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Abstract: In this paper, we introduce the multstrain TB model of fractional-order derivatives, which angorates three strains:
drug—sensitive, emerging muktidrug resistant(MDR) and extensively drugesistant(XDR ). Numerical simulations for this extended
fractional order model is the main aim of this work, wheredalepted model is described by a system of non-linear orgltifferential
equations and the fractional derivative is defined in thessesf the GriinwaldLetnikov definition. Two numerical methods are
presented for this model, the standard finite differencehotei{SFDM) and the nonstandard finite difference method N8}
Numerical comparisons between SFDM and NSFDM are preseltiectoncluded that the proposed NSFDM preserves theipiogit
of the solutions, and it is numerically stable in large regithan SFDM.

Keywords: Nonstandard finite difference; Epidemic model; Tuberdstdgl/XDR—TB; Fractional differential; GriinwaldLetnikov
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1 Introduction factors of spreading TB such as the fast infection, the

exogenous reinfection and secondary infection along with

Recently, fractional calculus has gained an increasingne “resistance factor.The reasons for considering a
popularity due to the wide range of applications in fields fy5ctional order TB-system are:

including biology, engineering, chemistry, finance,
physics and so on 1f],[22]—[26]). Consequently
mathematical models have become important tools in
analyzing the spread and control of infectious diseases.
Understanding the transmission characteristics of
infectious diseases in communities, regions and countries
can lead to better approaches to decrease the transmission X
of these diseased][ Tuberculosis(TB) is an infectious complex adaptive systems) where memory effects are
respiratory disease caused by the bacteria Mycobacterium mportant.

tuberculosis. It is considered as one of the most importantVe develop NSFDM for solving fractional model for
infectious diseases, and important health issue all oeer thtuberculosis (TB) that incorporates three strains, i.e.,
world, particularly in many African countries. TB is drug—sensitive and MDR and XDR model. The adopted
growing more resistant to treatment worldwide accordingmodel is described by system of non-linear ordinary
to study released in August 2012 in the journal LANCET, differential equation. Numerical comparison between
a finding that suggest the potentially fatal disease iSNSFDM and SFDM are presented. When the secondary
becoming more difficult and costly to trea7. We infection generated by an infected individual exceeds the
consider in this work a model developed by J. Arino andunity, there are no analytical results proved for the model,
I. Soliman for TB P]. The model incorporates three such as the existence and stability of the endemic
strains, drug-sensitive, MDR and XDR. Several papers equilibrium (EE). In this case we use the developed
considered modeling TB such as8|([[4], [5], [17], [21], NSFDM to approximate the endemic solution
[28]), but the model we consider here includes severalnumerically and investigate its stability. Furthermore,

—Fractional order differential equations are
generalizations of integer order differential equations.

—We like to argue that fractional order equations are
more suitable than integer order ones in modeling
biological, economic and social systems (generally
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with the help of the NSFDM , we answer the following +axxﬁxﬁ + &by — (d+ &+ tx+ Wk, (7)

guestion: Given the data provided by the World Health N R|

Organizatio_n (2012) on th_e current  parameters R =PitisLs + Potosls + Pstomlm =+ toxlx — OsfBs—

corresponding to the propagation of the TB in Egypt, N

What would be the required rate of treatment to achieve _ O'mBm% _ Uxﬁx& _dr 8)

in order to control the disease?. The proposed method N N

showed its superiority in preserving the positivity

(compared to the numerical standard method considere

in this work) of the state variables of the systems under

study. This is an essential requirement when simulating

systems especially those arising in biology. This paper is . . .

organized as follows: In sectiof, the mathematical 3 Preliminaries and notations

model is presented. Preliminaries and notations on ) ] ] o o

fractional differential equations and NSFD discretizatio In this section, some basic definitions and properties in

are given, in sectior8. Equilibrium points and their the theory of the fractional calculus are presented.

asymptotic stability are presented in sectibrin section ~ Moreover, we introduce the main aspects concerning

5, fractional-order of multi-strain TB model are nhonstandard discretization methods.

presented moreover, the construction of the proposed

nonstandard numerical scheme is carried out. In seétion

numerical simulations equilibria are discussed. Finatly, 3.1 Grinwald-Letnikov approximation

section7, we presented the conclusions.

2 Mathematical Model We will begin with the signal fractional differential see
o | o ([151,26],[20)),

In FhIS section, we mtrodt_Jce the ml_JIt|—stra|n TB model DYy(t) = f(t,y(t)), T>t>0, and,y(ts) =0, (9)

which is given in P], this model incorporates three

strains: drug-sensitive, MDR, XDR. The population of wherea > 0, andD? denotes the fractional derivative,

interest is divided into eight compartments, see Tdble defined by

Adopted model is described by a system of nonlinear D%(t) = J"9D%(t), (10)

ordinary differential equations as follows:

dAlso we introduce the list of all parameters and their
nterpretation in Tablé:

wheren—1< a <n, ne N andJ"is the

: S S S
S=b-dS— BSWIS — BmWIm — BXWIX, (1) nth—order RiemannLiouville integral operator define as
1 t
. S RI Ll Ll n t:—/t—rn’l 1)dr, with t>0, (11
Ls :)\SBS_IS + GS/\SBS_S — assﬁsﬁ _ asn‘Bm sm y( ) r (t) o ( ) y( ) ( )
N N N N
— stﬁxﬁ + yels— (d+ &+ tig)Ls, (2) Wherel ()is th? gamma function.
SImN R L To apply Miken’s scheme, we have chosen
o Olm Rim Lslm this Grunwald-Letinkov approximation fractional
L =AmfBm N + OmAmBm N + GsmBmAm N derivative as follows se€l[l]:
Lilm Lmlx [£]
—a — —q —— — (d+e&m)L N - .
mmbin =N~ OmdBeg” — (A em)Lm Dy(n) = fimn® y (-1 i) (12
+ (1= Py)tysks+ (1 — P)tasls + ymlm, 3 1=
" Sl)( RIX lex H . .
Ly =By 4 OBy — + OB Ay —X wherelt] denote the integer part ofandh is the step size
x =M N LX IXBX N LS):BX N thereforeeq(12) is discretized as:
+ AmsBAx > — OxPBr—s — (d+ &)L (5]
mXBX X N xxBx N ( x) X Zow,-"y(tn_j) _ f(tn,Y(tn) n=123,--- (13)
+ Ylx + (1 — P3)tomlm, 4) =
ls :03535% + (1—)\S)Bs(ﬂs + as&‘) Wheret, = nh, and wj", are the GrinwaldLetnikov
N N N coefficients define as
+&sbs— (d+ &+ tos+ W)ls, %) a)jo’ =(1- HT“)wJF’_l and wf =h"? j=1,23.-
- Shn Rim Lslm Proposition
Im =(1=Am) B N Iy Ty ) Given non negative initial conditions, soluation t)-(8)
Lnlm L A St t | are bounded for atl > 0. furthermore,the closed set
+ amrer—N + &mLm — (d+ Om+tom + Vi) Im, C={(S Ls,Lm; L Is, Im 1o R) € R8: S+ Lo+ Lin+ L+
6)  Is+Im+Ix+R< B}, attracts of {)-(8) for any initial
: S RI Ll Ll dition inR8 .
Ix :(1—)\x)ﬁx(ﬁlx+0xwx+asx%+amx :IX) condition Ink.
(@© 2016 NSP
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3.2 The basic reproduction numbeg R

Table 1: All variables of the systemljj-(8) and their interpretation.

~

C

Variable Definition
S(t) The susceptible population ,individuals who have neveoentered TB.
Ls(t) The individuals infected with the drug-sensitive TB strhint who are
in a latent stage, e., who are neither showing symptoms nor infecting others.
Lm(t) Individuals latently infected with MDR TB.
Lx(t) Individuals latently infected with XDRTB.
Is(t) Individuals infected with the drug-sensitive TB strain wdre infectious
to others (and most likely, showing symptoms as well).
Im(t) Those individuals who are infectious with the MBRB strain.
Ix(t) Individuals who infectious with the XDRTB strain.
R(t) Those individuals for whom treatment was successful.
N(t) The total population .
N=S+Ls+Lm+Lx+Is+Im+Ix+R
Table 2: All parameters in the system)¢(8) and their interpretation.
Parameter| Interpretation
b birth/recruitment rate
d per capita natural death rate
Disease dynamics
Br Transmission coefficient for stram
Ar proportion of newly infected individuals developihd Bl with strainr
1-A proportion of newly infected individuals progressing tdive TB with strainr
due to fast infection
& per capita rate of endogenous reactivatioh,of
ar1, ar2 proportion of exogenous reinfection bbf; due to contact withy»
v per capita rate of natural recovery to the latent stage
S per capita rate of death duenB of strainr
Treatment related
t1s per capita rate of treatment fbg
tor per capita rate of treatment fr. Note thatt,, is the rate of successful
treatment oly,r € {x,m,s}
1-o Efficiency of treatment in preventing infection with strain
Py probability of treatment success fiog
1-P, proportion of treated.s moved tol, due to incomplete treatment or lack of stri
compliance in the use of drugs
P, probability of treatment success flar
1-P, proportion of treateds moved toL, due to incomplete treatment or lack of
strict compliance in the use of drugs
P; probability of treatment success figg
1-P; proportion of treated,, moved toLydue to incomplete treatment or lack of

strict compliance in the use of drugs

Theorem[2] Asumme that :

'Qll'ir:/eenbg;!c reproduction numberyRor system 1)-(8) is 0< dss< (1—Ag),
R0 = ma)<R057 ROma ROX)7 where (14)
Rog — Bs(ss+(1—)\s)(d+tls)) 0<amm< (1—/\m),
s (&s+d+1t1s)(tas+ O+ d) + ys(tzs+d)’
Bm(&m+ (1— Am)d)
— 0 < ayx < (1—Ay).
Rom = Gt @) ltom + S+ ) + i <o (1-4)

Rox

Br(&x+ (1 —Ax)d)

(15)

(16)

(17)

Then the disease free equilibrium is globally

(& +d)(tx+ & +d) +dy

asymptotically stable whenRy < 1 and endemic
equilibria is locally asymptotically stable whé& > 1.
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3.3 NSFD discretization Btgg: geLs =DfLm =DfLx = Dfls=Dfm =Dy =
t =
The nonstandard finite difference schemes were= fi(S% L L L% ISHIRLISLR®) =0, i=1,23,....8.

introduced by Mickens in the 1980s as a powerful from which we can get the equilibrium points
numerical method that preserves significant properties of S*%,Ls",Lm',Lx ", Is", Im’, Ix ,R®%). To  evaluate the
exact solutions of the involved differential equatidj.[ —asymptotic stability let

The concept of the nonstandard finite difference method S(t) =S4 & (t),
is discussed in12]. Ls(t) =LE9(t) + (1),
Definition A numerical scheme is called NSFD Ln(t) =LE9(t) + 3(t)
discretization if at least one of the following conditioss i mt/ = o 3\
satisfied []: Lx(t) =Lg(t) + £a(t),
o Is(t) =1$(t) + es(t),

1.nonlocal approximation is used.

pRroximation s 4 Im(t) =189(1) + &6(t).
2.the discretization of derivative is not traditional arseéu Ix(t) =IR9() + & (1),

a nonnegative function1p]-[14)). R(t) =R®9+ gg(t).

For the construction of the numerical scheme, SO the equilibrium point§s, LS, L, L 1S5, Im', 1,

concretization of systeml)-(8) are made based on the R Ibs IocaIIyI asty;np:c#]ically gl'ggple if aI.I ;eigr:ye;_lues of
approximations of temporal derivatives by a generalizedJaCO lan eva gs;t_[e at the equiibrium point satishies
forward scheme of first order. Hencefift) € C(R), let |argAi| > - where i=1,2,.....8 ([6],[10])

us de(fi?e its (deriv?tive(a)s follows:
df(t ft+h)— f(t
= h h 1
where¢(h) is a real-valued function oR. In our work, . | L f
we will also make use of denominator functions which 2 Frgctlona_l —order derivatives for
are little complex functions of the time step-size than themulti —strain TB model

classical one]9]. In addition to this replacement, if there
. tX(t) . .
are nonlinear terms such aY% in the differential

X(t+h)y(t)
N({t)

In the following, we introduce the fraction order
multi-strain TB model, the new system is described by
fractional order differential equations:

equation, these are replaced ﬂgﬁ?ﬁ;‘m or
more details see g[,[13]).

Let us denote by", L2, L, LD, 12, 1N 1 andR" the
values of the approximasltiorrlns é(n?\), nljs(éh), Lm(nh), DfS=b—dS— Bs%s - Bm% - Bx%, (19)
Lx(nh), Is(nh), Im(nh), Ix(nh) andR(nh) respectively, for Sk RI L
n=0,1,2,--- andh is the timestep of the scheme. The = DYLs=Asfs— + OsAsfs— — AsBs—
sequences’, LD, L7, LY, 12, 1]}, I¥ and R" should be N N N

, for

P A X . . Ll Lsl
nonnegative in order to be consistent with the biological —a SM g B —X
nature of the modeH]. s BN
— (d+ &s+t1s)Ls + als, (20)
Sk Rln Lslm
S . _ i D' Lm =AmBm—- + OmAmBm—r + OsmBmA
4 Equilibrium points and their asymptotic thm =Anfiny . |m mhin NL | srrAn
stability - am,nﬁm% — amyBx K‘IX — (d+ &m)Lm
+ (1—Ptgsks+ (1 —Po)tosls + Ymlm,  (21)

Leta € (0,1] and consider the systerhi9)-(26) R L
Dtas(t) :fl(s st Lm7 LX7 |57 Ima IX7 R)a Dta LX :)\XBX% —+ O-X/\XBXWX —+ aSXBX)\X%

DtaLS(t) :fZ(S LS? Lmv Llesvlma IX? R)a L |
Df Lim(t) =f3(S L, L, L, Is, Im, 1, R), + amBM— - + (1= Pa)tanlm
DtaLX(t) :f4(S LS? Lmv LXa ISv Im, IX? R)a Lxlx
Dtals(t) :f5(S7 st Lm7 LX7 |57 Ima IX7 R)a - aXXBXW B (d + €X)LX+ %(IX’ (22)
Dtalm(t) :f6(87 L57 Lm7 Lx;'s;'m;'x; R)a Dtals:assﬁsﬂ 4 (1_)\5)33(25_,_03%)
DY Ix(t) =f7(S Ls,Lm, Lx,Is, Im, 1x, R), N N N
DER(t) =fg(S Ls, L, L, Is, I, Ix, R). +esks— (d+ &+ s+ W)l (23)
With the initial values §(0), Ls(0), Lm(0), Lx(0), 1s(0), DI — Lmlm 7 5 Sh Rim
Im(0), 1x(0), R(0)). To evaluate the equilibrium point let ¢ lm = QmmfBim N +( m) Bon( N Oy )

(@© 2016 NSP
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+(1-A )Bmasmlem ~+ &mbm For simplicity, we will determine the stability of DFE
N numerically by using Tabl8 and putBs = B = Bx = 0.1.
— (d+ m+tom + Ym)Im, (24) " Then eigenvalues arg = —0.3800,A, = —0.3800,
Ll x Sk Rlx Lslx A3 = —-0.3675, Ay, = —0.3675, A5 = —1.2215,
D Ix =G0y~ + (L= ABAT T 0y T ) Ay = —1.2215, A — —2.0882, Ag — —1.2268. So, if
Limlx Ro < 1, DFE is locally asymptotically stable since
+ (1= M) Bximx r,fl + &lx |larghi| = | — i > 9F. Y ey ’
— (d+ S+ tax+ W) lx, (25) If at least one of the infected variables is non-zero,
Rl then the solution correspond to the endemic equilibrium
Df R =Pitisls+ Potosls + Pstomlm + toxlx — USBS for model (L9)-(26). This system is highly nonlinear ig,
RI RI Im andly, and hence explicit solution are not obtainable.
_ UmBme — UXBXWX —drR (26)  So we solve the systeni-(26) numerically to obtain

. : I endemic fixed point.
where Df is the Caputo fractional derivative. Because P

model (9)-(26) monitors the dynamics of human
populations, all the parameters are assumed to be
nonnegative. To evaluate the equilibrium points:
5.1 NSFD for fractional differential equations

Let DIS = DfLs = DILy = DPLy = DI1s = DIy =

Dfly=DfR=0
The system19)-(26) can be discretized as follows:
= (S L LIS I KGR =0, it SUSTISNES A
=1,23,...8. Zowa§+l b a9 S AT
Now, if Is(t) = In(t) = Ix(t) = 0 = Lg(t) = Li(t) = S”“In
_ _ _b — Bx ; (27)
Lx(t) = 0,R(t) = 0 andS(t) = 3.
Then DFE isEp = {(3,0, 0,0,0,0,0,0)}. ntl . sﬂ+1|n Rﬂ+l|n
We calculate the Jacobian matrix of the systdm(B) at Z)“’J Ls* VB + OAsfs—> + Yol
DFE point as following:
aooobcdlo _aSGLn+1|n_aXBXLn+1|n
0e00f000 e ) °
0OghoO 00 Ln+ In
00010510 ~ OsmPm =g — (A es gl
JE)=1ouoovoool (28)
0O0w0O0x 00 nt+1 Sn+1n Rn+1|n
000y002z0 gowj L A =™ + OAmBm—
OmO0OOnjka
wherea= —d, b= —fs, = —f, dp = —B, e= —(d+ L““I“ Ml pr g el
Es+t]_s)7 f _ )/S_’_)\Sﬁs’ g: (1_ pl)tls, h: _(d+8m), p: +)\masm8m +tlSL Pltl L
(1—p2)tos, 9= Y+ AmPBm, r = —(d+ &), S= (1 — p3)tom, n L”+1I n
t=V+AxBx, U= &, V= —(d+ & +1trs+ ), W= &n, +tasld — Potoslg — QmmBm—
—(d+5m+t2m+_Vm)7y:5x7Z:—(d+5x+t2x+%<)a n+1|n
M= patis, N= Polos, j = patom, kK=t + Yl P — armxBx m — (d+gm)L2L,
The characteristic equation associated with above
matrix is|J(Eg) —Al|=0= (29)
(@—=A)?A%2 = (r+2A —yt+2zn(=A?4 (h+x)A —xh+  ntl sf”rl|n R“+1|n
wQ)(—A%+ (e+V)A +uf —ve)= 0. Then the elgenvalues Z)wj Ly T =M= + GAB—>
of Jacobian matrix are A1p =
2_ 2 Ln+1| n Ln+1|n
)\3’4 _ r+z44/(r 222r+z +4yt)’ +)\xasxﬁx +)\X mxBx
Ase e i} + ol ™ — Patoml ™, — @ BxLMIn
Ayg = VEEVE Zve+e2+4”f , by using Theorem (Routh 2mim T ESmm
HurW|tz Crlterla) these roots are negative or have + P — (d+ gL, (30)
negative real parts and DFE is locally asymptotically g R

stable if all eigenvalues of the Jacobian matrix satisfieszow |n+1 i =(1—As)Bs(

. I ; +0s )
Matignon’s conditions given bgjarghi| > 27). e e

(© 2016 NSP
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Table 3: All parameters in the systemi)¢(8) and the reference of the parameters.

parameter value Reference
b 3190 Assumed
d 0.38 [18]
Bs = Bm = Bx 14 (18
As= Am = Ay 0.5 Assumed
&= Em = & 0.5 Assumed
Or1r2 0.05 Assumed
Ys=¥m =K 0.3 Assumed
t1s 0.88 [18]
tor :r € (s;mX) | tos = 0.88tom = tox = 0.034 [18]
or 0.25 [19]
=) 0.88 [19]
& 0.045 (18]
n+1pn
+ OsgfBs———= + gLt following denominator functions are used:
S
n+1 n egdh—1 gld+esttih _ 9
—(d+6)ls™ — (s +t9)lg, (31) ¢1(h) = P 2(N) = m,
n+1 S1+l| n Rn+l| n s s
z)w |n+1 j _(1 A )Bm( O m Om N0 m) ¢ (h) B gld+emh _ ¢ ¢ (h) B gld+e)h _ 1
VT Td¥em YT (dte)
Ln+1|n Lh+1yn _ a—(d+89)h _ a—(d+dmh
+ OmmBm——1 + (1 — /\m)Bmasm% s(h) = $7 - $7
N1 el (Vs+t25) (Vm+t2m)
+&mlm (d+ m)lIm 1 e (@+30h edh
— (Ym+tam)Im, (32) ¢7(h) = BTSN ¢g(h) = d
nit SRSl RN We obtain,
Zowj |n+l = =(1—2A%)Bml( NP =+ Ox Nnx)
Ln+l| n Ln+1| n
+ axxBx (1 /\X)Bmamx N°
P (@ B~ (gl gl i (35)
(33) ($a ()~ l+ P B
N+l nl B AS(S7 14 agRM L) 4yl
zow R =Pty 772 4 Potos] &+ Patoml iy + toxl s = <¢z<h>>*a+<d+Tls+ss>+n1n<assss|9+asnﬁmla+asxﬁxlx>
1, .qan+l-j
Rn+l| n Rn+1| n _ ZT;rl (I)J Lg J (3,6)
— Ofs———= — OmfPn—— (92(h)) = +(d-+tys+65)+ g (OssBsI8+AsmBml i+ AsxBxlx)
Rnl\iu n W LN+l _ BB (9014 R L sl 31 + il HasL 3 (1-P)
— O B——% —dR™L, (34) m (#3(h) =% +(d-+&m)+gr (AmmBml - QmxBl)
o 1-
where the discretizations fd)t( )is given as: (oslS(1-Po)— ZJM"’ L™ 37)
N =9+ Lg + |_ + |_n + | + N n+ | + R (¢3(h))~ a+(d+fm)+ﬁ1(amm3m| +amxBxIy)’
And o = (¢i(h))~%, i=1,2,- ,8. Where, the nonlocal Ll BT (91414 R L gL 0L 1) sl (1)
approximations are used for the nonlinear terms and the™ (@a(h)) =9 +(d+gx)+ i (axxBxIf)
Yl — ZT+1waLn+1 j
+ (@a(h) =% +(d+ex)+ g (@Blf) (38)
el _ () B (A5 21+ (1-)g) (™ L4 05R™))
s ($5(n)) =9 +(d+3)
(ot ts) 10+ est T -5 T i g )
ety a0 (39)
(L B (O (1) (ST o a8
m - (¢6(h)) = +(d+dm)
(o (tom)) - el =574 T ) (40)

(¢6(h))~9+(d+m) ’

(@© 2016 NSP
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n
[+l ﬁx%n(GXXLQHJF(l*)\x)(SH1+Uan+1+stLg+l+amePn+l>)
x (¢7(h)) = +(d+0)

—In Figure4c, the relationship betwee®(t) andim(t),

1] describes the spread of contagious from the members

1 n+1
(”‘HIZX))('ﬁ;;')‘EJr_(Ei%)‘*’f'X . (41) Im(t) of the second strian to healthy people, then the
. : : ) 4
P L Pt Pl 41— 5T (R number of infectious people will be increases and the
R stibs so T amTIm Tk 2=1% .(42) number of healthy people are decreases with proper
(¢8(h)) =9 +d-+ v (OBl 2 +0mBml i+ 0x Bl time.
—In Figure4d, the relationship betwedrn(t) andls(t),
6 Numerical results and simulations describes the spread of contagious from the members
Is(t) of the first strain to individuals who carry the
Since most of the fractionalorder differential equations disease latent of the first straii(t), after time steps

do not have exact analytic solutions, so approximation the curves are intersect agian thésit) will be

and numerical techniques must be used. Several analytical '€SPonse to treatment and the number of them are
and numerical methods have been proposed to solve the decreases.

fractional-order differential equations. For numerical . ) i
solutions of the system1@)-(26) one can use the In Figure 5, we present the (esults obtained by using
nonstandard finite difference method, the approximatdVSFDM and SFDM with step size= 1, anda = 0.8. As
solution S(t), Ls(t), Lm(t), Lx(t), Is(t), Im(t), Ix(t), R(t) we can clearly see, the SFDM is unstable and the
are display in Figurd, whenRy < 1 and Figure2 when solutions are divergent. from Tab#e we can conclude

Ry > 1, in each Figure three different values of
o =1a=0.5a=0.8 are considered and the endemic
equilibrium is locally asympototically stable, for exarapl
we consides = Bm = Bx = 14 anda = 0.8, with initial
value §(0), Ls(0), Lm(0), Lx(0), 1s(0), Im(0), 1x(0), R(0)

= (500050,50,50,30,30,30,60), the approximate
solutions are displayed in Figure& the endemic
equilibrium of NSFDM is locally asympototically stable
where the eigenvalues given asA;=—9.1156,
A2=—0.4141, A3=—0.1499, A4=—2.6366, As=—1.4130,
Ag=—1.6031, A;,=—1.0045, Ag=—24750. Then
largAi|=| — i1l > &F. Whena = 1, system (9)-(26) is the
classical integer-order systen){(8). Moreover, we
report in Table4 the convergence behavior of numerical
methods to the disease free equilibrium, and in Tdble
report the convergence behavior of numerical methods to

the endemic equilibrium. In Figurg, present the result . .
: . : Table 5: Result obtained by using SFDM and NSFDM for
obtained by NSFDM and SFDM with step sike= 0.1 Bo— By — By — 14.Ry > 1, o — 0.8, and initial conditions as

anda = 0.8. We can clearly see, all schemes converge 0,5, 50 50 50,30, 30,30,60) with different time step size.
correct endemic equilibrium. Previous Figurés — d)

Table 4: Result obtained by SFDM and NSFDM fds =
Bn=Bx =01, Rg <1, a = 0.8, and initial conditions as
(5000 50,50,50,30,30,30,60) with different time step size.

h SFDM NSFDM
0.01 | convergent| convergent
0.1 | convergent| convergent

1 convergent| convergent
20 divergent | convergent
100 | divergent | convergent

illustrate propagation of TB along the time when= 0.8 h SFOM NSFDM
as following: 0.01 | convergent| convergent
9- 0.1 | convergent| convergent
-In Figure4a, the relationship betweeR(t) andIs(t) 1 | divergent | convergent
illustrate that, there are individuals succeeded 20 | divergent | convergent
treatment with them, may are exposed to infection 100 | divergent | convergent

again by contagious membdggt) of the first strain .

At the beginning of the period of the time the number

of Is(t) members are increases and the numb&(bf  that NSFDM is unconditionally converge to the correct

members are decreases, then after time steps thdisease free equilibria for largh, while the SFDM

curves are intersect again aht) will be response to  converge only wheh is small.

treatment and their numbers will be decreases. from Table 5, we can conclude that NSFDM is
unconditionally converge to the correct endemic

—In Figure4b, the relationship betweef(t) andIx(t), equilibria for largeh, while the SFDM converge only

describes the spread of infection from the members ofwhen h is small. Moreover, the system27)-(34)is

the third strain to healthy people, then the number ofunconditionally locally asymptotically stable.

infectious people will be increases and the number ofMoreover, from these numerical results obtained in this

healthy people are decreases with proper time. work we can control the disease and turn the endemic
point to the disease free point as follows:
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T = maxXtys > 6.6828 toy, > 10.4227, tp > 10.4227},
i i
=gl =gl B
an e ) gt a —dlhae5 _ _
o e . i =T =tom=1x > 104227 47
2 g/ f Then, if we choose the following elements which belongs
AUUJ. a tO T tZS = t2m: t2x - 15, andBS - Bm - BX - 14, h:2,
mk a = 0.8 see Figuré.
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Fig. 1: Profiles obtained by using NSFD method with different a _Q:P:azgg : —a:p:a=g§
=T alphaE A =T alphaE
andh=0.1,Bs=Bm=pBx=0.1 Ry < 1. . alpha1 o el
g m gy Il
3 e
0y 7, i
Let us consider,
—t2.+ 5.3950,5+ 8.6060 ! T 1 5 1
ROS <l= 228 = < 07 Wheretls =tos Timelyeers) Time(years)
t5,+ 1.60502s+ 1.050
(43)
Rom < 1= 9.1720-0.8800,m <0 (44) Fig. 2: Profiles obtained by using NSFD method with different
" 0.880Q,m+0.4880 ~ andh=0.1, Bs = ffm = Bx = 14, andRy > 1.
9.1720— 0.880Q
Rox <1 (45)

~ 0.8800,, 104880~

Thentys = ths > 6.6828 tom > 10.4227, to > 10.4227
(46)
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Fig. 4: lllustrate propagation of multistrain TB along the time
whena =0.8,h=0.3, s = Bm = Bx = 14, andRy > 1, by using
NSFDM.

Fig. 5: Profiles obtained by using NSFD and SFD methods with

a=08h=1 Bs=Ln=PFx=14, andRy > 1.

7 Conclusions

In this paper, the mukistrain TB model of fractional
order derivatives which incorporates three strains:
drug—sensitive, MDR and XDR is studied. The model we
considered here included several factors of spreading TB
such as the fast infection, the exogenous reinfection and
secondary infection along with the resistance factor.rit ca
be concluded from the numerical results presented in this
paper, that the fractional order model for TB, is
generalization and more suitable than integer order.

Moreover, NSFD scheme considered here is more
efficient for solving fractional order model for
(© 2016 NSP
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