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1 Introduction and motivation

Modern actuarial theory and risk theory play a crucial
role in the economy and finance. Traditionally, insurance
is based on the assumption of independence. But now, the
progression and the complexity of insurance products has
led to increased actuarial interest in the modeling of
dependent risks.

Comparing risks is the very essence of the actuarial
profession. This work is innovative in many respects. It
integrates the theory of stochastic orders, one of the
methodological cornerstones of risk theory and the theory
of stochastic dependence, which has become increasingly
important as new types of risks emerge. More precisely,
risk measures will be used to generate stochastic ordering,
by identifying pairs of risks about which a class of risk
measures agree. Stochastic ordering are then used to
define positive dependence relationships.

In the literature, ordering of optimal allocation of
policy limits and deductible were established by
maximizing the expected utility of wealth of the
policyholder. In this paper, we study the problems of
optimal allocation of policy limits and deductible for
general model. In addition, by applying the bivariate
characterizations of stochastic ordering relations, we
reconsider the general model and derive some new results
on ordering of optimal allocations and deductible. The
results extend the main results in Cheung [1], Hua and
Cheung [4] and Zhuang et al. [14]

We consider for the following model :

SN = X1 f (Y1)+X2 f (Y2)+ ...+Xn f (Yn) (M1)

where :Yi = δiTi , SN is total discounted loss,Xi are loss
due to thei-th risk,Ti are time of occurrence ofi-th insured
risk andδi are discount rate capture the impact of financial
environment (Xi, Ti are independent non-negative random
variables andδi are non-random numbers). Also, we will
make the following assumptions :

1.f (Yi)≥ 0;∀Yi and lim f (Yi)
Yi→∞

= 0.

2.f (Yi) is decreasing and convex function.
3.Y1, ...,Yn are mutually independent.
4.A policyholder exposed to risksX1,X2, ...,Xn is granted

a total ofl dollars(l > 0) as the policy limit with which
(s)he can allocate arbitrarily among then risks.

Remark.A very good property of the model(M1) is that
Xi ’s characterize the scales of the losses whilef (Yi)
characterize the chances of the losses.

In this situation, if some risk occurs, the insurer will
make the payment right after the event of the loss and the
insurance coverage for this risk will terminate. However,
the insurance coverage for the other risks is still in effect.
If (l1, ..., ln) are the allocated policy we have∀i : l i ≥ 0

and
n
∑

i=1
l i = l . When l is n-tuple admissible andAn(l)
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denote the class of all suchn-tuples. If l = (l1, ..., ln) ∈
An(l) is chosen, then the discounted value of benefits
obtained from the insurer would be

n

∑
i=1

(Xi ∧ l i) f (Yi)

If we take expected utility of wealth as the criterion for
the optimal allocation, then the problem of the optimal
allocation of policy limits is

ProblemL : max
l∈An(l)

E

[

u

(

w−
n

∑
i=1

[Xi − (Xi ∧ l i)] f (Yi)

)]

.

whereu is the utility function of the policyholder andw is
the wealth (after premium).

Similarly, instead of policy limits, the policyholder
may be granted a total ofd dollars(d > 0) as the policy
deductible with which (s)he can allocate arbitrarily
among then risks. If d = (d1, ...,dn) ∈ An(d) are the

allocated deductible,∀i : di ≥ 0,
n
∑

i=1
di = d, and the

discounted value of benefits obtained from the insurer
would be

n

∑
i=1

(Xi −di)+ f (Yi)

Then the problem of the optimal allocation of policy
deductible is

ProblemD : max
d∈An(d)

E

[

u

(

w−
n
∑
i=1

[

Xi − (Xi −di)+
]

f (Yi)

)]

.

The paper is organized as follows : In section2 we
introduce the preliminaries and the notations and we will
recall some basic concepts and lemmas which will be
used in later sections. Section3 is devoted to state the
main results and its proofs. Finally, we give some
examples and application of the theory of ordering risks
in modern actuarial.

2 Preliminaries and notations

In this section, we will collect some basic definitions and
facts that are useful in the sequel. Notations and
conventions used throughout the paper will also be fixed.

In the following, we define
In = {(a1, ...,an) ∈ Rn : a1 ≤···≤ an} and
Dn = {(a1, ...,an) ∈ Rn : a1 ≥···≥ an}. The notationx[i]
andx(i) are thei-th largest and thei-th smallest element of
x respectively. For any vectorx = (x1, ...,xn) ∈ Rn, the
increasing rearrangement(x(1), ...,x(n)) ∈ In will be
denoted asx ↑, and the decreasing rearrangement
(x[1], ...,x[n]) ∈ Dn will be denoted asx ↓. If τ represents a
permutation of the set{1,2, ...,n}, then the permuted
vector(xτ(1) , ...,xτ(n)) will be denoted asx ◦ τ.

2.1 Stochastic order

We use the following references for this subsection,
which Denuit et al. [2,3], Kaas et al. [5,6], Muller and
Stoyan [9], Shaked and Shanthikumar [11,12], Zeghdoudi
and Remita [13], Zhuang et al. [14]. Throughout this
paper, all the random variables considered are defined on
a common probability space(Ω ,F ,P) and that all the
expectations mentioned exist. Also, we introduce some
important definitions, known proposition and properties,
which lay good foundations for the next section.

Definition 1([3]). Let X and Y be two random variables,

1.X is said to be smaller than Y in the usual stochastic
order (resp.increasing convex order,decreasing convex
order,convex order), denoted by X≤sl Y (resp.X ≤icx
Y, X ≤dcxY, X ≤cx Y), if

E[φ(X)]≤ E [φ(Y)]

for all increasing (resp. increasing convex, decreasing
convex, convex) functionφ .

2.X is said to be smaller than Y in the likelihood ratio
order, denoted by X≤lr Y , if

fX(x)gY(y)≥ fX(y)gY(x) for all x ≤ y

where fX and gY are the density functions of X and Y,
respectively.

2.1.1 Convex ordering random variables

In the continuation, we will consider random variables
with finite mean. In the actuarial literature it is often to
submit a random variable by a ”less attractive” random
variable which has a simpler structure, making it easier to
determine its distribution function.

The stop-loss premium is defined byE[(X − d)+] =
∞
∫

d
(1−FX(x))dx,−∞ < d < +∞. And the notationS will

be used for the sum of the random vector( X1,X2, ...,Xn) :
S= X1+X2+ ...+Xn.

Now, we define the stop-loss order between random
variables.

Definition 2([2]). (Stop-loss order). Consider two random
variables X and Y then X is said to precede Y in the stop-
loss order sense, notation X≤sl Y if and only if X has
lower stop-loss premium then Y:

E[(X−d)+]≤ E[(Y−d)+]; −∞ < d <+∞

with (x−d)+ = max(x−d,0).

Definition 3([2]). (convex order). Consider two random
variables X and Y such thatE [φ(X)] ≤ E [φ(Y)] , for all
convex functionsφ ,provided expectation exit. Then X is
said to be smaller than Y in the convex order denoted as
X ≤cx Y.
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Proposition 1([2]). (Convex order characterization using
stop-loss pemrium). Consider two random variables X and
Y . Then X is said to precede Y in convex order sense if and
only if

E(X) = E(Y)

E[(X−d)+]≤ E[(Y−d)+]; −∞ < d <+∞

Definition 4([6]). (Majorization Order). Given any two
vectorsa,b ∈ Rn,

1) b is said to be majorized bya (denoted byb ≺ a), if
{

∑n
i=1b[i] = ∑n

i=1a[i]
∑m

i=1b[i] ≤ ∑m
i=1a[i], m= 1, ...,n−1

2) b is said to be weakly majorized bya (denoted byb ≺≺
a), if

m

∑
i=1

b[i] ≤
m

∑
i=1

a[i], m= 1, ...,n.

2.1.2 Properties of Convex Ordering of Random Variables

1.If X precedesY in convex order sense i.e ifX ≤cx Y,
thenE [X] = E [Y] andV [X] ≤ V [Y] , whereV[X] is
variance ofX.(See [2])

2.If X ≤cx Y andZ is independent ofX andY thenX+
Z ≤cx Y+Z.(See [2])

3.Let X andY be two random variable, thenX ≤cx Y
⇒−X ≤cx −Y. (See [3])

4.Let X and Y be two random variable such that
E( X) = E(Y).Then X ≤cx Y if and only if
E |X−a| ≤ E |Y−a| ,∀a∈R.(See [3])

5.The convex order is closed under mixtures: LetX, Y
and Z be random variables such that[X | Z = z] ≤cx
[Y | Z = z] ∀z in the support ofZ. ThenX ≤cx Y.(See
[6])

6.The convex order is closed under convolution: let
X1,X2, ....,Xm be a set of independent random variable
and Y1,Y2, ...,Ym be another set of independent
random variables. IfXj ≤cx Yj , for j = 1, ....,m, then
∑m

j=1Xj ≤cx ∑m
j=1Yj .(See [2])

7.Let X be a random variable with finite mean. ThenX
+E(X)≤cx 2X.(It suffices to use the proposition 1)

8.Let X1,X2, ..Xn andY be (n+ 1) random variables. If
Xi ≤cx Y, i = 1, ...,n, then∑n

i=1aiXi ≤cx Y, whenever
ai ≥ 0, i = 1, ...,n and∑n

i=1ai = 1.(It suffices to use the
property 6)

9.Let X andY be two independent random variables.
ThenX ≤cxY if and only ifE [Φ(X,Y)]≤E [Φ(Y,X)],
where

∀Φ ∈Ψcx =

{

Φ : R2 →R : Φ(X,Y)−Φ(Y,X)
is convex for allx∈ y

}

.

(It suffices to use the proposition 1)
10.Let X1 and X2 be a pair of independent random

variables and letY1 and Y2 be another pair of
independent random variables. IfXi ≤cx Yi , i = 1,2
thenX1X2 ≤cx Y1Y2.(See [2])

11.Let X ≤cx Y if and only E [υ(X)] ≤ E [υ(Y)] for all
convex functionυ , provided expectation exit.(See [6])

12.LetX,Y andZ be random variables such thatX ≤cx Y
and Y ≤cx Z,then X ≤cx Z.(It suffices to use the
proposition 1)

13.If X ≤lr Y and φ is any decreasing function, then
φ(X)≥lr φ(Y) See [12].

14.Let X ∈ Rn
+ and X1 ≤lr .... ≤lr Xn are mutually

independent. Ifb is weakly majorities bya (denoted

by b ≺≺ a) anda ∈ In, then
n
∑

i=1
bixi ≤icx

n
∑

i=1
aixi (see

[4]).

2.2 Arrangement Increasing

Definition 5.A function f : Rn → R is said to be
arrangement increasing [decreasing], if for all i and j
such that :1≤ i < j ≤ n

(xi − x j){ f (x1, ...,xi , ...,x j , ...,xn)− f (x1, ...,x j , ...,xi , ...,xn)} ≤ [≥]0.

One major example is given by the joint density
function of mutually independent random variables that
are ordered by the likelihood ratio order.

Lemma 1. If X1, ...,Xn are mutually independent and
X1 ≤lr .... ≤lr Xn, then the joint density function of
(X1, ...,Xn) is arrangement increasing.

Proof. see [1].

Definition 6.A function g(x,λ ) : Rn ×Rn → R is said to
be an arrangement increasing(AI) function if

1.g is permutation invariant, i.e., g(x,λ )= g(x◦τ,λ ◦τ)
for any permutationτ, and

2.g exhibits permutation order, i.e., g(x ↓,λ ↑) ≤ g(x ↓
,λ ◦ τ)≤ g(x ↓,λ ↓) for any permutationτ .

The following lemma give us two examples ofAI
functions. Proofs can be found in [1].

Lemma 2.The function g: Rn×Rn → R defined by

g(x,λ ) =−
n

∑
i=1

(xi −λi)+ and g(x,λ ) =
n

∑
i=1

(xi ∧λi)

are an AI function.

Proofs of the following lemmas can be found in [4].

Lemma 3.Suppose that the functionφ (x,λ ) : R2 → R is
increasing both in x andλ . If the function

g(x,λ ) =
n

∑
i=1

φ (xi ,λi)

fromRn×Rn toR is an AI function, then

φ̂(x ↓,λ ↑)≺≺ φ̂ (x ↓,λ ◦ τ)≺≺ φ̂ (x ↓,λ ↓)

for any permutationτ.
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Lemma 4.Suppose that the functionφ(x,λ ) : R2 → R is
increasing in one variable and decreasing in the other. If
the function

g(x,λ ) =
n

∑
i=1

φ (xi ,λi)

fromRn×Rn toR is an AI function, then

− φ̂ (x ↓,λ ↓)≺≺−φ̂ (x ↓,λ ◦ τ)≺≺ φ̂ (x ↓,λ ↑)

for any permutationτ.

2.3 Comonotonicity

Definition 7.A subset A∈ Rn is said to be comonotonic if
wheneverx = (x1, ...,xn) andy = (y1, ...,yn) are elements
of A, either xi ≤ yi for all i or y i ≤ xi for all i. A random
vectorX = (X1,...,Xn) ∈ Rn is said to be comonotonic if
there is a comonotonic subset A ofRn such that P(X ∈
A) = 1.

Let F1, ...,Fn ben univariate distribution functions. We
useRn(F1, ...,Fn) to denote the Fréchet space of all then-
dimensional random vectors whose marginal distributions
areF1, ...,Fn,respectively.

Furthermore, we will use the notatioñX = (X̃1, ..., X̃n)
to indicate a comonotonic random vector belonging to the
Fréchet classRn(F1, ...,Fn). The random vector̃X is often
called a comonotonic counterpart or a comonotonic
modification ofX.

Lemma 5.The following statements are equivalent :

1.The random vectorX = (X1,...,Xn) is comonotonic.
2.A random vector Z and non-decreasing function

f1, ..., fn exist such that

X d
= ( f1(Z), ...., fn(Z))

where the notation
d
= is used to indicate ‘equality in

distribution’.

This lemma implies that comonotonicity is preserved
under a non-decreasing transform on each component of
X.

Lemma 6([2]). If

(X̃1, ..., X̃n) ∈ Rn(F1, ...,Fn)

is comonotonic, then

X1+ ...+Xn ≤cx X̃1+ ...+ X̃n

for any(X1, ...,Xn) ∈ Rn(F1, ...,Fn).

3 Main Results

The main results of this paper are the following theorem,
proposition and lemmas.

3.1 Policy Limits and Deductible

If the sum of policy limits or the sum of deductible is
fixed, thenXi ≤st Xj implies that l∗i ≤ l∗j and d∗

i ≥ d∗
j

when ( X1,X2, ....,Xn) is comonotonic, wherel∗i and d∗
i

are the optimal policy limit and the optimal deductible
allocated toi-th risk.

In this section we present the problem of the optimal
allocation of policy limits and deductible, where the
effects of loss severity and loss frequency are considered
separately. For make the new model analytically tractable,
we will make the following assumptions :

1.the policyholder is risk-averse, and therefore the utility
function is increasing and concave;

2.the random vectorX = (X1, ...,Xn), which represents
the loss severities, and random vectorY = (Y1, ...,Yn),
which represents the time of occurrence of losses, are
independent; moreover,Y1, ...,Yn are mutually
independent;

3.dependence structure of the severities of the risks is
unknown.

Remark.Assumption 3 means that while the marginal
distributions ofX1, ...,Xn are assumed to be known to the
policyholder, the joint distribution is not.

3.1.1 Policy limits with unknown dependent structures

The first problem to be considered is to maximize the
expected utility of wealth:

max min
l∈An(l)X∈R

E

[

u

(

w−
n

∑
i=1

[Xi − (Xi ∧ l i)] f (Yi)

)]

where u and w are the utility function (increasing and
concave), the wealth (after premium) respectively and ˜u is
an increasing convex function. The problem is equivalent
to

min max
l∈An(l)X∈R

E

[

ũ

(

n

∑
i=1

(Xi − l i)+ f (Yi)

)]

Lemma 7.If (X̃1, ..., X̃n) ∈ R is comonotonic, then

E

[

ũ

(

n

∑
i=1

(Xi − l i)+ f (Yi)

)]

≤E

[

ũ

(

n

∑
i=1

(

X̃i − l i
)

+
f (Yi)

)]

for any (l1, ..., ln) ∈ An(l) and (X1, ...,Xn) ∈ R

independent ofY.

Proof.Let X̃ = (X̃1, ..., X̃n) ∈ R be comonotonic and
independent ofY. For any fixed constantsy1, ...,yn,
Lemma 5 implies that

(

(

X̃1− l1
)

+
f (y1) , ...,

(

X̃n− ln
)

+
f (yn)

)
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is still comonotonic. Therefore, by Lemma 6 and Theorem
1, we have

n

∑
i=1

(Xi − l i)+ f (yi)≤cx

n

∑
i=1

(

X̃i − l i
)

+
f (yi)

and hence

E

[

ũ

(

n
∑

i=1
(Xi − l i)+ f (yi)

)]

≤ E

[

ũ

(

n
∑

i=1

(

X̃i − l i
)

+
f (yi)

)]

because ˜u is increasing and convex. Then by the
independence ofX andY,

E

[

ũ

(

n
∑

i=1
(Xi − l i)+ f (Yi)

)]

= E

[

E

{

ũ

(

n
∑

i=1
(Xi − l i)+ f (Yi)

)

|Y1, ...,Yn

}]

≤ E

[

E

{

ũ

(

n
∑

i=1

(

X̃i − l i
)

+
f (Yi)

)

|Y1, ...,Yn

}]

= E

[

ũ

(

n
∑

i=1

(

X̃i − l i
)

+
f (Yi)

)]

.

Now, the initial problem becomes

ProblemL′ :
{

min
l∈An(l)

E
[

ũ
(

∑n
i=1 (Xi − l i)+ f (Yi)

)]

Proposition 2.Let l∗ = (l∗1, ..., l
∗
n) be the solution to

Problem L’, then

Yi ≥lr Yj ,Xi ≤st Xj ⇒ l∗i ≤ l∗j .

Proof.Assume thatl i ≤ l j . Sincex→ f (Yi) is decreasing ,
by property 13

Yi ≥lr Yj ⇒ f (Yi)≤lr f (Yj )

Since (Xi ,Xj) is comonotonic and Xi ≤st Xj ,
Xi(ω)≤ Xj(ω) for anyω ∈ Ω . By the independence ofX
and Y, we can hereafter fix an outcome of
(X1, ...,Xi , ...,Xj , ...,Xn) as (x1, ...,xi , ...,x j , ...,xn) with
xi ≤ x j . As g(x, I) =−∑n

i=1(xi − l i)+ is anAI function by
Lemma 2 and the function(x, l) → −(x − l)+ is
increasing inl but decreasing inx, then by Lemma 4

((xi − l i)+,(x j − l j)+)≺≺ ((xi − l j)+,(x j − l i)+)

Since we also have(xi − l j)+ ≤ (x j − l i)+, then by property
14 we have

(xi − l i)+ f (Yi)+ (x j − l j)+ f (Yj )

≤ icx(xi − l j)+ f (Yi)+ (x j − l i)+ f (Yj ).

By independence convolution and for the increasing
convex function ˜u, we have

E(ũ((xi − l i)+ f (Yi)+ (x j − l j)+ f (Yj))
+ ∑

k6=i, j
(xk− lk)+ f (Yk)))

≤ E(ũ((xi − l j)+ f (Yi)+ (x j − l i)+ f (Yj))
+ ∑

k6=i, j
(xk− lk)+ f (Yk))).

By taking expectations conditional onX, we obtain
E(ũ((Xi − l i)+ f (Yi)+ (Xj − l j)+ f (Yj )) + ∑

k6=i, j
(Xk −

lk)+ f (Yk)))
≤ E(ũ((Xi − l j)+ f (Yi)+ (Xj − l i)+ f (Yj))+ ∑

k6=i, j
(Xk−

lk)+ f (Yk))). The result follows.

3.1.2 Policy deductible with unknown dependent
structures

Similar to the study of policy limits, now we consider the
problem of the optimal allocation of deductible :

max min
d∈An(d)X∈R

E

[

u

(

w−
n

∑
i=1

[

Xi − (Xi −di)+
]

f (Yi)

)]

which is equivalent to

min max
d∈An(d)X∈R

E

[

ũ

(

n

∑
i=1

(Xi ∧di)+ f (Yi)

)]

Lemma 8.If (X̃1, ..., X̃n) ∈ R is comonotonic and
independent ofY, then

E

[

ũ

(

n

∑
i=1

(Xi ∧ di)+ f (Yi)

)]

≤E

[

ũ

(

n

∑
i=1

(

X̃i ∧ di
)

+
f (Yi)

)]

for any (d1, ...,dn) ∈ An(d) and (X1, ...,Xn) ∈ R

independent ofY.

Proof.The proof is omitted because it is very similar to the
proof of Lemma 7.

From the above lemma, our problem becomes

ProblemD′ :

{

min
d∈An(d)

E
[

ũ
(

∑n
i=1 (Xi ∧ di)+ f (Yi)

)]

Proposition 3.Let d∗ = (d∗
1, ...,d

∗
n) be the solution to

Problem D’, then

Yi ≥lr Yj ,Xi ≤st Xj ⇒ d∗
i ≥ d∗

j .

Proof.Assume thatdi ≥ d j .As in the proof of Proposition
2, we have

Yi ≥lr Yj ⇒ f (Yi)≤lr f (Yj ),

and we can fix an outcome of
(X1, ...,Xi , ...,Xj , ...,Xn) as (x1, ...,xi , ...,x j , ...,xn) with
xi ≤ x j . As g(x,d) = ∑n

i=1(xi ∧ di) is an AI function by
Lemma 2 and the function(x,d) → x∧ d is increasing
both inx andd, then by Lemma 3,

((xi ∧di),(x j ∧d j))≺≺ ((xi ∧d j),(x j ∧di)).
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Since we also have(xi ∧d j) ≤ (x j ∧di), then by property
14 we have

(xi ∧di) f (Yi)+ (x j ∧d j) f (Yj )

≤ icx (xi ∧d j) f (Yi)+ (x j ∧di) f (Yj )

By independence convolution, we have

(xi ∧di) f (Yi)+ (x j ∧d j) f (Yj ) + ∑
k6=i, j

(Xk∧dk)+ f (Yk)

≤ icx (xi ∧d j) f (Yi)+ (x j ∧di) f (Yj )+∑
k6=i, j

(Xk∧dk)+ f (Yk)

Therefore, the increasing convex function ˜u,
E((ũ(xi ∧ di) f (Yi) + (x j ∧ d j) f (Yj ) + ∑

k6=i, j
(Xk ∧

dk)+ f (Yk)))
≤

E((ũ(xi ∧d j) f (Yi)+(x j ∧di) f (Yj )+∑
k6=i, j

(Xk∧dk)+ f (Yk))).

3.2 Convex bounds for SN

In risk theory and finance, one is often interested in
distribution of the sumsS= X1 + ...+ Xn or the form
SN = X1 f (Y1) + X2 f (Y2) + ...+ Xn f (Yn)(our model) of
individual risks of a portfolioX. In this subsection we
give a short overview of these stochastic ordering results.
For proofs and more details on the presented results, we
refer to the overview paper of Dhaene et al. [2] and
Zeghdoudi and Remita [13].

Theorem 1.We note that:

S̃N = X̃1 f (Y1)+ X̃2 f (Y2)+ ...+ X̃n f (Yn).

For any random vector X= (X1, ...,Xn) and f(Yi), i = 1, ..n

we have
SN ≤cx S̃N

Proof.It is suffices to prove stop-loss order because
E(SN) = E

(

S̃N
)

. Hence, we have to prove that

E[(SN −d)+]≤ E[(S̃N −d)+]

The following holds for all
(X1 f (Y1),X2 f (Y2), ...,Xn f (Yn)) when
d1+d2+ ...+dn = d

(X1 f (Y1)+ ...+Xn f (Yn)−d)+
= (X1 f (Y1)−d1+ ...+Xn f (Yn)−dn)+

≤
(

(X1 f (Y1)−d1)+ ...+(Xn f (Yn)−dn)+
)

+
(1)

= (X1 f (Y1)−d1)++ ...+(Xn f (Yn)−dn)+

Now taking expectations, we get that

E
[

(X1 f (Y1)+ ...+Xn f (Yn)−d)+
]

≤ ∑n
i=1E

[

(Xi f (Yi)−di)+
]

According to [3] we have

E[(S̃N −d)+] =
n

∑
i=1

E
[

(Xi f (Yi)−di)+
]

Then,
SN ≤cx S̃N.

Proposition 4.For any random vector X=(X1, ...,Xn), any
random variableΛ and for U∽ Uni f orm(0,1), which is
assumed to be a function of X and for f(Yi)≥ 1, i = 1, ...,n,
we have,
(a)

S≤cx SN

(b)
S̃≤cx S̃N

(c)
n

∑
i=1

E [Xi | Λ ]≤cx SN

(d)
n

∑
i=1

E
[

X̃i | Λ
]

≤cx S̃N

Proof.(a) We have f (Yi) ≥ 1, i = 1, ..n and we used
property 10 and 6, we obtain

X1+X2+ ...+Xn ≤cx X1 f (Y1)+X2 f (Y2)+ ...+Xn f (Yn)

thus
S≤cx SN

(b) We will omit the proof here because the idea is very
similar to the proof in (a).
(c) According to Dhaene et al. [2] we have,
n
∑

i=1
E [Xi | Λ ]≤cx Sand (a), we deduce that

n

∑
i=1

E [Xi | Λ ]≤cx SN

(d) According to Zeghdoudi and Remita [13] we

have
n
∑

i=1
E
[

X̃i | Λ
]

≤cx S̃ , using property 12 and(b), we

obtain
n

∑
i=1

E
[

X̃i | Λ
]

≤cx S̃N.

In addition, if f (Yi)≤ 1, i = 1, ..n, we can check easily
that

SN ≤cx S̃N ≤cx S≤cx S̃.

4 Some examples and application

In this section we will describe several examples that show
how distribution function of the sum of random variables
can be approximated by convex order of random variable
(seeRüschendorf[8]) for lower convex order of random
variables and comparison of two families of copulas.
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4.1 Individual and collective risk model

The classical individual and collective model of risk theory
has the formXInd = ∑n

i=1bi Ii , XColl = ∑n
i=1biNi , where

Ii ∽ Bernoulli(pi) andNi ∽ poisson(λi).

With probabilitypi contracti will yield a claim of sizebi ≥
0 for any of then policies. As an application of stochastic
and stop loss ordering we get that the collective risk model
XColl leads to an overestimate of the risks and, therefore,
also to an increase of the corresponding risk premiums for
the whole portfolioXInd ≤sl(cx) XColl .

4.2 Reinsurance contracts

We consider reinsurance contractsI(X) for a risk X,
where 0≤ I(X)≤ X is the reinsured part of the riskX and
X − I(X) is the retained risk of the insurer. Consider the
stop loss reinsurance contractIa(X) = (X −a)+, wherea
is chosen such thatEIa(X) = EI(X). Then for any
reinsurance contractI(X)

X− Ia(X)≤sl(cx) X− I(X).

4.3 Dependent portfolios increase risk

LetYi =∑m
i=1 αiXi , whereαi andXi ∽Bernoulliwith

m
∑

i=1
αi

= 1,thenYi ∽ Bernoulli. It is interesting to compare the
total risk Tn = ∑n

i=1Yi in the mixed model(Xi) with the
total riskSn = ∑n

i=1Wi in an independent portfolio model
(Wi), whereWi ∽ Bernoulliare distributed identical toXi .
Then we obtain

Sn ≤sl(cx) Tn.

4.4 Comparison of two families of copulas

Definition 8(copulas). C(u1, ...,un) is distribution
function whose marginal are all uniformly distributed
(see Nelson [10]).

Now we consider two risksX andY with given survival
functionsF̄ andḠ. A sufficient condition of the stop-loss
order is given by:

Cut-criterion ( Karlin and Novikoff [7]): Let X andY
be two risks withE [X]≤ E [Y]. If there exists a constantc
such that

{

F̄(x) ≥ Ḡ(x) for all x < c,
F̄(x) ≤ Ḡ(x) for all x ≥ c,

then
X �st Y

Definition 9(Bivariate orthant convex order). Given
non-negative random vectorsX = (X1,X2) and
Y = (Y1,Y2). We say that X is smaller thanY in the
orthant convex order denoted asX �uo−cx Y if the
inequalities

E [v1(X1)v2(X2)]≤ E [v1(Y1)v2(Y2)]

holds for all non-decreasing convex function v1and v2 .

Characterization: X �uo−cx Y if and only, if

1.E[(Xi −di)+]≤ E[(Yi −di)+] for all di > 0, i = 1,2
2.E[(X1 − d1)+(X2 − d2)+] ≤ E[(Y1 − d1)+(Y2 − d2)+]

for all d1,d2 > 0.

Consequently:

X �uo−cx Y ⇒ Xi �st Yi , i = 1,2

This shows that�uo−cxcan be viewed as bivariate
extension of stop-loss order.

Crossing condition for the bivariate orthant convex
order:

Let X = (X1,X2) and Y = (Y1,Y2) be non-negative
random vectors with survival functions̄F andḠ. Let h be
a level curve defined by

F̄ (x,h(x))− Ḡ(x,h(x)) = 0, x≥ 0.

Let

C=
{

(x,y) ∈R+×R+ : y≤ h(x)
}

we denote byC̄ the complement ofC in R+×R+.

Remark.The concordance order is used to compare
members of a given copula familyCθ when the
dependence parameter varies:

θ1 ≤ θ2 ⇒Cθ1 �C Cθ2

In general, there is no comparison between a copulas from
different families with�C:

Cθ1 �C Cθ2 and Cθ2 �C Cθ1

Example 1.Let Cθ1 be a Clayton copula with parameter
θ1 = 1 andCθ2 be a Frank copula with parameterθ2 = 2.
Since�uo−cx is weaker than�C . Thus one can expect to
rank the copulas Cθ1 and Cθ2 with respect to�uo−cx
instead of�C . Therefore, one can use our cut-criterion to
establish a such comparison with respect�uo−cx. To this
end, we can see thatCθ1 �uo−cx Cθ2.This means that the
upper orthant convex order can be more convenient for
compare the concordance between two different families
of copulas.
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5 Conclusions

In this work, we give an extensive bibliographic overview
of the developments of the theory of stochastic orderings,
comonotonicity and their applications. Also, we present
the problems of optimal allocation of policy limits and
deductibles are studied. By applying the bivariate
characterizations of stochastic ordering relations, we
reconsider the general model and derive some new refined
results on orderings of optimal allocations of policy limits
and deductibles from the viewpoint of the policyholder. In
addition, when the severity and the chance of the loss are
both larger, a larger policy limit and a smaller policy
deductible will be allocated to that risk by a risk-averse
policyholder. Moreover, we obtain an convex upper and
lower bound in terms of comonotonic portfolios for
SN = X1 f (Y1)+X2 f (Y2)+ ...+Xn f (Yn) (our model). For
future studies, we may try to explore the following
directions. First, we can relax the condition imposed on
f (Yi) and introduce financial risks to the model. Second,
we can remakes same work for obtain the optimal
allocation of policy limits and deductibles in a model with
mixture and discount factors.
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