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Abstract: The stability analysis and error estimates are some of the well-known techniques carried out on a number of commonly
used numerical schemes for Allen-Cahn equation. We exploitthese techniques and design a reliable fully-discrete scheme consisting
of coupling the Non-standard finite difference with the finite element method. We show that the solution obtained from this scheme
is stabled and attains its optimal rate of convergence in both theH1 andL2-norms. We further show that this scheme replicates the
properties of the exact solution. Some numerical experiments are performed to support our theoretical analysis.
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1 Introduction

The time-dependent Allen-Cahn equation aries in the
description of a variety of physical phenomena in science
and engineering. These phenomena include problems
such as the motion by mean curvature [16] and crystal
growth [26] to mention a few. In summary, it is
well-known for being a basic model equation for the
diffuse interface approach developed to study the phase
transitions and interfacial dynamics in materials science
[7]. For more on the physical background and discussion
of the model equation, we refer to [2,6,14,23].

The study of the error analysis of this equation has
recently attracted considerable attention. The reason
being the dependence of error bounds on the parameter
ε ≪ 1, appearing in the equation which we will clarify
later. In this paper we consider the phase field model form
of the problem represented by the equation

∂u
∂ t

−∆u+
1
ε2 f (u) = 0 in Ω × (0,T), (1)

with

∂u
∂n

= 0 on ∂Ω × (0,T) (2)

and

u(·,0) = u0 in Ω ×{0}. (3)

where Ω is a bounded smooth domain inR2 with
smooth boundary∂Ω , a fixed constantT > 0, ε a
parameter representing the “interaction length” lying
within the interval 0< ε ≤ 1 and f a nonlinear function
which will be specifically stated as we progress. Besides,
the later specification off , we will modify f without
affecting the solutionu and f ∈C1(R2) and assume thatf
and f ′ are Lipschitz continuous such that‖ f ′(x)‖L∞ ≤ C
where C is a Lipschitz constant off and f ′ for
convenience. Note should be taken at this stage that, since
the nonlinear term f (u) in the numerical scheme
(19)-(20) could yield some severe stability limitations in
the time step, then we minimize these effects by
performing a nonlocal approximation off (u) in a special
way as in (35) without affecting the solution of the
problem u. An important feature of the Allen-Cahn
equation is one which can be viewed as the gradient flow
with the Liapunov energy functional

Jε(u) =
∫

Ω
Φε(u)dx,whereΦε(u) = 1/2|∇u|2+

1
ε2 F(u),

and F(u) is always positive inL2(Ω) and H−1(Ω) and
f (u) = F ′(u). The precise form in which we will be
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making use ofF(u) is as follows:

F(u) = 1/4(u2−1)2andf (u) = u3−u. (4)

The numerical methods which have been designed
and extensively used in the study of the time-dependent
Allen-Cahn equation are among many, the finite
difference method found in [8,11] and the a posteriori
error estimate for the finite element approximation of the
Allen-Cahn equation developed by Feng et al [15]. We
also have the Quasi-optimal posteriori error estimate in
L∞(0,T;L2(Ω)) derived for the finite element
approximation found in [5], the numerical approximation
of the celebrated Allen-Cahn equation and related diffuse
interface models found in [28] and the stabilized
semi-implicit (in time) scheme and the splitting scheme
for the Allen-Cahn equation introduced by Yang [27].

Instead of the methods stated above, we exploit a
similar conceptual approach and present in this paper, a
reliable technique consisting of coupling the nonstandard
finite difference (NSFD) method in time and the finite
element (FEM) method in the space variables. A similar
approach was used for the first time using the diffusion
equation in the non-smooth domain in [9] and the wave
equation in a smooth domain [10]. Since these two
problems were all linear, then our main aim in this paper
is to extend the application of the above technique to
solve the nonlinear parabolic problems of which the
time-dependent Allen-Cahn equation is taken as an
example. As regard the comparisons of the standard as
well as the Nonstandard coupled with the finite element
method we will refer to [9]. For other comparison of the
standard and Non-standard finite difference methods we
refer to [20]. The NSFD method was initiated by Mickens
in [20] and major contributions to the foundation of the
NSFD method could be seen in [3,4]. Since its initiation,
the NSFD method has been extensively applied to a
variety of concrete problems in physics, epidermeology,
business sciences, engineering and biological sciences see
[18,19,20,21] for more details and also [24] for an
overview. In this different framework our primary
objective is to prove that the discrete solution obtained
from this scheme is stable and attains its optimal rate of
convergence in both theH1 andL2-norms. The reliability
of the technique comes from the fact that the NSFD-FEM
method replicates the monotonicity properties of the
solution of the decay equations.

The rest of the paper is organized as follows: In Section
2, we present notations and the function spaces together
with some important properties needed for the study of the
problem. Section 3 will be devoted to gather essential tools
necessary to prove the main result of the paper. In Section
4 we will introduce the theory and state the main result of
the paper together with its proof. A numerical example to
confirm the validity of our main result will be presented
in Section 5 and finally the conclusion and future remarks
will be stated in Section 6.

2 Preliminaries

We specify in this section, the notation, spaces and
properties that will be see in this paper. We depart in this
section with the Sobolev spaces of real-valued functions
defined onΩ and denoted forr ≥ 0 by Hr(Ω). The norm
on Hr(Ω) will be denoted by‖ · ‖r . See [17] for the
definitions and the relevant properties of these spaces. In
a particular case, wherer = 0 the spaceH0(Ω) := L2(Ω)
and its inner product together with the norm will be stated
and denoted by

(u,v) =
∫

Ω
u,vdx, u,v∈ L2(Ω),

and

‖u‖L2(Ω) = {(u,u)}1/2, u∈ L2(Ω).

Besides, C∞
0 (Ω) will denote the space of infinitely

differentiable functions with support compactly contained
in Ω . The spaceH1

0(Ω) will denote the subspace of
H1(Ω) obtained by completingC∞

0 (Ω) with respect to the
norm‖ · ‖1. Following [17], for X a Hilbert space, we will
more generally use the Sobolev spaceHr [(0, t);X], where
r ≥ 0 and in the case whenr = 0 we will have
H0 [(0,T);X] = L2 [(0,T);X] with norm

‖v‖L2[(0,T);X] =

(

∫ T

0
‖v(·, t)‖Xdt

)1/2

.

In practice,X will be the Sobolev spaceHm(Ω) or H1
0(Ω).

Associated with (1) is the bilinear form

a(u,v) =
∫

Ω
∇u∇vdx, u,v,∈ H1(Ω),

anda(·, ·) will be symmetric and positive definite. i.e.,

a(u,v) = a(v,u) and a(u,u)≥ 0. (5)

3 Finite element method

We proceed under this section to gather essential tools
necessary to prove the main result of this paper. We begin
first by stating the following weak problem of (1)-(3):
find u∈ L2

[

(0,T);H1
0(Ω)

]

such that
(

∂u(·, t)
∂ t

,v

)

+(∇u(·, t),∇v) = ε−2 ( f (u(·, t)),v) , (6)

(u(·, t),v) = (u0,v) , (7)

for all v∈ H1
0(Ω) andt ∈ (0,T) a.e. For the existence and

the uniqueness of a solutionu(·, t) of (6)-(7), refer to [13,
22] and [25]. Hence forth, in appropriate places to follow,
additional conditions on the regularity ofu which
guarantee the convergence result will be imposed.

With the above continuous problem in place, we
proceed to provide the discrete framework for stating the
discrete version of (6)-(7). To this end, we letTh be a
regular family of triangulations ofΩ̄ consisting of
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compatible trianglesT of diameterhT ≤ h, see [12] for
more. For each mesh sizeTh, we associate the finite
element spaceVh of continuous piece-wise linear
functions that are zero on the boundary

Vh :=
{

vv ∈C0(Ω̄);vh|∂Ω = 0,vh|T ∈ P1,∀T ∈ Th
}

, (8)

whereP1 is the space of polynomials of degree less than
or equal to 1 andVh is a finite dimensional subspace ofV
which is contained in the Sobolev spaceH1

0(Ω). It is well
known that, if we let

Ph : H1
0(Ω)→Vh,

to denote theL2-projection onVh, then forw∈V we have

(∇w,∇vh) = (∇vh,∇w), ∀w∈ H1
0(Ω) andvh ∈Vh (9)

and

∂ k(Phu)
∂ tk

= Ph

(

∂ ku
∂ tk

)

, k= 0,1,2, t ∈ [0,T]. (10)

By the use of the energy method together with the
Gronwall’s Lemma, there exists a discrete finite element
solutionuh ∈Vh such that
(

∂uh

∂ t
,vh

)

+(∇uh,∇vh) =−ε−2 ( f (uh,vh) , (11)

(uh,vh) = (Phu0,vh) , (12)

With the above framework in place, it should be
recalled that the Liapunov energy of Allen-Cahn equation
decay with respect to the timet; that is, according to Feng
and Prohl [16], we have d

dt Φε (u). In view of this fact, we
can show the stability of problem (11)-(12) by using a
similar energy stability approach as follows:

If we takevh =
∂uh
∂ t in (11) together with the boundary

conditions (12) we have for allvh ∈Vh
(

∂uh

∂ t
,

∂uh

∂ t

)

+

(

∇uh,∇
∂uh

∂ t

)

+ ε−2
(

f (uh),
∂uh

∂ t

)

= 0. (13)

Using (4) and the fact that
∫

Ω
(F ′(uh),

∂uh

∂ t
)dx=

∫

Ω
( f (uh),

∂uh

∂ t
)dx

=
d
dt
(F(uh), I), (14)

we have in view of (13) that
(

∂uh

∂ t
,

∂uh

∂ t

)

+
d
dt

(

1/2(∇uh,∇uh)+
1
ε2 (F(u), I)

)

= 0. (15)

Using Cauch-Schwarz inequality on the first term of (15)
we have

d
dt

(uh,uh) =

(

uh,2
∂uh

∂ t

)

≤
1
c
(uh,uh)+ c

(uh

∂ t
,
uh

∂ t

)

from where if we takec = 1/2, the above equation
combined with (15) will yield

d
dt

(

(uh,uh)+
1
2
(∇uh,∇uh)+

1
ε2 (F(uh), I)

)

+
1
2

(uh

∂ t
,
uh

∂ t

)

≤ 2(uh,uh)

and this leads to the following equation:

d
dt

(

(uh,uh)+
1
2
(∇uh,∇uh)+

1
ε2 (F(uh), I)

)

≤ 2(uh,uh) . (16)

Using Gronwall’s inequality to (16) yield
(

(uh,uh)+
1
2
(∇uh,∇uh)+

1
ε2 (F(uh), I)

)

(t)

≤ e2t
(

(uh,uh)+
1
2
(∇uh,∇uh)+

1
ε2 (F(uh), I)

)

(0)

which completes the proof of the following preliminary
result of the paper:

Proposition 1The discrete solution of the Allen-Cahn
problem (11)-(12) satisfies the energy stability
(

(uh,uh)+
1
2
(∇uh,∇uh)+

1
ε2 (F(uh), I)

)

(t)

≤ e2t
(

(uh,uh)+
1
2
(∇uh,∇uh)+

1
ε2 (F(uh), I)

)

(0) (17)

We use the above preliminary results in Proposition1 to
proof the stability result of the next Proposition
refwirndzerem.

4 Coupled Non-standard finite difference and
finite element method

Instead of the features of the traditional combination of
the finite difference together with the finite element
method manifested by some method listed earlier, we
present in this section, a more reliable technique
NSFD-FEM, consisting of the Non-standard finite
difference method in the time and the finite element
method in the space variable. We show in this regard, that
the above mentioned scheme is stable and attains its
optimal rate of convergence in both theH1 andL2-norms.
To achieve this, we start by letting the step sizetn = n∆ t
for n = 0,1,2, · · ·N. For a sufficiently smooth function
v(x, t), we set
(

∂
∂ t

)k

vn =

(

∂
∂ t

)k

v(·, tn) and vn = v(·, tn), k≥ 0. (18)

We proceed with this, to find the fully NSFD-FEM
approximation{Un

h} such thatUn
h ≈ un

h at discrete timetn.
That is, find a sequence{Un

h}
N
n=0 in Vh such that for

n= 1,2, · · · ,N−1
(

δtU
n+1
h ,vh

)

+
(

∇Un+1
h ,∇vh

)

+ ε−2( f (Un
h ),vh) = 0, (19)
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(

Un+1
h ,vh

)

=
(

Phu0,vh
)

∀ vh ∈Vh, (20)

where

δtU
n
h =

Un+1
h −Un

h

φ(∆ t)
, (21)

andφ(∆ t) = eλ∆t−1
λ is restricted between 0< φ(∆ t) < 1.

If the nonlinear functionf = 0 in (1), we will have in
view of (19) an exact scheme

(

Un+1
h −Un

h
eλ∆t−1

λ

,vh

)

+
(

∇Un+1
h ,∇vh

)

= 0, (22)

which according to Mickens [20] replicates the positivity
and the decay to zero, which are the main features of the
exact solution of (1)-(3).

For the main goal of this section to be achieved, we
first state the afore-mentioned stability result in the next
proposition2.

Proposition 2The solution of a fully-discrete NSFD-FEM
scheme (19)-(20) of the Allen-Cahn equation satisfies the
energy stability estimate

1
2

(

∇Un+1
h ,∇Un+1

h

)

+
1
ε2

(

F(Un+1
h ), I

)

≤
1
2
(∇Un

h ,∇Un
h )

+
1
ε2 (F(U

n
h ), I) . (23)

Proof.If we take in (19) vh = δtU
n+1
h we have

(

Un+1
h −Un

h

φ(∆ t)
,δtU

n+1
h

)

+
(

∇Un+1
h ,∇δtU

n+1
h

)

+
1
ε2

(

(Un+1
h )3−Un

h ,δtU
n+1
h

)

= 0. (24)

We have in view of (24) the following equalities using (4)
(

δtU
n+1
h ,δtU

n+1
h

)

+
(

∇Un+1
h ,∇δtU

n+1
h

)

+
1
ε2

(

(Un+1
h )3−Un

h ,δtU
n+1
h

)

=
(

∇Un+1
h ,∇δtU

n+1
h

)

+
1

4ε2φ(∆ t)

(

(

(Un+1
h )2−1

)2
,δtU

n+1
h

)

−
1

4ε2φ(∆ t)

(

(

(Un+1
h )2−1

)2
,δtU

n+1
h

)

+
1

4ε2φ(∆ t)

(

(

(Un
h )

2−1
)2
,δtU

n+1
h

)

−
1

4ε2φ(∆ t)

(

(

(Un
h )

2−1
)2
,δtU

n+1
h

)

+
(

δtU
n+1
h ,δtU

n+1
h

)

=
(

∇Un+1
h ,∇δtU

n+1
h

)

+
1

4ε2φ(∆ t)

(

(

(Un+1
h )2−1

)2
,δtU

n+1
h

)

−
1

4ε2φ(∆ t)

(

(

(Un+1
h )2−1

)2
,δtU

n+1
h

)

+
1

4ε2φ(∆ t)

(

(

(Un
h )

2−1
)2
,δtU

n+1
h

)

+
1

4ε2φ(∆ t)

((

2+2(Un+1
h )2) ,δtU

n+1
h

)

+
1

4ε2φ(∆ t)

((

(Un
h +Un+1

h )2(Un
h −Un+1

h )2) ,δtU
n+1
h

)

= 0. (25)

In view of (25) we immediately see using (14) and
dropping some positive terms that
(

∇Un+1
h ,∇δtU

n+1
h

)

+
1

4ε2φ(∆ t)

(

(

(Un+1
h )2−1

)2
,δtU

n+1
h

)

−
1

4ε2φ(∆ t)

(

(

(Un
h )

2−1
)2
, I
)

≤ 0.

Using (21) and (4) in the above inequality we have

1
2

(

∇Un+1
h ,∇Un+1

h

)

+
1
ε2

(

F(Un+1
h ), I

)

≤
1
2
(∇Un

h ,∇Un
h )+

1
ε2 (F(U

n
h ), I)

which complete the proof.

With this scheme, we are now in the position to state
the main Theorem below.

Theorem 3Assume that the solution u and its initial data
u0 of the Allen-Cahn equation (6)-(7) are smooth enough
and u with its approximate solution uh satisfy Proposition
2. Then the solution of the fully-discrete stabled scheme
NSFD-FEM of (19) satisfies the energy law together with
the following error estimate

‖u(tn)−Un
h‖0 ≤C(∆ t +h2). (26)
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Furthermore, in the limit case when∆u = f = 0 on a
subset Ω ′ ⊂ Ω , the discrete solution replicates the
properties of the solution of the problem (1)-(3).

Proof.We depart by decomposing the global error as
follows:

Un
h −u(tn) = Un

h −Phu(tn)+Phu(tn)−u(tn)

= θ n+ρn (27)

We bound the space errorρn via (19) and (1) by taking the
error equation
(

∂
∂ t

(Phu(tn)−u(tn)),vh

)

+ (∇(Phu(tn)−u(tn)),∇vh)

+
1
ε2 (( f (u)− f (uh),vh))

= 0, (28)

together with its initial error estimate

‖u(·,0)−uh(·,0)‖ ≤Ch2. (29)

If we takevh = Ph
∂en

∂ t whereen = u−uh then, we have the
following equation
(

Ph
∂en

∂ t
,Ph

∂en

∂ t

)

+ (∇Phen,∇Phen)

+
1
ε2

(

( f (u)− f (uh)),Ph
∂en

∂ t

)

=

(

Ph
∂u
∂ t

−
∂u
∂ t

,Ph
∂en

∂ t

)

+

(

Ph∇
∂u
∂ t

−∇
∂u
∂ t

,Ph∇en
)

+

(

Ph
∂u
∂ t

−
∂u
∂ t

)

(30)

from where we denote the following terms on the right
hand side by:

A=

(

Ph
∂u
∂ t

−
∂u
∂ t

,Ph
∂en

∂ t

)

B=

(

Ph∇
∂u
∂ t

−∇
∂u
∂ t

,Ph∇en
)

and

C=

(

Ph
∂u
∂ t

−
∂u
∂ t

)

.

The above terms are then bounded by the use of
interpolation error bounds together with the
Cauchy-Schwarz inequality as follows:

‖A‖ ≤ ‖
∂u
∂ t

−Ph
∂u
∂ t

‖‖Ph
∂en

∂ t
‖ (31)

‖B‖ ≤ ‖∇(
∂u
∂ t

−Ph
∂u
∂ t

)‖‖Ph∇en‖ (32)

and

‖C‖ ≤Ch2‖Ph∇en‖ (33)

where C is a positive constant depending on
‖u‖L∞([0,T];H2(Ω)) and independent onh. Combining (31),
(32) and (33) in (30) yield

‖Ph
∂en

∂ t
‖2+

1
2

d
dt
‖∇Phen‖2 ≤

1
ε2

(

( f (u)− f (uh)),Ph
∂en

∂ t

)

+ Ch2
(

‖Ph
∂en

∂ t
‖+ ‖Ph∇en‖

)

≤ Ch2+
1
8
‖Ph

∂en

∂ t
‖2

+
1
2
‖Ph∇en‖2. (34)

Since we specified that the nonlinear term on the right
hand side of (34) was f (u) = u3−u, then we approximate
it by the following cubic expansion

f (u)− f (uh) = f ′(u)(u−uh)+ (u−uh)
3

+ 3u(u−uh)
2. (35)

In view of this, we bound the nonlinear term in (34) as
follows:

1
ε2

(

( f (u)− f (uh)),Ph
∂en

∂ t

)

=
1
ε2

(

( f (u)− f (Phu)),Ph
∂en

∂ t

)

+
1
ε2

(

( f (Phu)− f (uh)),Ph
∂en

∂ t

)

=
1
ε2

(

f ′(ξ )(u−Phu),Ph
∂en

∂ t

)

+
1
ε2

(

f (Phu)− f (uh),Ph
∂en

∂ t

)

= E+G

where

E =
1
ε2

(

f ′(ξ )(u−Phu),Ph
∂en

∂ t

)

G=
1
ε2

(

f (Phu)− f (uh),Ph
∂en

∂ t

)

andξ is betweenu andPhu.
Using Young inequality for any positiveε ′ > 0 we have

|E| ≤
1
ε2‖ f ′‖L∞(Ω)|(u−Phu),Ph

∂en

∂ t
|

≤
1
ε2

(

ε ′‖Ph
∂en

∂ t
‖2+

‖ f ′‖L∞(Ω)

4ε ′
‖u−Phu‖

2
)

and if we takeε ′ = ε2

4 the above inequality yields

|E| ≤
1
4
‖Ph

∂en

∂ t
‖2+

Ch4

ε4 (36)
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whereC > 0 is depending on‖ f ′‖L∞(Ω) and ‖u‖2 and
independent onh. To boundG we use (35) as follows:

G =
1
ε2

(

f ′(Phu)(Phu−uh),Ph
∂en

∂ t

)

+
1
ε2

[

(Phu−uh)
3+3Phu(Phu−uh)

2,Ph
∂en

∂ t

]

=
1
ε2

[

f ′(Phu)Phen+(Phe
n)n+3Phu(Phen)2,Ph

∂en

∂ t

]

=
1

4ε2

d
dt

(

(Phen)2,(Phen)2)

+
1

4ε2

(

f ′(Phu)Phen+3Phu(Phen)2,Ph
∂en

∂ t

)

=
1

4ε2

d
dt

(

(Phen)2,(Phen)2)+S (37)

whereS in (37) is bounded as follows:

|S| ≤
1
4
‖Ph

∂en

∂ t
‖2

+
C
ε4

(

‖Phen‖2+
(

(Phen)2,(Phen)2)) . (38)

Assembling the inequalities (36), (37) and (38) into (34)
we have

‖Ph
∂en

∂ t
‖2+

1
2

d
dt
‖∇Phen‖2 ≤

−1
4ε2

d
dt
‖(Phen)2‖2

+
5
8
‖Ph

∂en

∂ t
‖2+

1
2
‖Ph∇en‖2

+
C
ε4

(

‖(Phen)2‖2+ ‖Phe
n‖2)

+ Ch4+
C
ε2 h4. (39)

Using Young inequality for any positive constantε ′ > 0 on
the first term of the left hand side yield

d
dt

(

1
ε2‖Phen‖2

)

≤
1
ε2

(

1
ε ′
‖Phen‖2+ ε ′‖Ph

∂en

∂ t
‖2
)

and settingε ′ = ε2

8 we have

d
dt

(

1
ε2‖Phen‖2

)

≤
8
ε4‖Phen‖2+

1
8
‖Ph

∂en

∂ t
‖2

and re-introducing it to (39) and gathering the common
terms together yield

d
dt

(

1
ε2‖Phen‖2+

1
2
‖∇Phen‖2+

1
4ε2‖(Phen)2‖2

)

≤
1
2
‖Ph∇en‖2+Ch4+

C
ε4 h4+

C
ε4

(

‖Phe
n‖2+ ‖(Phe

2)2‖2) .

Multiplying both sides of the above inequality byε2 and
using the Gronwall’s inequality together with the initial
error (29) we have the required results

‖ρn‖ = ‖u−Phu‖
2+

ε2

2
‖∇(u−Phu)‖

2+
1
4
‖(u−Phu)

2‖2

≤ Ch2. (40)

On the other hand, we boundθ n in (27) via (19) as follows:

(δtθ n,vh)+ (∇θ n,∇vh) = (δt(U
n
h −Phu(tn)),vh)

+ (∇(Un
h −Phu(tn)),∇vh)

= −(Phδtu(tn),vh)

−
1
ε2 ( f (u(tn)),vh)

− (∇Phu(tn),∇vh)

= −(Phδtu(tn),vh)

+

(

∂u(tn)
∂ t

,vh

)

= ((I −Ph)δtu(tn),vh)

+

(

∂u(tn)
∂ t

− δtu(tn),vh

)

= (Wn
1 ,vh)+ (Wn

2 ,vh) . (41)

Takingvh = θ n and (21) we have

(δtθ n,θ n) = φ−1(∆ t)
(

θ n+1−θ n,θ n)

= φ−1(∆ t)‖θ n+1‖2−φ−1(∆ t)
(

θ n,θ n+1)

which when combined with (41) will yield

φ−1[‖θ n+1‖2−
(

θ n,θ n+1)]≤ (Wn
1 ,θ

n)+ (Wn
2 ,θ

n) . (42)

Using Cauchy-Schwarz inequality we have

‖θ n+1‖0 ≤ φ(∆ t)‖Wn
1 ‖

2
0+φ(∆ t)‖Wn

2 ‖
2
0+ ‖θ n‖0

which yield the next result after the use of mathematical
induction

‖θ n‖0 ≤ ‖θ 0‖0+φ(∆ t)
n

∑
j=1

‖W j
1‖

2
0

+ φ(∆ t)
n

∑
j=1

‖W j
2‖

2
0. (43)

Bounding estimate (43) in view of (29) sinceu0 ∈ H2(Ω)
we have

‖θ 0‖0 = ‖uh,0−Phu0‖0 ≤Ch2‖u0‖0. (44)

The bound onφ(∆ t)∑n
j=1‖W

j
1‖0 will be equivalent to that

on ρn sinceu∈ L2
[

(0,+∞);H2(Ω)
]

.

Finally we bound φ(∆ t)∑n
j=1‖W

j
2‖0 via (41) as

follows:

W j
2 = δtu(t j+1)−

∂u(t j+1)

∂ t

= φ−1(∆ t)
(

u(t j+1)−u(t j)
)

−
∂u(t j+1)

∂ t
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from where we have using Taylor theorem with the integral
expansion on the remainder term

φ(∆ t)
n

∑
j=1

‖W j
2‖

2
0 ≤

n

∑
j=1

‖

∫ t j+1

t j

(s− t j)
∂ 2u(s)

∂s2 ‖2
0

+ C(φ(∆ t))2
2

∑
j=1

‖
∂u(t j+1)

∂ t
‖2

0

≤ (∆ t)2
∫ tn

0
‖

∂ 2u(s)
∂s2 ‖2

0

+ C(φ(∆ t))2 sup
1≤ j≤n

‖
∂u(t j)

∂ t
‖2

0

≤ C∆ t, (45)

sinceu∈ L2
[

(0,+∞);H2(Ω)
]

and∆ t ≈ φ(∆ t) as∆ t → 0.
Combining (44) and (45) in (43) and taking note that the
second term on the right hand side of (43) is equivalent to
(40) then we have proved

‖θ n‖0 ≤C
(

∆ t +h2) . (46)

Hence in view of (40) and (46) we have proved the first
part of the Theorem that show the solution of the
Allen-Cahn equation converges optimally in bothH1(Ω)
and L2-norms using the coupled Non-standard finite
difference with finite element method.

As regard the second part of the above proof which is
purely the replication of the properties of the exact
solution of (19)-(20), we proceed thanks to Adams [1]
Corollary 2.11 as follows: We use the fart that the
convergence in theL2 as well asH1-norms of the discrete
solutionUn

h to the exact solutionu in (26) implies that,
there exists a subsequence ofUn

h still denoted byUn
h that

converges point-wise tou as h −→ 0 andn −→ +∞. In
view of this, if we assume that∆u= 0 near a pointa∈ Ω
and vh in (19) is chosen in such a way that its support
containing the pointa is very small andvh = 1 neara,
then we use the approximation
∫

Ω
( f (Un

h ))vhdx= f (Un
h (a) ·K

whereK is the measure of thesupp(vh). Using the above
approximation in (19), it follows that the solutionUn

h is
really the discrete solution of the exact scheme (22) if we
also have

f (Un
h (a, t)) = 0

and hence we complete the second part of the proof and
therefore completing the proof of the Theorem.

5 Numerical experiments

Under this section, we present the numerical experiments
carried out using problem (1) and (19). Our expectations
are indeed to obtain in theL2-norm, the best rate
convergence of approximately 2 and in theH1-norm the

best rate of convergence of approximately 1 of the
discrete to the exact solution of Allen-Cahn equation. To
achieve this, we begin by considering the equation

∂u
∂ t

−∆u+
1
ε2 f (u) = g(x, t) (47)

with the Dirichlet boundary conditions on the domainΩ =
[0,1]× [0,1] whereΩ is discretized using regular meshes
of sizesh= 1/M in the space and∆ t = T/N in the time
space. The forcing functiong(x, t) was taken in such a way
that it would yield an exact solutionu(x, t). If g(x, t) is
considered in such a way that

u(x, t) = e−2ε2t sin(x1)sin(x2) (48)

whereε = 0.3 and the following data are considered with
the following values:∆ t = ε2,N = 5,λ = 3 andT = 0.1,
then using a Mathlab 7.10.0(R2010a) code, we obtained
the following figures from1 to 6 for various values oft =
0.08,0.1 and 0.12:

We exploit the data obtained from the numerical
computations to find the errors forT = 0.12 with mesh
sizes varying from 10,15,20 and 25. The results from
these computations are illustrated in table1. Making use
of the error values of the solutionu(x, t) from the table1,
we compute forT = 0.12 with the same mesh sizes, the
rate of convergence ofu(x, t) using the formular

Rate=
ln(e2

e1
)

ln(h2
h1
)

whereh1 and h2 together withe1 and e2 are successive
triangle diameters and errors respectively. Furthermore,
the clarification of the convergence of the solution to be
more specific in theL2-norm can be illustrated in figure7.

In view of figure1 to 6, we observed that the exact
solutions for each timet are almost identical to the
approximate solutions. Besides, table1 shows that the
solutionu(x, t) has an approximate rate of almost 2 for the
L2-norm and 1 for theH1-norm. All these results are self
explanatory and we would like to conclude that the results
as shown by all these experiments exhibit the desired
theoretical analysis as expected.

Table 1 Error in L2 and H1-norms of u using NSFD-FEM
method

M L2-error L2-Rate H1-error H1-Rate
10 2.9856E-2 5.0853E-1
15 1.4216E-2 1.83 3.5722E-1 0.86
20 8.2775E-3 1.87 2.6923E-1 0.98
25 5.3570E-3 1.95 2.1538E-1 0.99
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6 Conlusion

A stable and reliable numerical scheme of a fully-discrete
time-dependent Allen-Cahn equation was presented. The
method used in the analysis of the above scheme was a
coupled non-standard finite difference method in the time
and the finite element method in the space variables
(NSFD-FEM). With this, we proved theoretically that the
discrete solution obtained from this scheme was stabled
and it’s optimal rates of convergence in the bothH1 and
L2-norms were obtained. Furthermore, we showed that
the said scheme replicates the properties of the exact
solution of the problem under investigation. We
proceeded by the help of a numerical example, to justify
our theoretical analysis.

The stability analysis and error estimates are based on
a weak formulation thus we could be tempted to ask that
natural question which is, whether or not we can easily
extend the technique to other domains like non-smooth
domains? The tempting answer might be yes provided we
stick to the procedure as proposed by Mickens [20] but it
might not be true. Another concern of interest is the
comparison studies which will be able to reveal the
technique’s strength and limitations. We set aside this
later studies to be addressed in our future works.

We would like in future, to also study system of
nonlinear time-dependent decoupled parabolic problems
using the same technique. The subject for considering
these same problems in domains which are non-smooth
using the same technique is very challenging but
interesting and it is ongoing now.
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