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Abstract: In this work, we introduce new series of divergence measuresas a family of Csiszar’s functional divergence, characterize
the properties of convex functions and divergences, compare several divergences, and derive various important and interesting relations
among divergences of these new series and other well known divergence measures. Also get the bounds of a particular member of that
series together with numerical verification. Application to the mutual information is presented as well.
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1 Introduction

Divergence measures are basically measures of distance
between two probability distributions or compare two
probability distributions. It means that any divergence
measure must take its minimum value zero when
probability distributions are equal and maximum value
when probability distributions are perpendicular to each
other. Depending on the nature of the problem, different
divergence measures are suitable. So it is always desirable
to develop a new divergence measure.
In recently years, lot of work had been done on
information divergence measures by Dragomir [9,10,11,
12], Jain [15,16,19,20,21,23], Taneja [38,39,42,43,44]
and others, who gave the idea of divergence measures,
their properties, their bounds and relations with other
measures.
Divergence measures have been demonstrated very useful
in a variety of disciplines such as economics and political
science [46,47], biology [33], analysis of contingency
tables [13], approximation of probability distributions [5,
29], signal processing [26,28], pattern recognition [1,4,
25], color image segmentation [31], 3D image
segmentation and word alignment [45], cost- sensitive
classification for medical diagnosis [35], magnetic
resonance image analysis [49] etc.
Also we can use divergences in fuzzy mathematics as
fuzzy directed divergences and fuzzy entropies which are

very useful to find the amount of average ambiguity or
difficulty in making a decision whether an element
belongs to a set or not. Fuzzy information measures have
recently found applications to fuzzy aircraft control,
fuzzy traffic control, engineering, medicines, computer
science, management and decision making etc.
Without essential loss of insight, we have restricted
ourselves to discrete probability distributions, so let
Γn = {P = (p1, p2, p3, ..., pn) : pi > 0,∑n

i=1 pi = 1}, n ≥ 2
be the set of all complete finite discrete probability
distributions. The restriction here to discrete distributions
is only for convenience, similar results hold for
continuous distributions. If we takepi ≥ 0 for some
i = 1,2,3...,n, then we have to suppose that
0 f (0) = 0 f

(0
0

)

= 0.
Some generalized functional information divergence
measures had been introduced, characterized and applied
in variety of fields, such as: Csiszar’sf - divergence [6,7],
Bregman’s f - divergence [2], Burbea- Rao’s f -
divergence [3], Renyi’s like f - divergence [34], and Jain-
Saraswatf - divergence [22].
Many divergence measures can be obtained from these
generalizedf - measures by suitably defining the function
f . Especially Csiszar’sf - divergence is widely used due
to its compact nature, which is given by

C f (P,Q) =
n

∑
i=1

qi f

(

pi

qi

)

, (1)
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where f : (0,∞) → R (set of real no.) is real, continuous,
and convex function and
P = (p1, p2, ..., pn) ,Q = (q1,q2, ...,qn) ∈ Γn, wherepi and
qi are probabilities. Some resultant divergences by
C f (P,Q), are as follows.

E∗
m (P,Q) =

n

∑
i=1

(pi − qi)
2m

(piqi)
2m−1

2

,m = 1,2,3, ...[23]. (2)

J∗m (P,Q)=
n

∑
i=1

(pi − qi)
2m

(piqi)
2m−1

2

exp
(pi − qi)

2

piqi
,m= 1,2,3, ...[23].

(3)

N∗
m (P,Q) = ∑n

i=1
(pi−qi)

2m

(pi+qi)
2m−1 exp(pi−qi)

2

(pi+qi)
2 ,m = 1,2,3, ...[21].

(4)

P∗ (P,Q) =
n

∑
i=1

(pi − qi)
4 (pi + qi)

(

p2
i + q2

i

)

p3
i q3

i

[20]. (5)

∆m (P,Q) =
n

∑
i=1

(pi − qi)
2m

(pi + qi)
2m−1 ,m = 1,2,3...

=Puri and Vineze Divergences [27].

(6)

χ2m (P,Q) =
n

∑
i=1

(pi − qi)
2m

q2m−1
i

,m = 1,2,3...

=Chi- m divergences [48],

(7)

where

E∗
1 (P,Q) = E∗ (P,Q) =

n

∑
i=1

(pi − qi)
2

√
piqi

, (8)

∆1 (P,Q) =∆ (P,Q) =
n

∑
i=1

(pi − qi)
2

pi + qi

=Triangular discrimination [8],

(9)

and

χ2(P,Q) =
n

∑
i=1

(pi − qi)
2

qi
= Chi- square divergence [32].

(10)
(8), (9), and (10) are the particular cases of (2), (6), and (7)
respectively atm = 1.

K (P,Q)=
n

∑
i=1

pi log
pi

qi
=Relative information [30]. (11)

G(P,Q) =
n

∑
i=1

pi + qi

2
log

(

pi + qi

2pi

)

=Relative Arithmetic- Geometric Divergence [42].
(12)

F (P,Q) =
n

∑
i=1

pi log
2pi

pi + qi

=Relative Jensen- Shannon divergence [37].
(13)

Some means can be seen in literature [41], these are as
follows [(14)- (20)].

H∗ (P,Q) =
n

∑
i=1

2piqi

pi + qi
= Harmonic mean. (14)

A(P,Q) =
n

∑
i=1

pi + qi

2
= Arithmetic mean. (15)

N1 (P,Q) =
n

∑
i=1

(√
pi +

√
qi

2

)2

= Square root mean.

(16)

N3 (P,Q) =
n

∑
i=1

pi +
√

piqi + qi

3
= Heronian mean. (17)

L∗ (P,Q)=
n

∑
i=1

pi − qi

logpi − logqi
, pi 6= qi ∀ i= Logarithmic mean.

(18)

G∗ (P,Q) =
n

∑
i=1

√
piqi = Geometric mean. (19)

N2 (P,Q) =
n

∑
i=1

(√
pi +

√
qi

2

)

√

pi + qi

2
= N2 mean.

(20)

JR (P,Q) = 2[F (Q,P)+G(Q,P)] =
n

∑
i=1

(pi − qi) log

(

pi + qi

2qi

)

= Relative J- Divergence [11],
(21)

whereF (P,Q) and G(P,Q) are given by (13) and (12)
respectively.

h(P,Q) = 1−G∗ (P,Q) =
n

∑
i=1

(√
pi −

√
qi
)2

2

= Hellinger discrimination [14],

(22)

whereG∗ (P,Q) is given by (19).

I (P,Q) =
1
2
[F (P,Q)+F (Q,P)]

=
1
2

[

n

∑
i=1

pi log
2pi

pi + qi
+

n

∑
i=1

qi log
2qi

pi + qi

]

= JS divergence [3,37],

(23)

whereF (P,Q) is given by (13).

J (P,Q) = K (P,Q)+K (Q,P) = JR (P,Q)+ JR (Q,P)

=
n

∑
i=1

(pi − qi) log
pi

qi
= J- divergence [24,30],

(24)
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whereJR (P,Q) and K (P,Q) are given by (21) and (11)
respectively.

T (P,Q) =
1
2
[G(P,Q)+G(Q,P)]

=
n

∑
i=1

pi + qi

2
log

pi + qi

2
√

piqi

= AG Mean Divergence[42],

(25)

whereG(P,Q) is given by (12).

ψ (P,Q) = χ2 (P,Q)+ χ2(Q,P) =
n

∑
i=1

(pi − qi)
2 (pi + qi)

piqi

= Symmetric Chi- square Divergence [12],
(26)

whereχ2(P,Q) is given by (10).
Divergences (2) to (4), (6), and (7) are series of
divergence measures corresponding to series of convex
functions. Out of them, divergences (2) to (4) are
introduced by Jain and others. Divergences (2) to (6),
Means (14) to (20), and (22) to (26) are symmetric while
(7), (11) to (13), and (21) are non- symmetric with respect
to probability distributionsP,Q ∈ Γn.
Now, for a differentiable functionf : (0,∞)→ R, consider
the associated functiong : (0,∞)→ R, is given by

g(t) = (t −1) f ′
(

t +1
2

)

. (27)

After putting (27) in (1), we get

E∗
C f

(P,Q) =
n

∑
i=1

(pi − qi) f ′
(

pi + qi

2qi

)

. (28)

2 New series of convex functions and
properties

In this section, we develop some new series of convex
functions and study their properties. For this, firstly let
f : (0,∞)→ R(set of real no.) be a mapping defined as

fm (t) =

(

t2−1
)2m

t2m−1 ,m = 1,2,3... (29)

and

f ′m (t) =

(

t2−1
)2m−1[

t2 (2m+1)+2m−1
]

t2m , (30)

f ′′m (t) =
2m(t2−1)

2m−2

t2m+1

[

t4 (2m+1)+4t2(m−1)+2m−1
]

.

(31)

From (29), we get the following new convex functions at
m = 1,2,3... respectively.

f1 (t) =

(

t2−1
)2

t
, f2 (t) =

(

t2−1
)4

t3 , f3 (t) =

(

t2−1
)6

t5 ...

(32)
Since, we know that the linear combination of convex
functions is also a convex function, i.e.,
a1 f1 (t) + a2 f2 (t) + a3 f3 (t) + ... is a convex function as
well, wherea1,a2,a3, ... are positive constants. Therefore,
we have following two cases to obtain new series of
convex functions.
(i) If we takea1 = a2 = 1,a3 = a4 = a5 = ...= 0, then we
have

f1,2 (t) = f1 (t)+ f2 (t) =
(t2−1)

2

t +
(t2−1)

4

t3
=

(t2−1)
2
(t4−t2+1)
t3

.

(33)
Similarly, if we takea2 = a3 = 1,a1 = a4 = a5 = ... = 0,
then we have

f2,3 (t) = f2 (t)+ f3 (t) =
(t2−1)

4

t3
+

(t2−1)
6

t5
=

(t2−1)
4
(t4−t2+1)
t5

.

(34)
In this way, we can write form = 1,2,3...

fm,m+1 (t) = fm (t)+ fm+1 (t) =

(

t2−1
)2m

t2m−1 +

(

t2−1
)2m+2

t2m+1

=

(

t2−1
)2m (

t4− t2+1
)

t2m+1 .

(35)

(ii) If we take

a1 = 1,a2 = loge b,a3 =
(loge b)2

2! ,a4 =
(loge b)3

3! , ...,b > 1,
then we have

g1(t) = f1 (t)+ (loge b) f2 (t)+
(loge b)2

2!
f3 (t)+ ...

=

(

t2−1
)2

t
+(loge b)

(

t2−1
)4

t3 + ...

=

(

t2−1
)2

t

[

1+(loge b)

(

t2−1
)2

t2 + ...

]

=

(

t2−1
)2

t
b
(t2−1)

2

t2 ,b > 1.

(36)

Similarly, if we take a1 = 0,a2 = 1,a3 = loge b,a4 =
(loge b)2

2! ,a5 =
(loge b)3

3! , ...,b > 1, then we have

g2(t) =

(

t2−1
)4

t3 +(loge b)

(

t2−1
)6

t5 + ...,b > 1

=

(

t2−1
)4

t3

[

1+(loge b)

(

t2−1
)2

t2 + ...

]

=

(

t2−1
)4

t3 b
(t2−1)

2

t2 ,b > 1.

(37)
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In this way, we can write

gm (t) =

(

t2−1
)2m

t2m−1 b
(t2−1)

2

t2 ,b > 1,m = 1,2,3, .... (38)

Remark: If we takeb = e ≈ 2.71828 then from (38), we
obtain the following series.

gm (t) =

(

t2−1
)2m

t2m−1 e
(t2−1)

2

t2

=

(

t2−1
)2m

t2m−1 exp

(

t2−1
)2

t2 ,m = 1,2,3, ....

(39)

Properties of functions defined by (29), (35) and (39), are
as follows.
• Since
fm (1) = 0= fm,m+1 (1) = gm (1)⇒ fm (t) , fm,m+1 (t) and
gm (t) are normalized functions for eachm.
• Since f ′′m (t) ≥ 0 ∀ t ∈ (0,∞) ,m = 1,2,3...⇒ fm (t) are
convex functions and sofm,m+1 (t) ,gm (t) are as well.
• Since f ′m (t) < 0 at (0,1) and> 0 at(1,∞)⇒ fm (t) are
monotonically decreasing in(0,1) and monotonically
increasing in(1,∞), for each value ofm and f ′m (1) = 0.

3 New series of information divergence
measures and properties

In this section, we obtain new series of divergence
measures corresponding to series of convex functions
defined in section 2 and study their properties. For this,
firstly the following theorem is well known in literature
[7].
Theorem 3.1If the function f is convex and normalized,
i.e., f ′′ (t) ≥ 0 ∀ t > 0 and f (1) = 0 respectively, then
C f (P,Q) and its adjointC f (Q,P) are both non-negative
and convex in the pair of probability distribution
(P,Q) ∈ Γn ×Γn.
Now put (29) in (1), we get the following new series of
divergences.

C f (P,Q) = γm (P,Q) =
n

∑
i=1

(

p2
i − q2

i

)2m

p2m−1
i q2m

i

,m = 1,2,3...

(40)

γ1 (P,Q) =
n

∑
i=1

(

p2
i − q2

i

)2

piq2
i

,γ2 (P,Q) =
n

∑
i=1

(

p2
i − q2

i

)4

p3
i q4

i

, ...

(41)
Similarly put (35) in (1), we get the following new series
of divergences.

C f (P,Q) = ηm (P,Q) = ∑n
i=1

(p2
i −q2

i )
2m
(p4

i −p2
i q2

i +q4
i )

p2m+1
i q2m+2

i
,m = 1,2...

(42)

η1 (P,Q) =
n

∑
i=1

(

p2
i − q2

i

)2(
p4

i − p2
i q2

i + q4
i

)

p3
i q4

i

, (43)

η2 (P,Q) =
n

∑
i=1

(

p2
i − q2

i

)4(
p4

i − p2
i q2

i + q4
i

)

p5
i q6

i

, ... (44)

Similarly put (39) in (1), we get the following new series
of divergences.

C f (P,Q) = ρm (P,Q) = ∑n
i=1

(p2
i −q2

i )
2m

p2m−1
i q2m

i
exp

(p2
i −q2

i )
2

(piqi)
2 ,m = 1,2...

(45)

ρ1 (P,Q) =
n

∑
i=1

(

p2
i − q2

i

)2

piq2
i

exp

(

p2
i − q2

i

)2

(piqi)
2 , (46)

ρ2 (P,Q) =
n

∑
i=1

(

p2
i − q2

i

)4

p3
i q4

i

exp

(

p2
i − q2

i

)2

(piqi)
2 , ... (47)

Properties of divergences defined by (40), (42) and (45),
are as follows.
• In view of theorem 3.1, we can say that
γm (P,Q) ,ηm (P,Q) ,ρm (P,Q) > 0 and are convex in the
pair of probability distributionP,Q ∈ Γn.
• γm (P,Q) = 0 = ηm (P,Q) = ρm (P,Q) if P = Q or
pi = qi (attains its minimum value).
• Since γm (P,Q) 6= γm (Q,P) ,ηm (P,Q) 6=
ηm (Q,P) ,ρm (P,Q) 6= ρm (Q,P) ⇒ γm (P,Q) ,ηm (P,Q),
ρm (P,Q) are non- symmetric divergence measures.

4 Csiszar’s information inequality and its
application

In this section, we are taking well known information
inequalities onC f (P,Q); such inequalities are for instance
needed in order to calculate the relative efficiency of two
divergences. By using these inequalities, we will obtain
the bounds ofγ1 (P,Q) in terms of the other well known
divergence measures. The following theorem is due to
literature [40], which relates two generalizedf -
divergence measures.
Theorem 4.1Let f1, f2 : I ⊂ (0,∞) → R be two convex
and normalized functions, i.e.,f ′′1 (t) , f ′′2 (t) ≥ 0 ∀ t > 0
and f1 (1) = f2 (1) = 0 respectively and suppose the
following assumptions.
(i) f1 and f2 are twice differentiable on(α,β ),
0< α ≤ 1≤ β < ∞ with α 6= β .
(ii) There exists the real constantsm,M such thatm < M
and

m ≤ f ′′1 (t)
f ′′2 (t)

≤ M, f ′′2 (t) 6= 0 ∀ t ∈ (α,β ) . (48)

If P,Q ∈ Γn is such that
0 < α ≤ pi

qi
≤ β < ∞ ∀ i = 1,2,3...,n, then we have the

following inequalities

mC f2 (P,Q)≤C f1 (P,Q)≤ MC f2 (P,Q) , (49)

whereC f (P,Q) is given by (1).
Now by using theorem 4.1 or inequalities (49), we will
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get the bounds ofγ1 (P,Q) in terms of other well known
standard divergences. Firstly, let us consider

f1 (t)=

(

t2−1
)2

t
, t > 0, f1 (1)= 0, f ′1(t)=

(

t2−1
)(

3t2+1
)

t2

and

f ′′1 (t) =
2
(

3t4+1
)

t3 . (50)

Put f1 (t) in (1), we get

C f1 (P,Q) =
n

∑
i=1

(

p2
i − q2

i

)2

piq2
i

= γ1 (P,Q) . (51)

Now, we will obtain bounds ofγ1 (P,Q) in terms of other
well known divergences, by the following propositions.
Proposition 4.1Let γ1 (P,Q) andh(P,Q) be defined as in
(51) and (22) respectively. ForP,Q ∈ Γn, we have
(i) If 0 < α ≤ .67, then

23.4h(P,Q)≤ γ1 (P,Q)≤ 8max

[

3α4+1

α
3
2

,
3β 4+1

β
3
2

]

h(P,Q) .

(52)
(ii) If .67< α ≤ 1, then

8(3α4+1)

α
3
2

h(P,Q)≤ γ1 (P,Q)≤ 8(3β 4+1)

β
3
2

h(P,Q) .

(53)
Proof: Let us consider
f2 (t) =

1
2

(

1−
√

t
)2
, t ∈ (0,∞) , f2 (1) = 0, f ′2 (t) =

1
2

(

1− 1√
t

)

and

f ′′2 (t) =
1

4t
3
2

. (54)

Since f ′′2 (t)> 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is convex
and normalized function respectively. Now putf2 (t) in
(1), we get

C f2 (P,Q) =
n

∑
i=1

(√
pi −

√
qi
)2

2
= h(P,Q) . (55)

Now, let g(t) =
f ′′1 (t)
f ′′2 (t)

=
8(3t4+1)

t
3
2

and g′ (t) =
4(15t4−3)

t
5
2

,

g′′ (t) = 30

(

3
√

t + 1

t
7
2

)

, wheref ′′1 (t) and f ′′2 (t) are given

by (50) and (54) respectively.
If g′ (t) = 0⇒ t = .6687403≈ .67.
It is clear by Figure 1 ofg′ (t) that g′ (t) < 0 in (0, .67)
and> 0 in (.67,∞), i.e.,g(t) is decreasing in(0, .67) and
increasing in(.67,∞). So g(t) has a minimum value at
t = .67 becauseg′′ (.67) = 195.5276≈ 195.5> 0. So
(i) If 0 < α ≤ .67, then

m = inf
t∈(α ,β )

g(t) = g(.67) = 23.405968≈ 23.4. (56)

M = supt∈(α ,β )g(t) = max [g(α) ,g(β )] = max

[

8(3α4+1)

α
3
2

,
8(3β 4+1)

β
3
2

]

.

(57)

Fig. 1: Graph ofg′ (t)

(ii) If .67< α ≤ 1, then

m = inf
t∈(α ,β )

g(t) = g(α) =
8
(

3α4+1
)

α
3
2

. (58)

M = sup
t∈(α ,β )

g(t) = g(β ) =
8
(

3β 4+1
)

β
3
2

. (59)

The results (52) and (53) are obtained by using (51), (55),
(56), (57), (58), and (59) in (49).
Proposition 4.2Let γ1 (P,Q) andG(P,Q) be defined as in
(51) and (12) respectively. ForP,Q ∈ Γn, we have
(i) If 0 < α ≤ .51, then

14.24G(P,Q)≤ γ1 (P,Q)

≤ 4max

[

(α +1)
(

3α4+1
)

α
,
(β +1)

(

3β 4+1
)

β

]

G(P,Q) .

(60)

(ii) If .51< α ≤ 1, then

4(α +1)
(

3α4+1
)

α
G(P,Q)≤ γ1 (P,Q)

≤ 4(β +1)
(

3β 4+1
)

β
G(P,Q) .

(61)

Proof: Let us consider

f2 (t) =

(

t +1
2

)

log
t +1
2t

, t ∈ (0,∞) ,

f2 (1) = 0, f ′2 (t) =
1
2

[

log
t +1
2t

− 1
t

]

and

f ′′2 (t) =
1

2t2(t +1)
. (62)

Since f ′′2 (t)> 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is convex
and normalized function respectively. Now putf2 (t) in
(1), we get

C f2 (P,Q) =
n

∑
i=1

(

pi + qi

2

)

log
pi + qi

2pi
= G(P,Q) . (63)

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1438 K. C. Jain, P. Chhabra: New series of information divergence...

Now, let g(t) =
f ′′1 (t)
f ′′2 (t)

=
4(t+1)(3t4+1)

t and

g′ (t) =
4(12t5+9t4−1)

t2
, g′′ (t) = 8

(

18t2+9t + 1
t3

)

, where

f ′′1 (t) and f ′′2 (t) are given by (50) and (62) respectively.
If g′ (t) = 0⇒ t = .507385≈ .51.

Fig. 2: Graph ofg′ (t)

It is clear by Figure 2 ofg′ (t) that g′ (t) < 0 in (0, .51)
and> 0 in (.51,∞), i.e.,g(t) is decreasing in(0, .51) and
increasing in(.51,∞). So g(t) has a minimum value at
t = .51 becauseg′′ (.51) = 134.4830294≈ 134.45> 0.
So
(i) If 0 < α ≤ .51, then

m = inf
t∈(α ,β )

g(t) = g(.51) = 14.24677337≈ 14.24. (64)

M = sup
t∈(α ,β )

g(t) = max [g(α) ,g(β )]

= max

[

4(α +1)
(

3α4+1
)

α
,
4(β +1)

(

3β 4+1
)

β

]

.

(65)

(ii) If .51< α ≤ 1, then

m = inf
t∈(α ,β )

g(t) = g(α) =
4(α +1)

(

3α4+1
)

α
. (66)

M = sup
t∈(α ,β )

g(t) = g(β ) =
4(β +1)

(

3β 4+1
)

β
. (67)

The results (60) and (61) are obtained by using (51), (63),
(64), (65), (66), and (67) in (49).
Proposition 4.3Let γ1 (P,Q) andχ2 (P,Q) be defined as
in (51) and (10) respectively. ForP,Q ∈ Γn, we have
(i) If 0 < α < 1, then

4χ2(P,Q)≤ γ1 (P,Q)≤max

[

3α4+1
α3 ,

3β 4+1
β 3

]

χ2 (P,Q) .

(68)
(ii) If α = 1, then

4χ2(P,Q)≤ γ1 (P,Q)≤ 3β 4+1
β 3 χ2(P,Q) . (69)

Proof: Let us consider

f2 (t)= (t −1)2 , t ∈ (0,∞) , f2 (1)= 0, f ′2 (t)= 2(t −1) and

f ′′2 (t) = 2. (70)

Since f ′′2 (t)> 0 ∀ t > 0 and f2 (1) = 0, so f2 (t) is convex
and normalized function respectively. Now putf2 (t) in
(1), we get

C f2 (P,Q) =
n

∑
i=1

(pi − qi)
2

qi
= χ2 (P,Q) . (71)

Now, let g(t) =
f ′′1 (t)
f ′′2 (t)

= 3t4+1
t3

and g′ (t) =
3(t4−1)

t4
,

g′′ (t) = 12
t5

, where f ′′1 (t) and f ′′2 (t) are given by (50) and
(70) respectively.
If g′ (t) = 0⇒ t = 1.

Fig. 3: Graph ofg′ (t)

It is clear by Figure 3 ofg′ (t) thatg′ (t) < 0 in (0,1) and
> 0 in (1,∞), i.e., g(t) is decreasing in(0,1) and
increasing in(1,∞). So g(t) has a minimum value at
t = 1 becauseg′′ (1) = 12> 0. So

m = inf
t∈(0,∞)

g(t) = g(1) = 4. (72)

(i) If 0 < α < 1, then

M = sup
t∈(α ,β )

g(t) = max [g(α) ,g(β )]

= max

[

3α4+1
α3 ,

3β 4+1
β 3

]

.

(73)

(ii) If α = 1, then

M = sup
t∈(1,β )

g(t) = g(β ) =
3β 4+1

β 3 . (74)

The results (68) and (69) are obtained by using (51), (71),
(72), (73), and (74) in (49).

By using the similar approach, we obtain the bounds of
γ1 (P,Q) in terms of other standard divergences; these
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inequalities are as follows (we leave to the readers to
prove the followings, omitting the details).
Proposition 4.4If we take f2 (t) = t logt, then we have

6.9K (P,Q)≤ γ1 (P,Q)

≤ 2max

[

3α4+1
α2 ,

3β 4+1
β 2

]

K (P,Q) if 0 < α ≤ .76,

2
(

3α4+1
)

α2 K (P,Q)≤ γ1 (P,Q)

≤ 2
(

3β 4+1
)

β 2 K (P,Q) if .76< α ≤ 1.

Proposition 4.5If we take f2 (t) = t log 2t
t+1 , then we have

19.7F (P,Q)≤ γ1 (P,Q)

≤ 2max

[

(α +1)2
(

3α4+1
)

α2 ,
(β +1)2

(

3β 4+1
)

β 2

]

F (P,Q)

if 0 < α ≤ .62,

2(α +1)2
(

3α4+1
)

α2 F (P,Q)≤ γ1 (P,Q)

≤ 2(β +1)2
(

3β 4+1
)

β 2 F (P,Q) if .62< α ≤ 1.

Proposition 4.6 If we take f2 (t) = (t −1) logt, then we
have

2.87J (P,Q)≤ γ1 (P,Q)

≤ 2max

[

3α4+1
α (α +1)

,
3β 4+1

β (β +1)

]

J (P,Q) if 0 < α ≤ .65,

2
(

3α4+1
)

α (α +1)
J (P,Q)≤ γ1 (P,Q)

≤ 2
(

3β 4+1
)

β (β +1)
J (P,Q) if .65< α ≤ 1.

Proposition 4.7 If we take f2 (t) = t+1
2 log t+1

2
√

t
, then we

have

21.8T (P,Q)≤ γ1 (P,Q)

≤ 8max

[

(

3α4+1
)

(α +1)

α (α2+1)
,

(

3β 4+1
)

(β +1)

β (β 2+1)

]

T (P,Q)

if 0 < α ≤ .62,

8
(

3α4+1
)

(α +1)

α (α2+1)
T (P,Q)≤ γ1 (P,Q)

≤ 8
(

3β 4+1
)

(β +1)

β (β 2+1)
T (P,Q) if .62< α ≤ 1.

Proposition 4.8 If we take f2 (t) =
(t−1)2(t+1)

t , then we
have

ψ (P,Q)≤ γ1 (P,Q)≤ max

[

3α4+1
α3+1

,
3β 4+1
β 3+1

]

ψ (P,Q)

if 0 < α ≤ .25,

3α4+1
α3+1

ψ (P,Q)≤ γ1 (P,Q)≤ 3β 4+1
β 3+1

ψ (P,Q)

if .25< α ≤ 1.

Proposition 4.9 If we take f2 (t) = t
2 logt + t+1

2 log 2
t+1,

then we have

23.86I (P,Q)≤ γ1 (P,Q)

≤ 4max

[

(α +1)
(

3α4+1
)

α2 ,
(β +1)

(

3β 4+1
)

β 2

]

I (P,Q)

if 0 < α ≤ .69,

4(α +1)
(

3α4+1
)

α2 I (P,Q)≤ γ1 (P,Q)

≤ 4(β +1)
(

3β 4+1
)

β 2 I (P,Q) if .69< α ≤ 1.

5 Some new relations among divergences

In this section, we obtain various new important and
interesting relations on new divergence measures (40),
(42), and (45) with other standard divergence measures.
Proposition 5.1Let P,Q ∈ Γn, then we have the following
new intra relation.

γm (P,Q)≤ ηm (P,Q)≤ ρm (P,Q) , (75)

wherem = 1,2,3... andγm (P,Q) ,ηm (P,Q), andρm (P,Q)
are given by (40), (42), and (45) respectively.
Proof: Since
(

t2−1
)2m (

t4− t2+1
)

t2m+1 =

(

t2−1
)2m

t2m−1 +

(

t2−1
)2m+2

t2m+1

and
(

t2−1
)2m

t2m−1 exp

(

t2−1
)2

t2

=

(

t2−1
)2m

t2m−1

[

1+

(

t2−1
)2

t2 +

(

t2−1
)4

2!t4 + ...

]

.

Therefore, for m = 1,2,3... and t > 0, we have the
following inequalities.
(

t2−1
)2m

t2m−1 ≤
(

t2−1
)2m

t2m−1 +

(

t2−1
)2m+2

t2m+1

≤
(

t2−1
)2m

t2m−1

[

1+

(

t2−1
)2

t2 +

(

t2−1
)4

2!t4 + ...

]

.

(76)

Now put t = pi
qi
, i = 1,2,3...,n in (76), multiply byqi and

then sum over alli = 1,2,3...,n, we get the relation (75).
Particularly from (75), we will obtain the followings.

γ1 (P,Q)≤ η1 (P,Q)≤ ρ1 (P,Q) ,

γ2 (P,Q)≤ η2 (P,Q)≤ ρ2 (P,Q) , ...
(77)
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Now there are some new algebraic and exponential
inequalities, which are important tool to derive some
interesting and important new relations in this paper.
These inequalities are as follows.
Proposition 5.2Let t ∈ (0,∞) andm = 1,2,3... then we
have the following new inequalities.

(

t2−1
)2m

t2m−1 >
(t −1)2m

t
2m−1

2

, (78)

(

t2−1
)2m

t2m−1 >
(t −1)2m

(t +1)2m−1 , (79)

(

t2−1
)2m

t2m−1 > (t −1)2m
, (80)

and

(

t2−1
)2m

t2m−1 exp

(

t2−1
)2

t2 >
(t −1)2m

t
2m−1

2

exp
(t −1)2

t
. (81)

All functions involve in (78) to (81) are convex and
normalized, since f ′′ (t) ≥ 0 ∀ t > 0 and f (1) = 0
respectively.
Proof:From (78), we have to prove that

(

t2−1
)2m

t2m−1 >
(t −1)2m

t
2m−1

2

⇒ (t +1)2m
> tm− 1

2

⇒
√

t (t +1)2m − tm
> 0,

Fig. 4: Graph of
√

t (t +1)2m − tm

which is true (Figure 4) fort > 0,m = 1,2,3.... Hence
proved the result (78).
Now from (79), we have to prove that

(

t2−1
)2m

t2m−1 >
(t −1)2m

(t +1)2m−1 ⇒ (t +1)4m−1
> t2m−1

⇒ (t +1)4m−1− t2m−1
> 0,

which is true (Figure 5) fort > 0,m = 1,2,3.... Hence

Fig. 5: Graph of(t +1)4m−1− t2m−1

Fig. 6: Graph of(t +1)2m − t2m−1

proved the result (79).
Similarly from (80), we have to prove that

(

t2−1
)2m

t2m−1 > (t −1)2m ⇒ (t +1)2m − t2m−1
> 0,

which is true (Figure 6) fort > 0,m = 1,2,3.... Hence
proved the result (80).
Similarly from (81), we have to prove that

(

t2−1
)2m

t2m−1 exp

(

t2−1
)2

t2 >
(t −1)2m

t
2m−1

2

exp
(t −1)2

t

⇒ (t +1)2m e
(t−1)2(t2+t+1)

t2

tm− 1
2

> 1

⇒ (t +1)2m e
(t−1)2(t2+t+1)

t2 − tm− 1
2 > 0,

which is true (Figure 7) fort > 0,m = 1,2,3.... Hence
proved the result (81).
Proposition 5.3 Let P,Q ∈ Γn, then we have the
followings new inter relations.

γm (P,Q)> E∗
m (P,Q) , (82)

γm (P,Q)> ∆m (P,Q) , (83)

γm (P,Q)> χ2m (P,Q) , (84)
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Fig. 7: Graph of(t +1)2m e
(t−1)2(t2+t+1)

t2 − tm− 1
2

and
ρm (P,Q)> J∗m (P,Q) , (85)

where
γm (P,Q) ,E∗

m (P,Q) ,∆m (P,Q) ,χ2m (P,Q) ,ρm (P,Q), and
J∗m (P,Q) are given by (40), (2), (6), (7), (45), and (3)
respectively.
Proof: If we put t = pi

qi
, i = 1,2,3...,n in (78) to (81),

multiply by qi and then sum over alli = 1,2,3...,n, we
get the desired relations (82) to (85) respectively.
Now we can easily say from (82) to (85) that

γ1 (P,Q)> E∗
1 (P,Q) = E∗ (P,Q) ,γ2 (P,Q)> E∗

2 (P,Q) , ...,
(86)

γ1 (P,Q)> ∆1 (P,Q) = ∆ (P,Q) ,γ2 (P,Q)> ∆2 (P,Q) , ...,
(87)

γ1 (P,Q)> χ2(P,Q) ,γ2 (P,Q)> χ4 (P,Q) , ..., (88)

and

ρ1 (P,Q)> J∗1 (P,Q) ,ρ2(P,Q)> J∗2 (P,Q) , ..., (89)

respectively.
Proposition 5.4Let P,Q∈Γn, then we have the followings
new inter relations.

ρm (P,Q)> J∗m (P,Q)≥ E∗
m (P,Q) , (90)

ρ1 (P,Q)> 2∆ (P,Q)≥ 2[N∗
1 (P,Q)−N∗

2 (P,Q)] , (91)

ρ1(P,Q)> 8T (P,Q)≥ J (P,Q)≥ 8h(P,Q)≥ 8I (P,Q) ,
(92)

and

ρ1 (P,Q)> 8A(P,Q)≥ 8N2 (P,Q)≥ 8N3(P,Q)≥ 8N1 (P,Q)

≥ 8L∗ (P,Q)≥ 8G∗ (P,Q)≥ 8H∗ (P,Q) ,
(93)

where
ρm (P,Q) ,J∗m (P,Q) ,E∗

m (P,Q) ,N∗
m (P,Q) ,∆ (P,Q) ,T (P,Q) ,J (P,Q),

h(P,Q), I (P,Q) and means

H∗ (P,Q) ,A(P,Q) ,N1 (P,Q) ,N3 (P,Q) ,L∗ (P,Q) ,G∗ (P,Q) ,N2 (P,Q)

are given by (45), (3), (2), (4), (9), (25), (24), (22), (23),
(14), (15), (16), (17), (18), (19), and (20) respectively.
Proof: Since we know the followings.

J∗m (P,Q)≥ E∗
m (P,Q) [17], (94)

1
2

E∗ (P,Q)≥∆ (P,Q)≥ [N∗
1 (P,Q)−N∗

2 (P,Q)] [17], (95)

1
2

E∗ (P,Q)≥ T (P,Q)≥ 1
8

J (P,Q)≥ h(P,Q)≥ I (P,Q) [23],

(96)

T (P,Q)≥ A(P,Q) [17], (97)

and

A(P,Q)≥ N2 (P,Q)≥ N3 (P,Q)≥ N1 (P,Q)≥ L∗ (P,Q)

≥ G∗ (P,Q)≥ H∗ (P,Q) [41].
(98)

By taking (85) and (94) together, we get the relation (90).
By taking first and third part of the proved relation (90) at
m = 1 together with (95), we get the relation (91).
By taking first and third part of the proved relation (90) at
m = 1 together with (96), we get the relation (92).
By taking first and second part of the proved relation (92)
together with (97) and (98), we get the relation (93).

6 Application to the Mutual information

Mutual information [36] is a measure of amount of
information that one random variable contains about
another or amount of information conveyed about one
random variable by another.
Let X andY be two discrete random variables with a joint
probability mass function p(xi,y j) = pi j with
i = 1,2, ...,m; j = 1,2, ...,n and marginal probability mass
functions p(xi) = ∑n

j=1, i = 1,2, ...,m and
p(y j) = ∑m

i=1 p(xi,y j) , j = 1,2, ...,n, where
xi ∈ X ,y j ∈ Y , then Mutual informationI (X ,Y ) is defined
by

I (X ,Y ) =
m

∑
i=1

n

∑
j=1

p(xi,y j) log
p(xi,y j)

p(xi) p(y j)

= ∑
(x,y)∈(X ,Y )

p(x,y) log
p(x,y)

p(x) p(y)
.

(99)

SinceI (X ,Y ) is symmetric inX ,Y therefore it can also be
written as

I (X ,Y ) = I (Y,X) = H (X)−H

(

X
Y

)

= H (Y )−H

(

Y
X

)

,

(100)
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where

H (X) =−
m

∑
i=1

p(xi) logp(xi)

=−
m

∑
i=1

n

∑
j=1

p(xi,y j) log

(

n

∑
j=1

p(xi,y j)

) (101)

is known as Marginal entropy [36] and

H

(

X
Y

)

=−
m

∑
i=1

n

∑
j=1

p(xi,y j) logp

(

xi

y j

)

(102)

is known as Conditional entropy [36].
By viewing K (P,Q) (Relative entropy (11)), we can say
that the Mutual information is nothing but a Relative
entropy between joint distributionp(x,y) and product of
marginal distributionsp(x) andp(y) after replacingp(x)
and q(x) by p(x,y) and p(x) p(y) respectively, in (11).
SoI (X ,Y ) can also be written as

I (X ,Y ) = K (p(x,y) , p(x) p(y))

= ∑
(x,y)∈(X ,Y )

p(x,y) log
p(x,y)

p(x) p(y)
.

(103)

Similarly, we can define the Mutual information in
following manners as well.
In γ1 (P,Q) manner:

Iγ1 (X ,Y ) = ∑
(x,y)∈(X ,Y )

[

p2(x,y)− p2(x) p2 (y)
]2

p(x,y) p2 (x) p2 (y)
, (104)

In χ2(P,Q) manner:

Iχ2 (X ,Y ) = ∑
(x,y)∈(X ,Y )

[p(x,y)− p(x) p(y)]2

p(x) p(y)
, (105)

and
In JR (P,Q) manner:

IJR (X ,Y ) = ∑(x,y)∈(X ,Y ) [p(x,y)− p(x) p(y)] log p(x,y)+p(x)p(y)
2p(x)p(y) ,

(106)
whereχ2(P,Q) ,JR (P,Q) andγ1 (P,Q) are given by (10),
(21) and (51) respectively.
So (103), (104), (105), and (106) tell us that how far the
joint distribution is from its independency or
I (X ,Y ) = 0 = Iγ1 (X ,Y ) = Iχ2 (X ,Y ) = IJR (X ,Y ) if
distributions are independent to each other.
Now, the following theorem can be seen in literature [10].
Theorem 6.1Let f : (α,β ) ⊂ (0,∞) → R be a mapping
which is normalized, i.e.,f (1) = 0 and f ′ is locally
absolutely continuous on(α,β ) then there exist the
constantsm,M ∈ R with m < M, such that

m ≤ f ′′ (t)≤ M ∀ t ∈ (α,β ) .

If P,Q ∈ Γn such that 0< α ≤ pi
qi
≤ β < ∞ ∀ i = 1,2,3...,n

for someα andβ with 0< α ≤ 1≤ β < ∞,α 6= β , then
we have the following inequalities

∣

∣

∣
C f (P,Q)−E∗

C f
(P,Q)

∣

∣

∣
≤ 1

8
(M−m)χ2 (P,Q) , (107)

whereC f (P,Q) ,χ2 (P,Q) andE∗
C f

(P,Q) are given by (1),
(10), and (28) respectively.

Now by using theorem 6.1, we introduce a new
information inequalities which relatesI (X ,Y ) and new
divergence measureγ1 (P,Q) .
Proposition 6.1
For 0< α ≤ p(x,y)

p(x)p(y) ≤ β < ∞ ∀(x,y) ∈ (X ,Y ), we get the
following new information inequalities in Mutual
information sense

|I (X ,Y )− IJR (X ,Y )| ≤ 1
8

(

β −α
αβ

)

Iχ2 (X ,Y )

≤ 1
32

(

β −α
αβ

)

Iγ1 (X ,Y ) ,

(108)

where I (X ,Y ) , Iγ1 (X ,Y ) , Iχ2 (X ,Y ), and IJR (X ,Y ) are
given by (103), (104), (105) and (106) respectively.
Proof: Let us consider

f (t) = t logt, t ∈ (0,∞) , f (1) = 0, f ′ (t) = 1+ logt and

f ′′ (t) =
1
t
. (109)

Since f ′′ (t) > 0 ∀ t > 0 and f (1) = 0, so f (t) is convex
and normalized function respectively. Now putf (t) in (1)
and f ′ (t) in (28) then after replacingpi,qi ∀i = 1,2, ...,n
by p(x,y) , p(x) p(y) ∀(x,y) ∈ (X ,Y ), we get

C f (P,Q) = ∑
(x,y)∈(X ,Y )

p(x,y) log
p(x,y)

p(x) p(y)
= I (X ,Y )

(110)
and

E∗
C f

(P,Q)

= ∑
(x,y)∈(X ,Y )

[p(x,y)− p(x) p(y)] log
p(x,y)+ p(x) p(y)

2p(x) p(y)

= IJR (X ,Y ) ,
(111)

respectively.
Now, let g(t) = f ′′ (t) = 1

t andg′ (t) = − 1
t2

, where f ′′ (t)
is given by (109).
It is clear thatg(t) is always decreasing in(0,∞), so

m = inf
t∈(α ,β )

g(t) = g(β ) =
1
β
. (112)
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M = sup
t∈(α ,β )

g(t) = g(α) =
1
α
. (113)

The result (108) is obtained by using (104), (105), (110),
(111), (112), (113) together with first inequality of (68) or
(69) in (107), after replacingpi,qi by p(x,y) , p(x) p(y)
respectively.

7 Numerical verification of the obtained
bounds

In this section, we give two examples for calculating the
divergencesh(P,Q) ,G(P,Q) andγ1 (P,Q) and verify the
inequalities (52) and (60) or verify the bounds ofγ1 (P,Q)
numerically.
Example 7.1 Let P be the binomial probability
distribution with parameters(n = 10, p = 0.5) and Q its
approximated Poisson probability distribution with
parameter(λ = np = 5) for the random variableX , then

Table 1: Evaluation of probability distributions for
(n = 10, p = 0.5,q = 0.5)

xi 0 1 2 3 4
pi ≈ .000976 .00976 .043 .117 .205
qi ≈ .00673 .033 .084 .140 .175
pi
qi
≈ .1450 .2957 .5119 .8357 1.171

5 6 7 8 9 10
.246 .205 .117 .043 .00976 .000976
.175 .146 .104 .065 .036 .018
1.405 1.404 1.125 .6615 .2711 .0542

by using Table 1, we get the followings.

α (= .0542)≤ pi

qi
≤ β (= 1.405). (114)

h(P,Q) =
11

∑
i=1

(√
pi −

√
qi
)2

2
≈ .02549. (115)

G(P,Q) =
11

∑
i=1

pi + qi

2
log

(

pi + qi

2pi

)

≈ .031. (116)

γ1 (P,Q) =
11

∑
i=1

(

p2
i − q2

i

)2

piq2
i

≈ .9610. (117)

Put the approximated numerical values from (114) to (117)
in (52) and (60), we get the followings respectively

.5964≤ .9610(= γ1 (P,Q))≤ 16.161 and

.44144≤ .9610(= γ1 (P,Q))≤ 2.6936.

Hence verify the inequalities (52) and (60) forp = 0.5.
Example 7.2 Let P be the binomial probability

Table 2: Evaluation of probability distributions
(n = 10, p = 0.7,q = 0.3)

xi 0 1 2 3 4
pi ≈ .0000059 .000137 .00144 .009 .036
qi ≈ .000911 .00638 .022 .052 .091
pi
qi
≈ .00647 .0214 .0654 .173 .395

5 6 7 8 9 10
.102 .20 .266 .233 .121 .0282
.177 .199 .149 .130 .101 .0709
.871 1.005 1.785 1.792 1.198 .397

distribution with parameters(n = 10, p = 0.7) and Q its
approximated Poisson probability distribution with
parameter(λ = np = 7) for the random variableX , then
by using Table 2, we get the followings.

α (= .00647)≤ pi

qi
≤ β (= 1.792) . (118)

h(P,Q) =
11

∑
i=1

(√
pi −

√
qi
)2

2
≈ .0502. (119)

G(P,Q) =
11

∑
i=1

pi + qi

2
log

(

pi + qi

2pi

)

≈ .0746. (120)

γ1 (P,Q) =
11

∑
i=1

(

p2
i − q2

i

)2

piq2
i

≈ 2.25065. (121)

Put the approximated numerical values from (118) to (121)
in (52) and (60), we get the followings respectively

1.17468≤ 2.25065(= γ1 (P,Q))≤ 771.68 and

1.062304≤ 2.25065(= γ1 (P,Q))≤ 46.4161.

Hence verify the inequalities (52) and (60) forp = 0.7.
Similarly, we can verify the other obtained inequalities
numerically for different values ofp andq by taking other
discrete probability distributions, like: Geometric,
Negative Binomial, Uniform etc.

Fig. 8: Convex functionsfm (t)

Figure 8, 9, and 10 shows the behavior of convex
functions and shows thatfm (t) , fm,m+1 (t), andgm (t) has
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Fig. 9: Convex functionsfm,m+1 (t)

Fig. 10: Convex functionsgm (t)

Fig. 11: Comparison of divergence measures

a stepper slope for increasing values ofm respectively,
while 11 shows the behavior ofγ1 (P,Q), γ2 (P,Q),
η1 (P,Q), η2 (P,Q), ρ1 (P,Q), P∗ (P,Q), ψ (P,Q),
χ2 (P,Q), and E∗ (P,Q). We have considered
pi = (a,1− a),qi = (1− a,a), wherea ∈ (0,1). It is clear
from figure 11 that the new divergences
γ1 (P,Q) ,γ2 (P,Q) ,η1 (P,Q) ,η2 (P,Q), andρ1 (P,Q) has a
steeper slope thanP∗ (P,Q) ,ψ (P,Q) ,χ2 (P,Q), and
E∗ (P,Q).

8 Conclusion and discussion

In this paper, we introduced new series of information
divergencesγm (P,Q) ,ηm (P,Q), and ρm (P,Q) together
with characterized their properties. Various important and
interesting relations have been obtained among these new
divergences and other well known divergences with
comparison by using the standard algebraic and
exponential inequalities. The upper and lower bounds of a
member of new divergence series have been obtained in
terms of the other well known divergences in an interval
(α,β ), 0 < α ≤ 1 ≤ β < ∞ with α 6= β by using
Csiszar’s inequalities and have been verified numerically
by taking two discrete distributions: Binomial and
Poisson. Lastly, a very important application to the
Mutual information has been discussed, which tells us
how far the joint distribution is from its independency and
relates new divergence and mutual information.
We found in our previous article [18] that square root of
some particular divergences of Csiszars class is a metric
space butC f (P,Q) itself, is not a metric because of
violation of triangle inequality, so we strongly believe that
divergence measures can be extended to other significant
problems of functional analysis and its applications and
such investigations are actually in progress because this is
also an area worth being investigated.
We hope that this work will motivate the reader to
consider the extensions of divergence measures in
information theory, other problems of functional analysis
and fuzzy mathematics. Such types of divergences are
also very useful to find utility of an event i.e. an event is
how much useful compare to other event.
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