [29] Let X,Y ∈ R
n×n be two symmetric

matrices and there exist an integerk such that 1≤ k ≤ n.
Then for any index sequences 1≤ i1 ≤ i2 ≤ ·· · ≤ ik ≤ n,
we have

k

∑
t=1

λit (X)+
k

∑
t=1

λn−t+1 (Y) ≤
k

∑
t=1

λit (X+Y)

≤
k

∑
t=1

λit (X)+
k

∑
t=1

λt (Y).

Lemma 1.5. [28] Let A ∈ R
n×n be a positive definite

matrix and letB be ann×mmatrix. Then for any positive
semidefiniteX ∈ R

m×m,
(

A B
BT X

)

≥ 0⇔ X ≥ BTA−1B.

Lemma 1.6. [29] Let A,B, andX be n− square matrices

such that

(

A B
B∗ X

)

≥ 0. Then,

±(B+B∗)≤ A+X.

Lemma 1.7. [11] The positive semidefinite solutionP of
the CARE (1) has the following upper bound on its
maximal eigenvalue:

λ1(P)≤ λ1
(

DTD
) λ1

[(

Q+KTK
)

DTD
]

λn (MDTD)
≡ η (3)

where K is any matrix stabilizing A + BK (i.e.,
Re(λi (A+BK)) < 0 for all i) and the nonsingular matrix
D and positive definite matrixM are chosen to yield the
LMI (linear matrix inequality)

(A+BK)T DTD+DTD(A+BK)≤−M.

This eigenvalue upper bound is always computed if there
exists a unique positive semidefinite solution of the CARE
(1).
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2 Main Results

In this section, we propose the upper solution matrix
bounds to the CARE (1) and the algorithms for obtained
bounds.
Theorem 2.1.Let P be the positive semidefinite solution
of the CARE (1) and the positive semidefinite matrixM1
is defined by

M1 ≡ BBT −AX1A
T +λn(X1)AAT (4)

where the positive constant matrixX1 is chosen as

BBT −AX1A
T > 0. (5)

ThenP has the following upper bound

P ≤

{

1
λn (M1)

[

Q+X−1
1 −λn(X1)X−2

1
+λn(X1)ρ1

(

I +X−1
1 ATAX−1

1

)

]}1/2

≡ Pu1 (6)

where the nonnegative constant ρ1 for
µ1 = λn (X1)

[

1+ s2
1

(

AX−1
1

)]

is defined by

ρ1 ≡
1

2λn(M1)

×

{

µ1+

[

µ2
1 +4λn(M1)

×λ1
(

Q+X−1
1 −λn(X1)X−2

1

)

]1/2
}

. (7)

Proof. By multiplying (-1) the CARE (1) and adding
X−1

1 +PAX1ATP to both sides of the CARE (1), we have

P
[

BBT −AX1A
T]P = Q+X−1

1

−
(

PA−X−1
1

)

X1
(

PA−X−1
1

)T

whereX1 is a positive constant matrix. Using Lemma 1.1
and the definition (4) of the matrixM1, from the above
equation, we write the following inequality:

PM1P≤ Q+X−1
1 +λn(X1)

(

PAX−1
1 +X−1

1 ATP−X−2
1

)

(8)

ForP≥ 0, from Lemma 1.5, we get the following positive
semidefinite block matrix

(

P1/2 0
P1/2 0

)(

P1/2 P1/2

0 0

)

=

(

P P
P P

)

≥ 0. (9)

By pre-and post- multiplying the first row byX−1
1 AT and

the first column byAX−1
1 , from the matrix (9), we obtain

(

X−1
1 ATPAX−1

1 X−1
1 ATP

PAX−1
1 P

)

≥ 0 (10)

and then applying Lemma 1.6 to (10) shows that

X−1
1 ATP+PAX−1

1 ≤ X−1
1 ATPAX−1

1 +P. (11)

Therefore, combining the inequalities (8) and (11) yields

PM1P ≤ Q+X−1
1 −λn(X1)X−2

1

+ λn(X1)
(

X−1
1 ATPAX−1

1 +P
)

, (12)

and from Lemma 1.1 and Lemma 1.2, (12) becomes

λn(M1)P2 ≤ Q+X−1
1 −λn(X1)X−2

1

+ λn (X1)
(

X−1
1 ATPAX−1

1 +P
)

. (13)

Furthermore, applying Lemma 1.1 and Lemma 1.2 to the
right side of (13) gives

λn(M1)P2 ≤ Q+X−1
1 −λn(X1)X−2

1

+ λn (X1)λ1(P)
(

X−1
1 ATAX−1

1 + I
)

. (14)

Utilizing Weyl’s monotonicity principle for (14) implies

λn(M1)λ 2
1 (P)≤ λ1

[

Q+X−1
1 −λn(X1)X−2

1
+λn (X1)λ1(P)

(

X−1
1 ATAX−1

1 + I
)

]

and by Lemma 1.4, we obtain

λn(M1)λ 2
1 (P) ≤ λ1

[

Q+X−1
1 −λn(X1)X−2

1

]

+ λn (X1)λ1 (P)λ1
(

X−1
1 ATAX−1

1 + I
)

.(15)

By solving (15) with respect toλ1 (P), we get

λ1(P) ≤
1

2λn(M1)

×

{

µ1+

[

µ2
1 +4λn(M1)

×λ1
(

Q+X−1
1 −λn(X1)X−2

1

)

]1/2
}

≡ ρ1. (16)

Substituting (16) into (14) and then solving the obtained
inequality according toP gives the upper bound (6).

Now, we can develop the following iterative algorithm
to obtain sharper solution estimates depending on the
upper boundPu1 for the CARE (1):

Algorithm 2.1.
Step 1.SetS10 ≡ Pu1, wherePu1 is defined by (6).
Step 2.Calculate

S1i =

{

1
λn(M1)

[

Q+X−1
1 −λn(X1)X−2

1
+λn(X1)

(

X−1
1 ATS1i−1AX−1

1 +S1i−1

)

]}1/2

(17)
for i = 1,2, . . .. ThenS1i ’s are also upper bounds for the
solution of the CARE (1).

Proof. Settingi = 1 in (17), we have

S11 =

{

1
λn(M1)

[

Q+X−1
1 −λn(X1)X−2

1
+λn(X1)

(

X−1
1 ATS10AX−1

1 +S10

)

]}1/2

(18)
Applying Lemma 1.1 to (18) gives

S11 ≤

{

1
λn(M1)

[

Q+X−1
1 −λn(X1)X−2

1
+λn(X1)λ1

(

S10

)(

X−1
1 ATAX−1

1 + I
)

]}1/2

.

(19)
SinceS10 ≡ Pu1, by using Lemma 1.1 and Lemma 1.2, and
the definition (7) of ρ1, we obtain

S11 ≤

{

1
λn(M1)

[

Q+X−1
1 −λn(X1)X−2

1
+λn(X1)ρ1

(

X−1
1 ATAX−1

1 + I
)

]}1/2

= S10. (20)
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Assume thatS1i−1 ≤ S1i−2. Then by Lemma 1.2, we write

S1i =

{

1
λn(M1)

[

Q+X−1
1 −λn(X1)X−2

1
+λn (X1)

(

X−1
1 ATS1i−1AX−1

1 +S1i−1

)

]}1/2

≤

{

1
λn(M1)

[

Q+X−1
1 −λn(X1)X−2

1
+λn(X1)

(

X−1
1 ATS1i−2AX−1

1 +S1i−2

)

]}1/2

= S1i−1. (21)

By the mathematical induction method, it can be
concluded thatS1i ≤ S1i−1 ≤ ·· · ≤ S11 ≤ S10.

Corollary 2.1. Let the positive semidefinite matrixP
satisfy (1). Then

P≤

{

1
s2
n (B)

[

Q+
1
α

ρ∗
1

(

α2I +ATA
)

]}1/2
≡ P∗

u1 (22)

where the positive constantα is chosen such thatBBT >
αAAT and the positive constant

ρ∗
1 ≡

α2+ s2
1(A)+

√

(

α2+ s2
1(A)

)2
+4α2s2

n (B)λ1 (Q)

2αs2
n (B)

such assn (B) 6= 0.

Theorem 2.2. The positive semidefinite matrixM2 is
defined by

M2 ≡ BBT −X2+λn(X2) I (23)

where the positive constantX2 is selected by

BBT −X2 > 0. (24)

Then the positive semidefinite solutionP to the CARE (1)
has the upper bound

P ≤

{

1
λn (M2)

[

Q+AT
(

X−1
2 −λn(X2)X−2

2

)

A
+λn(X2)ρ2

(

I +X−1
2 ATAX−1

2

)

]}1/2

≡ Pu2 (25)

where the nonnegative constant ρ2 for
µ2 = λn (X2)

[

1+ s2
1

(

AX−1
2

)]

is defined by

ρ2 ≡
1

2λn(M2)
(26)

×

{

µ2+

[

µ2
2 +4λn(M2)

×λ1
[

Q+AT
(

X−1
1 −λn(X1)X−2

1

)

A
]

]1/2
}

.

Proof. By multiplying (-1) the CARE (1) and adding

PX2P+ATX−1
2 A to both sides of the CARE (1), we have

P
(

BBT −X2
)

P = Q+ATX−1
2 A

−
(

P−ATX−1
2

)

X2
(

P−ATX−1
2

)T
.

When the above inequality is rearranged by using Lemma
1.1, it is written

PM2P = Q+AT (X−1
2 −λn(X2)X−2

2

)

A

+ λn(X2)
(

PX−1
2 A+ATX−1

2 P
)

(27)

whereM2 is given by (23). From the matrix (9), by pre-
and post- multiplying the first row byATX−1

2 and the first
column byX−1

2 A gives

(

ATX−1
2 PX−1

2 A ATX−1
2 P

PX−1
2 A P

)

≥ 0

and by application of Lemma 1.6 to the above block matrix
shows that

ATX−1
2 P+PX−1

2 A≤ ATX−1
2 PX−1

2 A+P. (28)

Therefore from the inequalities (27) and (28), it is obtained

PM2P = Q+AT (X−1
2 −λn(X2)X−2

2

)

A

+λn (X2)
(

ATX−1
2 PX−1

2 A+P
)

.

Consequently, following the above procedures, along the
lines of Theorem 2.1’s proof, it can be obtained the upper
boundPu2 for the CARE (1).

Algorithm 2.2.
Step 1.SetS20 ≡ Pu2, wherePu2 is defined by (25).
Step 2.Compute

S2i =

{

1
λn(M2)

[

Q+AT
(

X−1
2 −λn(X2)X−2

2

)

A
+λn(X2)

(

ATX−1
2 S2i−1X

−1
2 A+S2i−1

)

]}1/2

(29)
for i = 1,2, . . .. ThenS2i ’s are also upper bounds for the
solution of the CARE(1).

Corollary 2.2. Let the positive semidefinite matrixP
satisfy (1). Then

P≤

{

1
s2
n (B)

[

Q+
1
β

ρ∗
2

(

β 2I +ATA
)

]}1/2
≡ P∗

u2 (30)

where the positive constantβ is chosen such thatBBT >
β I and the positive constant

ρ∗
2 ≡

β 2+ s2
1 (A)+

√

(

β 2+ s2
1(A)

)2
+4β 2s2

n (B)λ1 (Q)

2βs2
n(B)

(31)
for sn (B) 6= 0.

Theorem 2.3. Define the matricesM3 andU

M3 ≡ BBT +AX3AT (32)

and
U ≡ s2

1 (A)η
/

2I +AX−1
3 (33)

whereX3 is a positive definite matrix. Then the positive
solutionP to the CARE (1) satisfies

P ≤

{

1
λn (M3)

[

Q−X−1
3

+λ1 (X3)
(

X−2
3 +ρ3

(

I +UTU
))

]}1/2

≡ Pu3 (34)
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where the nonnegative constant ρ3 for
µ3 =

[

1+ s2
1(U)

]

λ1 (X3) is defined by

ρ3 ≡
1

2λn(M3)

×

{

µ3+

[

µ2
3 +4λn(M3)

×λ1
(

Q−X−1
3 +λ1(X3)X−2

3

)

]1/2
}

(35)

so that the positive constantη is given by (3).
Proof. By addingX−1

3 +PAX3ATP to both sides of the
CARE (1) , we get

PM3P= Q−X−1
3 +

(

PA+X−1
3

)

X3
(

PA+X−1
3

)T
(36)

whereX3 > 0 and by use of Lemma 1.1, from (36), we
write

P M3 P≤ Q−X−1
3

+ λ1 (X3)
(

PAATP+PAX−1
3 +X−1

3 ATP+X−2
3

)

. (37)

Furthermore, for the termPAATP of (37), using Lemma 1,
it can be written

PAATP≤ s2
1 (A)P2 (38)

and
P2 ≤ [Pλ1(P) IP]1/2 = λ1 (P)P≤ ηP (39)

respectively. Thus from the inequalities (38) and (39), it
can be seen that

PAATP≤ s2
1 (A)ηP. (40)

Substituting (40) into (37) and organizing to the matrixU
(from (33)) leads to

PM3P ≤ Q−X−1
3 +λ1(X3)X−2

3

+ λ1(X3)

[

P
(

s2
1 (A)η

/

2I +AX−1
3

)

+
(

s2
1 (A)η

/

2I +AX−1
3

)T
P

]

= Q−X−1
3 +λ1(X3)

(

X−2
3 +PU+UTP

)

. (41)

Now by pre-and post- multiplying the first row of the
matrix (9) by UT and the first column of the matrix (9) by
U , and by Lemma 1.6, we can write
(

UTPU UTP
PU P

)

≥ 0⇒ PU+UTP≤UTPU+P. (42)

Therefore, from the inequalities (41) and (42), we have

PM3P≤ Q−X−1
3 +λ1(X3)

(

X−2
3 +UTPU+P

)

(43)

As Lemma 1.1 and Lemma 1.2 are considered, from (43),
we can write

λn (M3) P2 ≤ Q−X−1
3 +λ1(X3)

(

X−2
3 +UTPU+P

)

≤ Q−X−1
3 +λ1(X3)λ1(P)

(

X−2
3 +UTU + I

)

, (44)

and utilizing Weyl’s monotonicity principle and Lemma
1.4 imply that

λn (M3)λ 2
1 (P) ≤ λ1

[

Q−X−1
3 +λ1(X3)X−2

3

]

+λ1(X3)λ1 (P)
(

1+ s2
1(U)

)

. (45)

Solving (45) in according toλ1(P) shows that

λ1(P) ≡
1

2λn(M3)

×

{

µ3+

[

µ2
3 +4λn(M3)

×λ1
(

Q−X−1
3 +λ1(X3)X−2

3

)

]1/2
}

≡ ρ3.

Substitutingρ3 into (44) and then solving the obtained
inequality regarding toP gives the upper boundPu3.

Algorithm 2.3.
Step 1.SetS30 ≡ Pu3, wherePu3 is defined by (34).
Step 2.Work out

S3i =

{

1
λn(M3)

[

Q−X−1
3 +λ1(X3)X−2

3
+λ1(X3)

(

UTS3i−1U +S3i−1

)

]}1/2

(46)
for i = 1,2, . . .. ThenS3i ’s are also upper bounds for the
solution of the CARE(1).

Theorem 2.4. Define the matricesM4 andV

M4 ≡ BBT +X4, (47)

V ≡
η
2

I +X−1
4 A (48)

where the positive definite matrixX4. Then the positive
solutionP to the CARE (1) holds

P ≤

{

1
λn (M4)

[

Q−AT
(

X−1
4 +λ1(X4)X−2

4

)

A
+λ1 (X4)ρ4

(

I +VTV
)

]}1/2

≡ Pu4 (49)

where the nonnegative constant ρ4 for
µ4 =

[

1+ s2
1(V)

]

λ1 (X4) is defined by

ρ4 ≡
1

2λn(M4)
(50)

×

{

µ4+

[

µ2
4 +4λn(M4)

×λ1
[

Q−AT
(

X−1
4 +λ1(X4)X−2

4

)

A
]

]1/2
}

such that the positive constantη is given by (3).

Proof. By addingPX4P+ ATX−1
4 A to both sides of the

CARE (1) for X4 > 0, by definition (47) of M4, we get

PM4P = Q−ATX−1
4 A (51)

+
(

P+ATX−1
4

)

X4
(

P+ATX−1
4

)T
.

Applying Lemma 1.1 to (51) and using the inequality (39),
from the definition (48) of V, we can easily write

PM4P ≤ Q+AT (X−1
4 +λ1(X4)X−2

4

)

A

+ λ1(X4)

[

P
(η

2
I +X−1

4 A
)

+
(η

2
I +X−1

4 A
)T

P

]

= Q+AT (X−1
4 +λ1(X4)X−2

4

)

A

+ λ1(X4)
(

PV+VTP
)

. (52)
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Therefore, continuing from the previous theorem’s proof
gives the boundPu4.
Algorithm 2.4.

Step 1.SetS40 ≡ Pu4, wherePu4 is defined by (49).
Step 2.Check out

S4i =

{

1
λn(M4)

[

Q+AT
(

X−1
4 +λ1(X4)X−2

4

)

A
+λ1(X4)

(

VTS4i−1V +S4i−1

)

]}1/2

(53)
for i = 1,2, . . .. ThenS4i ’s are also upper bounds for the
solution of the CARE(1).
Remark 2.1. One of the most frequently used techniques
in matrix theory is the continuity argument [28]. If a
matrixY is singular, considerY+ εI . Chooseδ > 0 such
thatY+ εI is invertible for allε, 0< ε < δ . Then, we can
say that it is obtainable a matrixX = εI , ε > 0 such that
BBT + X is nonsingular. Replace singularBBT by
nonsingular BBT + εI . Then upper bound given by
Theorem 2.4 is always computable for the positive
constantε is chosen so thatBBT + εI > 0. So far, all of
the presented upper matrix bounds of the solution for the
CARE (1) have the restriction thatsn (B) 6= 0. Therefore,
we say that Theorem 2.4 is to improve this restriction.
Remark 2.2. As Chen and Lee in [4] and Zhang and Liu
in [30] pointed out, to give a general comparison between
any parallel upper bounds for the same measure is either
difficult or actually impossible. Since many upper bounds
in literature include different parameters depend on
various assumptions, the mentioned comparisons also can
find that it is hard to compare the sharpness of our upper
bounds to the similar results. For this reason, we can give
the following numerical examples to show the
effectiveness of our results.

3 Numerical Examples

Example 3.1. [20] Consider the CARE (1) with

A=

(

−3 0.5
0.1 0.2

)

,BBT =

(

4 0
0 1

)

,Q=

(

3 0.2
0.2 3

)

.

Then, the unique positive definite solutionP to the CARE
(1) is

Pexact=

(

0.3967 0.0936
0.0936 1.9603

)

, tr (P) = 2.3570, det(P) = 0.7689

Our upper boundsPu2 and Pu4, and the algorithms (2
iterations) corresponding to these bounds are as the
following:

Pu2≡

(

2.5997 −0.0114
−0.0114 2.0346

)

,S2 ≡

(

2.5910 −0.0260
−0.0260 1.9681

)

with X2 =

(

3.2 0
0 0.2

)

,

Pu4 ≡

(

1.5087 0.0303
0.0303 2.0209

)

,S4 ≡

(

1.3338 0.0403
0.0403 2.0122

)

with X4 = 3I , η = 2.01917.
Also, some studies in recent years have resulted in the
following:
The upper bound given by Corollary 2.1 in [4] gives

Pu[4] ≡

(

3.2278 −0.2618
−0.2618 2.3232

)

, tr (P)≤5.5510,det(P)≤7.4302,

The upper bound presented by Theorem 1 in [8] shows

Pu[8] ≡

(

2.4579 0.0387
0.0387 2.6609

)

, tr (P)≤ 5.1188,det(P)≤ 6.5387,

The upper matrix bound developed in Theorem 2 of [20]
is

Pu[20] ≡

(

2.7067 −0.0445
−0.0445 2.0238

)

with R1 = X−1
2 and we can also denote that this bound can

not be computed forR1 ≡ X−1
4 .

The proposed upper bound in [21] leads to

Pu[21] ≡

(

6.8384 0.0002
0.0002 6.8385

)

, tr (P)≤ 13.677,det(P)≤ 46.7647,

for ε = 0.014.
In view of the above numerical experiments, it appears

that our bounds give more precise solution estimates than
the previously reported results.

Example 3.2. [7] Consider the CARE (1) with

A=

(

0.5 0
1 −2.5

)

,B=

(

2 0
0 0

)

,Q=

(

1 0
0 3

)

Then, the unique positive definite solutionP to the CARE
(1) is

Pexact=

(

0.6689 0.1228
0.1228 0.5879

)

.

In this examplesn(B) = 0 and this means thatBBT is
singular, so the upper matrix boundPu1 and Pu2 cannot
work for this case. However, the upper boundsPu3 andPu4
according to the arbitrary selections of matricesX3 andX4
and the algorithms (5 iterations) corresponding to these
bounds are as following:

Pu3 =

(

3.3988 0.0717
0.0717 1.2974

)

,S3 =

(

3.1916 0.0267
0.0267 0.9988

)

with X3 = I ,

Pu3=

(

3.0956 −0.4006
−0.4006 1.7915

)

,S3 =

(

2.5762 −0.1640
−0.1640 1.3689

)

with X3 = 0.5I ,

Pu4=

(

4.3299 −1.3930
−1.3930 6.2479

)

,S4 =

(

2.8038 −1.2757
−1.2757 5.6711

)
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with X4 = I ,

Pu4 =

(

1.2903 0.0081
0.0081 1.2704

)

,S4 =

(

1.2461 0.0137
0.0137 1.2187

)

with X4 = 15I for η = 0.7974.
sn(B) = 0 means thatBBT is singular, so the upper matrix
bounds presented in [4,21,30] cannot work for this case.

4 Perspective

Some upper matrix bounds for the solution of the CARE
are improved by means of different equivalent forms of
the CARE by using some linear algebraic techniques and
matrix inequalities. Also, the algorithms for the bounds
are given to obtain more precise bounds. Finally, by aid of
several numerical examples, it is demonstrated that the
solution upper bounds developed in this study are sharper
than some results in the literature in certain circumstances
.
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