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Abstract: Performance evaluation plays a fundamental role in the design of modern underwater wireless communication systems,
which are growing rapidly. In this system, performance evaluation of systems plays a fundamental role in determining the effectiveness
of the system. Analysis of backlog and delay in any underwater wireless communication networks becomes a tough task. In past few
years, the stochastic growth of modern networks resulted incomplexity of analysing the algorithms and application. Since traditional
mathematical modeling theories such as queuing theory, effective bandwidth, and deterministic networks calculus arenot applicable to
analyze the Quality of Service (QoS) for the present day packet switched multimedia networks due to their inherently random behavior.
To analyze the present day networks, non-deterministic network calculus is much needed. Stochastic network calculus emerges as an
appropriate mathematical tool for modeling and calculating the performance of wireless network and wired networks. While research
in stochastic network calculus is in early days, it is still gaining much attention in the research community for analyzing any wireless
communication networks. In this research article, the authors have analyzed and created a mathematical model for underwater wireless
communication channel. The channel is subjected to Rician fading based on SNC that obtains Stochastic Arrival Curve andStochastic
Service Curve, as an extension to the Rayleigh fading. This model is adopted for deriving the performance of delay and backlog bounds
in underwater acoustic Rician fading channels using Stochastic Network Calculus.

Keywords: Rician Fading, Determinstic Network calculus, StochasticNetwork Calculus, Underwater wireless,, Backlog.

1 Introduction

Analyzing the performance of a system with its critical
parameters plays an important role in the success of the
system. There are generally two ways to analyse any
system; working with the real set up ’(actual system) or
experiment with the model of actual system. The latter
needs more importance as modelling a system needs to
consider the underlying mathematical theories with
analytical solutions that can be tested using respective
simulations. Fig.1 provides the different ways to analyse
system performance. Constructing appropriate
mathematical model is very crucial to make meaningful
studies, and choosing the right simulation tool to
represent our idea would help us arrive at successful
modelling.

Conventional telephone networks [1] were based on
Circuit switched networks, where there is fixed
bandwidth in the communication channel between the
sender node and the received node. The allocated

Fig. 1: Ways to Study a System

bandwidth is available for the whole duration of
communication. For the efficient use of bandwidth data
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networks emerged, where the information is sent as
packets and it leads to packet switched networks [2].

To analyze the performance of circuit switched
networks, Erlang proposed Queuing Theory [3].
Telephone networks are generally analyzed by Queuing
theory with low variability [4]. As the scale of network
increases, it?s heterogeneity, users, applications and its
traffic increases. In order to analyze the performance of
packet switched networks, Theories like; effective
bandwidth [5] and network Calculus [6] were introduced.
The concept of effective bandwidth motivated the need of
resource allocation in packet switched networks that
facilitates a traffic model with statistical multiplexing.
The sum of individual flows in any network wireless
communication system determines the effective
bandwidth. The limitations of the theory are; statistical
multiplexing may not be accurately calculated. Another
limitation in the statistical multiplexing is that, individual
flows have different QoS requirements. Then FIFO
method is not applicable for scheduling of these flows.
The effective bandwidth becomes a challenge due to
heterogeneous QoS requirements in individual flows.
Then application of effective bandwidth and effective
capacity remains a challenge. To overcome the above
issue network calculus [7] was developed by Cruz in
1991. Network calculus tool is used to analyse the
performance of packet switched networks. The two tracks
of Network calculus are; Deterministic Network Calculus
and Non-Deterministic or Stochastic Network Calculus
(SNC). To date lot of DNC results are available and the
summary can be found in [8,9]

Using the input flows to the networks or denotes
arrival curves. Arrival curves in deterministic network
calculus denotes the individual flows or in other terms as
arrival process. Similarly Service curves in deterministic
network calculus denote the service process. Statistical
properties of arrivals are not determined using
deterministic network calculus, as the DNC limitations
are exposed. In addition, the deterministic service curves
are additive in nature. Additive property states that, when
number of flows in the network system is multiplexed
then aggregate of flow increases. So the statistical
multiplexing gain is not exposed in the Deterministic
network calculus. Deterministic arrival curves and
deterministic service curves helps in deriving the
performance of worst-case analysis bounds. The
worst-case analysis bounds are derived for analysis of
acoustic underwater communication networks. In[10],
where the Rayleigh fading is already attempted stochastic
network calculus. In acoustic networks the acoustic data
communication is irregular in nature. Further the
communication is unstable. So it is difficult to determine
the worst-case performance bounds [11]. In order to
implement service provisioning of non deterministic
service curves, the performance analysis bounds needs to
be cooperated with various probabilities. In general any
networks or specified networks such as acoustic
networks, the stochastic service guarantees can be derived

Fig. 2: Network Analysis- Taxonomy

using Stochastic Network Calculus. Moreover, fading
channels in underwater acoustic networks may have only
stochastic service guarantees due to their time-varying
nature. A brief overview of various ways to study analysis
of network is given in Fig 2. Arrival curves models and
service curves models are derived and extended. The
extended models show the probabilistic representation of
Deterministic Network Calculus and called as stochastic
arrival and stochastic service curves. The basic properties
like service guarantees, output characterization,
concatenation property, leftover service and superposition
property should satisfy the traffic and server models of
network calculus

Presently, there is no proper mathematical
formulation and proof that demonstrates the Rician fading
effects in underwater acoustic channels. From existing
literature, we conclude that fading effects were generally
modelled using queuing theory and deterministic network
calculus [12]. The key challenge in analysing fading an
acoustic system is that, temporal uncertainties are
inherent in fading channels. In this research study, we
have constructed a mathematical model using stochastic
network calculus to determine the Rician fading effects in
acoustic transmission in underwater wireless sensor
networks. This work is an extension to the already
available Rayleigh fading model [10]. The model is
simulated using scientific network modeling tool, OPNET
and conducted performance analysis.

The article is written as follows; the basics of
stochastic are explained in next section, followed by, the
basics of underwater acoustic fading channels and its
performance analysis bounds in Section 4. In Section 5,
modelling the acoustic underwater Rician fading channel
using stochastic network calculus. In Section 6, presents
the performance evaluations, conclusions and further
work.
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2 Basic Notations of Stochastic Network
Calculus

2.1 Basic Notations

Stochastic Network calculus is derived from Erlang’s
works Queuing Theory [13]. This section explains the
basics of stochastic network calculus. Using the time
factor represents process in any flow timet. The arrival
process is represented as theAp(t). Ap(t) is defined as the
incoming traffic to the communication network. Similarly
the network service departing from any communication
networks is represented asDp(t). The arrival process is
serviced and the service process is denoted asSp(t).
Impairment process in the network is denoted byIm(t). In
Stochastic Network Calculus, all the process arriving are
considered to be non-negative process and all negative
process are increasing functions. So flow is given by

IF = { f (.) : ∀0≤ a≤ b,0≤ f (a)≤ f (b )}

at a given timet = 0. i.e,

Ap(0) = Dp(0) = Sp(0) = Im(0) = 0.

for any, 0 ≤ a ≤ b,

Let Ap(a, b) ≡ Ap(b) − Ap (a)

Dp (a,b) ≡ Dp (b) − Dp (a)

Sp(a,b) ≡ Sp(b) − Sp(a)

Fi denotes the set of non-negative wide-sensing
increasing function andFd denotes the non-negative
decreasing functions.

F̄i = {p(.) : ∀0≤ a≤ b,0≤ f (b)≤ f (a)}

F̄d = {p(.) : ∀0≤ a≤ b,0≤ f (b)≤ f (a)}

Distribution of any function for random variablesR is
denoted asFt1 (t) = Prob{t1≤ t} , and the necessary
distribution function complementary is denoted as,

Ft1 (t) = Prob{t1≤ t}

When the model transforms there is need of stronger
requirement. The stronger requirement on the bounding
function is denoted asFb SoFb is denoted as follows

Fb =







x(.) : ∀a≥ 0,





∞
∫

x

dz





a

x(z) ∈ Fb







2.2 Operators in Stochastic Network Calculus

In (min,+) algebra, the following properties are defined:
The(min,+) convolutionof functiona andb is

(a⊗b)(y) = inf
0≤d≤c

[p]

p= a(d)+b(c−d)

The(min,+) deconvolutionof functiona andb is

(a⊘b)(y)≡ sup
t≥0

{p}

p= a(y+ s)−b(t)

Pointwise minimumof a andb is

(a∧b)(y) = min[a(y) ,b(y)]

Pointwise maximumof a andb is

(a∨b)(y) = max[a(y) ,b(y)]

Normal convolutionof functiona andb is

(a∗b)(t) =

t
∫

0

a(t − x)db(x)

2.3 Performance Metrics,Traffic and Server
Models

In stochastic network calculus backlog is defined as
follows;

Bl (t) = Ap (t)−Dp(t)

In stochastic network calculus the delayDl (t) in the
system at timet is represented as;

Dl (t) = inf
{

τ ≥ 0 : Ap (t)≤ Dp (t + τ)
}

For traffic arrival models, we have:

Definition 1: The traffic-amount-centric(t.a.c)

When an arrival process or flow Ap(t) is
traffic-amount-centric then the bounding function
of f ∈ F d for the corresponding stochastic arrival curve
αi ∈ Fi , denoted as; If for alla≥ 0 andb≥ 0, it holds

Prob{P> b} ≤ f (b)

P= Ap(s,a)−αi (a− s)

Definition 2: The virtual-backlog-centric model (v.b.c)

When an arrival process or flowAp(t) is
virtual-backlog-centric then the bounding function of
f ∈ F dfor the corresponding stochastic arrival curve
αi ∈ Fi is denoted by and given as follows if for alla≥ 0
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and all b ≥ 0, it holds P{X > b} ≤ f (b)
X = sup

0≤s≤a
[Ap (s,a)−α1(a− s)]

Definition 3: The maximum-virtual-backlog-centric
model(m.v.b.c)

When an arrival process or flowAp(t) is maximum virtual
backlog centric then the bounding function off∈ F d,
For the corresponding stochastic arrival curve is denoted
by Ap ˜mvbc〈 f,αi 〉 , if for all a ≥ 0 and allb ≥

0, it holds
Prob{X ≤ f (b)}

where,X = sup
0≤s≤a

sup
0≤c≤s

[Ap (c,s)−αi (s−u)> b]

Definition 4: The weak stochastic model(s.c)

When server provides a flowAp(t) is termed as weak
stochastic service curve with a bounding function
a ∈ F d for the corresponding stochastic service serve
βi ∈ Fi and the weak stochastic curve is denoted as
Sp ˜wsc〈 a,βi 〉 , if for all a ≥ 0 and allb ≥ 0, it holds

Prob{X > b} ≤ a(b)

where,X = Ap⊗β1(b)−Dp(b)

Definition 5: The stochastic service curve model(s.s.c)

When server provides a flowAp (t) is termed as stochastic
service curve with a bounding functiona ∈ F d, for the
corresponding stochastic service serveβ1 ∈ Fi and the
stochastic curve is denoted asSp ˜ssc〈 a,β1 〉 , if for all
a ≥ 0 and allb ≥ 0, it holds

Prob{X > b≤ a(b)}

where,[X = sup
0≤s≤a

[AP⊗β1(b)−Dp(b)]

Definition 6: The strict stochastic service curve model
(s.s.s.c)

When server provides a flowAp(t) is termed as weak
stochastic service curve with a bounding function
a ∈ F d, for the corresponding stochastic service serve
β1 ∈ Fi and the strict stochastic curve is denoted as
Sp ˜sssc〈 a,β1 〉 , if for all a ≥ 0 and allb ≥ 0, it holds

Prob{X− b} ≤ a(b)

where,X = SP (a, b) < β1 (b − a)

The above definitions listed, proves the properties of
backlog and delay bound in stochastic network calculus.
In stochastic network calculus(Fi ,∧, ⊗) is proved to be a
complete dioid and based on the property following
Lemma is proved.

(i) The Closure property in stochastic network calculus
states:

∀x, y ∈ F d, x∧y∈ Fd; x∧y∈ F d

(ii)The Associativity property in stochastic network

calculus is represented as:

∀x, y ∈ F d,(x∧y)∧z= x∧ (y∧z)

(x∧y)∧z= x∧ (y∧z)

(iii) The Commutativity property is represented as:

∀x, y ∈ F d, x∧y= y∧x; x∧y= y∧x

(iv) The Distributivity property in Stochastic network

calculus is as follows:

∀x, y ∈ F d,(x∧y)∧z= (x∧z)∧ (y∧z)

(v) The Zero element property is given as:

∀x∈ Fd, x∧∈̄= x

(vi) The Absorbing zero element property in stochastic

network calculus is given as:

∀x∈ Fd , x∧∈̄= ∈̄∧x= ∈̄

(vii) Idempotency of addition in stochastic network

calculus:
∀x∈ F d,x∧x= x

(viii) Comparison property in stochastic network calculus:

x1∧x2 ≤ x1∨x2 ≤ x1⊗ x2

(ix) Monotonicity property in stochastic network calculus:

I f x1 ≤ y1 and x2 ≤ y2, then x1∧x2 ≤ y1∧y2;

x1∧x2 ≤ y1∧y2; x1∨x2 ≤ y1∨y2;

3 Basics of Underwater Acoustic Fading
Channel

Existing models for fading using queuing theory and
network calculus are suitable only for circuit switched
communication, and do not represent the stochastic nature
of present day packet switched communication
requirements. The accuracy of the Stochastic Network
Calculus (SNC) model and its simulations for underwater
acoustic networks was never attempted before. Since the
other layers [14] in the network stack and its
functionalities depends on the physical layer, there is
need to model this layer efficiently and effectively with
present day feasible mathematical models like the SNC.
SNC based models are now only being recently
researched for underwater acoustic communications,
hence lack of new constructs and mathematical
formulations that satisfy different physical layer
constraints is a real challenge. The proposed model serves
as a platform or origin for researchers working in acoustic
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channel modelling especially in propagation of
underwater wireless sensor networks. These proposed and
tested models can facilitate in the analysis and design of
real-time test bed implementation of acoustic channels in
the physical layer of the network stack.

Underwater acoustic channel is an invisible path that
connects the transmitting and the receiving end in an
underwater communication. The propagation of acoustic
waves requires a medium (shallow water, deep water,
very shallow water, sea water) to transmit data.
Regardless of the type of medium, there exists the loss as
such as Propagation loss and fading. Fading is further
classified as slow fading and fast fading. Propagation loss,
which is also termed as path loss is reflected in energy
loss, which can be shown by the value of received power
at the received end. Path loss is affected by factors like;
distance, with or without line of sight, water density,
strong currents, waves etc.[15]. There are a few path loss
models such as the free space path loss model, one slope
model and others [16]. An underwater environment
contains various living objects, non-living objects and
absorption affects, some part of the acoustic transmitted
signal gets reflected, diffracted and scattered and known
as slow fading. In underwater acoustics, multipath
propagation loss causes fast fading. Amplitude of the
received signal based on multipath propagation loss
causes fast fading. In addition to slow and fast fading,
there is flat fading and frequency selective fading in
acoustic propagation. When the transmission bandwidth
is less than 10Mbits/sec, the frequency selective effect
can be ignored and, in terms of the bandwidth and the
fading depth is considered to be at the same level. This is
known as flat fading. In Rayleigh fading model [17] for
acoustic multi-path propagation, the received power
follows an exponential distribution, when there is a line of
sight propagation path, Rician fading model [18] is
adapted. Nakagami model is a combination of the
Rayleigh and Rician channel models. Different values of
the channel parameter have the ability to decide whether
it is a Rayleigh or a Rician channel. Gilbert-Elliot fading
gives the condition of the channel as to whether it is good
or bad, based on a two states of Markov chain [19] at the
Packet level. In this paper, we have implemented the
Rician Fading technique using SNC. We have obtained
Stochastic Arrival and Stochastic Service Curve and
verified the tightness of the bounds.

4 Performance Bound Analysis

In this section, the performance bound analysis is derived.
Performance bound analysis is derived for following test
cases. As Deterministic arrival curve and stochastic
arrival curve. When the acoustic transmitter propagates
the data constantly through acoustic medium or when the
acoustic transmitter communicates constantly then the
channel is modelled using deterministic arrival curve.
When the acoustic transmitter propagates the data

randomly through acoustic channel or when the acoustic
transmitter communicates randomly, then the channel is
modelled using stochastic arrival curve. As mentioned
earlier Ap(t) denotes the arrival process and process
leaving the system is denoted as departure processDp(t).

4.1 Deterministic arrival traffic

When the nodes communicate with each other in the
acoustic channel, the arrival process for each sender node
is represented asAp(t). Similarly, When the nodes
communicate with each other in the acoustic channel then
the departure process is denoted asDp (t). As mentioned
earlier the deterministic arrival curves and deterministic
service curves in the acoustic channel in our system is
termed asα1 (t) and βi (t) , ε respectively. The backlog
for the stochastic process is represented asBl (t). The
backlog in derived as follows,

Prob{X ≥ Y} ≤ ε,

where,X = Bl (t) , Y = α1⊘β1
The delay bound in the stochastic network calculus in our

system is represented asDl (t). The stochastic upper bound
for the delay function is expresses as follows,

Prob{X >Y} ≤ ε,

where,X = Dl (t) ,Y = h(αi ,βi)

Prob{X ≥Y}

where,X = Bl (t),Y = α1⊘β1(0)

≤ Prob
{

Ap (t)−Dp(t)
}

≥ sup
0≤τ≤t

(Ap(t))

Ap(t) = [Ap(t)−Ap(t − τ)−β1(τ)]

≤ Prob
{

Ap (t)−Dp(t)
}

≥ sup
0≤τ≤t

(Ap(t))

= Pr{X− Y}

where,X = Al (t)−Dl (t)≥ Al (t)

Y = inf
0≤τ≤t

[Al (t − τ)+β1(τ) ]

= Pr{X ≤Y}

where,X = Dl (t),Y = Ap∧β1 (t)≤ ε

Dl (t) = in f {τ ≥ 0 : X ≤Y}

where,X = Al (t),Y = Dl (t + τ)

Using this derivation, we get

Pr{Dl (t)≥ τ0} ≤ Pr{X ≥Y}

c© 2016 NSP
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where,X = Ap (t) ,Y = Dl (t + τ0)
The performance bound can be proved as follows,

Pr{X ≥Y}

where,X = Al (t),Y = Dl (t + τ0)

X−Y = Ap (t)−Ap⊗Ssc+SacSsc= β1(t + τ0)

Sac = Ap⊗β (t + τ0)−Sd

Sd = Dl (t + τ0)

= Al (t)− Inpr+ Insp

Inpr = inf
0≤s≤t+τ0

[Ap (s)+β1(t + τ0− s)]

Insp= [Ap⊗β1(t + τ0)−D1]D1 = Dl (t + τ0)

The maximum horizontal difference between the
stochastic arrival curve and the stochastic service curve is
represented asτ0. The stochastic performance bound for
the arrival curve is represented

Pr{Dl (t)≥ τ0} ≤ XX= Pr
{

Dl (t)≤ Ap⊗β (t)
}

≤ ε

4.2 Stochastic arrival traffic

The exponentially bounded burstiness process provides
the arrival process in stochastic arrival curve. The
property of stochastic network calculus represents the
arrival process in a stochastically bounded process.
Consider the stochastic arrival curve process as following

Pr{X ≥ 0}Y

X = sup
0≤s≤t

[Ap (t)−Ap(s)−α1 (t − s)] ,Y = b1e−b2σ

where 0≤ s≤ t,σ > 0, andα1 (t) = A+B

A= ρ .t,B= σ

When the nodes communicate with each other in the

acoustic channel, the arrival process for each sender node
is represented asAp(t). Similarly, When the nodes
communicate with each other in the acoustic channel then
the departure process is denoted asDp (t). As mentioned
earlier the stochastic arrival curves and stochastic service
curves in the acoustic channel in our system is termed as
Ap(t)˜α1 (t) , f1 (σ) , and α (t) = ρ .t + σ respectively,
where Ap(t) receives the service curveβ (t) ,ε. The
backlog in derived as follows,
(i) Backlog bound:[Pr{X ≥Y} ≤ ε +Z

where,X = Bl (t),Y = α1⊘β1(0)Z = f1 (σ)
(ii) Delay Bound:Pr{X ≥Y} ≤ ε +Z

where,X = Dl (t) ,Y = h(α1,β1) ,Z = f1 (σ)

Since probability of any event in the space is less than or
equal to 1, by applying the probability property, we get

ε + f1(σ) = Ppr

Ppr = min(ε + f1 (σ) , 1)

Bl (t) = Ap(t)−Dl (t)

= Ap(t)−X+Y−Z

X = Ap⊗β1(t) ,Y = Ap⊗β1(t) ,Z = Dl (t)

= Ap(t)− inf
0≤s≤t

X+Y

X = [Ap (s)+β1(t − s)] ,Y = [Ap⊗β1(t)−Dl (t)]

≤ sup
0≤s≤t

[A(t)−X] +Y

X = Ap (s)−β1(t − s)−α1 (t − s)+α1 (t − s) ,

Y = [Ap⊗β1(t)−Dl (t)]

≤ sup
0≤s≤t

X+ sup
t≥0

[Y]+ [Z]

X = [Ap(t)−Ap(s)−α1(t − s)] ,

Y = α1 (t)−β1(t) ,Z = Ap⊗β1(t)−Dl (t)

Delay bound is similar to the deterministic arrival curve,

Pr {X ≥ 0}= 0;

X = sup
0≤s≤t

[Ap (t)−Ap(s)−α1(t − s)]

Delay bound is derived as,

Pr{d (t)≥ h(α1, β )1} ≤ ε +X

X = f1 (σ)

5 Modeling Acoustic Rician Fading

Stochastic service guarantees for packet switched
networks is calculated for underwater acoustic
communication using research in stochastic network
calculus [20]. In stochastic service curve the aggregation
of flows or individual flows represents the probabilistic
bound [21] in SNC. Stochastic end-to-end delay and
stochastic end-to-end backlog bounds are distributive in
stochastic network calculus [22]. By deriving the network
service curve stochastic end-to-end delay and stochastic
backlog bounds are derived and calculated. The other
properties in stochastic network calculus like delay and
analysing the service guarantee in the server model
facilitates backlog delay guarantee [23]. This concept is
applicable to other properties in stochastic network
calculus such as output characterization and
concatenation. Even though there are various researches
on the theories of SNC, only a few study the mapping of
theory to real-time network applications. In [24], a
Markov chain model of a wireless channel is provided; it
doesn’t provide a closed-form service curve, whereas we
need a stochastic service quality for fading that uses
closed-form service curves.

c© 2016 NSP
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Fig. 3: System Modelling of Acoustic Rician Fading Channel

5.1 Acoustic Channel Model

In Rican fading the transmitted acoustic signals travels
through the acoustic medium. When the acoustic signal
arrives at the acoustic receiver node with atleast two
different paths, then fading occurs. When there are more
than two paths from acoustic transmitter and acoustic
receiver fading like Rayleigh, Rician, Weibull occurs in
the channel. When one of the path in the channel has
line-of-sight (LOS) and the LOS signal received in
acoustic receiver is stronger then other signals, then it is
termed to be Rician Fading [25]. In Rician fading the
amplitude gain is denoted as Rician Factor In this fading
technique the amplitude gain is characterized by a Rician
factor X. Consider a system model of a discrete-time
flat-fading acoustic channel

Co =Cg+Ci +Gn

where Ci denotes the acoustic channel input andCo
denotes the acoustic channel output.Gn denotes the
identically Gaussian noise. Gaussian noise is independent
and distributed in the system as|At |ejφ

Channel gain is expressed asCg with amplitude|At |
and phase is denoted asφ . Rayleigh fading is uniformly
distributed in the region[0, 2π ]. Fig. 3 provides the
systems model of a fading acoustic channel.

Cc =CbT

T = log2[1+10γ/10] = log2[1+
Pat|At |

2

CbPd
]

where,Cc= Channel CapacityCb= Channel Bandwidth

Pat= Average Transmission powerPd= Power spectral
density

The acoustic transmitter is not aware of the
instantaneous signal-to-noise ratio (SNR)γt in the outage
probability Op of an acoustic fading channel can be
expressed

0p(Td) = Prx = {Cc < Td}

= Prx

{

log2[1+
Pat|At |

2

CbPd
]< Td

}

= Prx {CcT < Td}

= Prx

{

|At |
2 <

(

2Td/Cb −1
)

.
PdCb

Pat

}

where, channel gain|At | has a distribution with probability
density function

h(t) = F ∗G

F = t.exp(
−t2

2
+X),G= Bf (tc),X = RicianFactor=

c2

2

whereBf is the modified Bessel Function of order zero

and Rician FactorX = c2

2 . It is the relation between the
Line-of-sight components. When Rician factorX → ∞,
there exists no Line-of-sight component and hence
Rayleigh and Rician fading are the same. By
transformation theorem,|At |

2 has an exponential
distribution with probability density function,

f (t) =
1
2

exp
(

−
t
2

)

0p(Td) = 1−D

D = exp(
1−2Td/Cb

2.G
)

G= 10SNR/10

whereSNR= 10log10[Pat/(PsdCb]

5.2 Stochastic Acoustic Service Curve

In acoustic wireless communication, the data traffic is
random and irregular. In order to capture the
characteristics of acoustic channel, deterministic service
curve is not applicable as the acoustic channel is random
and irregular. Stochastic service curve is useful in
determining the acoustic channel characteristics. The
channel capacityCcis described by the two following
parameters. Stochastic service curve determines the
service capability using the data transmission rate that is
denotes asTr ε denotes the error function in the system.
From the previous analysis of the fading channel, we can
model the stochastic service curveβ (t) , ε,

Ssc(t) = Td.t

Ef (Td) = 1−exp

(

1−2Td/Cb

2.SNR

)

6 Simulation and Performance Evaluation

In this section, we present the performance evaluation of
the derived mathematical models using simulations. In
order to validate the tightness of the bound, we have
simulated using the well-known commercial network
simulation software tool OPNET, and compared the
results of the simulation with their respective analytical
results. The simulation parameters used are mentioned in
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Table 1: Simulation Parameters
Channel Width 40 kHz
Transmit Power 2 W

Noise Power Spectral Density 1 dB
Carrier Frequency 40 kHz

Node Count 2
Delay 2s

Speed of Sound 1500 m/s
Rician Fading Parameter 0.5

Transmission Rate 0.09190 pkts/s
Transmission Time 7.75 s
Transmission Range 700 m

Packet Size 1024B
σ(s),ρ(s) Bounds on rate and burst

Table 1. A simulation setup for analyzing the effects of
fading in an underwater acoustic network is deployed
using a single transmitter and receiver node. Fig. 4 shows
the OPNET simulation environment with two nodes one
acts as a transmitter and another as receiver. Fig. 5 shows
the cumulative density function of the delay. From the
simulation mode we can conclude that the delay varies
between 0.1 to 1.1 seconds. We have compared the
simulated results with the analytical results.Fig. 6
explains the comparison between the Signals to Noise
ratio with bit error rate. It proves that our simulated model
of Rician fading channel using OPNET matches the
analytical results of the Rician fading channel modeled in
the previous section. The acoustic sender or source sends
the data in the acoustic medium to the acoustic receiver
and the data rate isr=40 kbps.The data is send using the
acoustic medium of the rician fading channel. The
acoustic receiver, when receives data known as arrival
process is modeled by using the stochastic arrival curve.

The arrival process in the channel is determined by
using the arrival curve, which is deterministic in nature.
Due to this the channel provides small processing delay in
acoustic channel medium. The stochastic rate is derived
with the small processing delay in the channel. Since the
channel is said to have zero processing delay, the backlog
bound in the stochastic arrival curves becomes
independent of the channel. Violation probability in the
channel becomes independent and backlog bound
becomes constant factor. In Fig. 7 the loss probability we
depict the loss probability model as a function of average
channel SNR. The buffer size is fixed to300kband the
traffic rateσ is set to15 kbps. We have calculated for
each node individually. In the Figs. 8 and 9 the stochastic
delay for underwater acoustic transmitter is calculated.
The violation probability is calculated for individual
nodes. As mentioned already we have set the simulation
in OPNET to two nodes one as transmitter and another as
receiver. The traffic parameters bound rate asσ (s) as100
kb and burst rate asσ (s) 30 Kbps. The graph illustrates
that at sufficiently high SNR values, the delays are

Fig. 4: Simulation Set up

Fig. 5: Cumulative Density Function

achieved even when traffic traverses multiple acoustic
propagation links.

The graphs shows here can be used for deploying
multiple hop underwater acoustic nodes. Since the
average channel SNR largely depends on the signal loss
due to path loss, shadowing, which in turn is the function
of the transmission circle

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 4, 1465-1474 (2016) /www.naturalspublishing.com/Journals.asp 1473

Fig. 6: SNR vs Bit Error Rate

Fig. 7: SNR Vs Loss Probability

7 Conclusion and Future Work

In this research article, we have made theoretical and
practical contributions in understanding the fading effects
in underwater wireless communication. The proposed
mathematical model is analyzed and validated with
respective simulation methods in OPNET. The results are
satisfactory to the extent that our analytical model closely
represents the real-time fading effects in underwater
acoustic transmission. In our future work we would focus
on increasing the network size with different nodes and
varying bandwidth of the channel and transmission
power. We would also be modeling acoustic channels
with other known types of fading like Gilbert-Elliot,
Weibull, AWGN, and Nakagami models

Fig. 8: Delay Bound Vs Violation Probability (for 5 dB)

Fig. 9: Delay Bound Vs Violation Probability (for 10 dB)
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