Appl. Math. Inf. Sci.10, No. 4, 1385-1392 (2016) %N =) 1385

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100417

On Stochastic Orders and their Applications: Policy
Limits and Deductibles

Meriem Bouhadjar, Halim Zeghdoutiind Mohamed Riad Remita
LaPS laboratory, Badji-Mokhtar University, BP12, Annald@0-Algeria

Received: 30 Mar. 2016, Revised: 16 May 2016, Accepted: 1y 204.6
Published online: 1 Jul. 2016

Abstract: The paper deals with several types of stochastic ordertaffecandom variables and linear combinations of random
variables. We study the problem of finding maximal expectglityufor some functionals on insurance portfolios invislg some
additional (independent) randomization. Applicationgpaticy limits and deductible are obtained, and some refatiips with other
actuarial main topics (comparison of copulas, individual aollective risk models, reinsurance contracts, ete saudied too.
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1 Introduction and motivation We consider for the following model :

Modern actuarial theory and risk theory play a crucial -
role in the economy and finance. Traditionally, insurance Sv=Xaf(¥0) +Xof (Y2) +... + Xa f (V) (M1)

is based on the assumption of independence. But now, thg o.q Y, = &T . Sy is total discounted loss( are loss
progression and the complexity of insurance products hag e to the-th risk, T, are time of occurrence ofth insured

led to increased actuarial interest in the modeling of gy andg are discount rate capture the impact of financial
dependent risks. environmentX;, T; are independent non-negative random

Comparing risks is the very essence of the actuarial arjaples and are non-random numbers). Also, we will
profession. This work is innovative in many respects. It make the following assumptions :

integrates the theory of stochastic orders, one of the

methodological cornerstones of risk theory and the theory 1.f(Y;) > 0;VvY; and limf(Yj) = 0.

of stochastic dependence, which has become increasingly ) o Yime )

important as new types of risks emerge. More precisely, 2-f(Y) is decreasing and convex function.

risk measures will be used to generate stochastic ordering, 3-Y1 -+, Yo are mutually independent. ,

by identifying pairs of risks about which a class of risk  4-A policyholderexposed to risk§, Xy, ..., Xn is granted
measures agree. Stochastic ordering are then used to & totalofl dollars(l > 0) as the policy limit with which
define positive dependence relationships. (s)he can allocate arbitrarily among theisks.

In the literature, ordering of optimal allocation of
policy limits and deductible were established by
maximizing the expected utility of wealth of the
policyholder. In this paper, we study the problems of
optimal allocation of policy limits and deductible for In this situation, if some risk occurs, the insurer will
general model. In addition, by applying the bivariate make the payment right after the event of the loss and the
characterizations of stochastic ordering relations, weinsurance coverage for this risk will terminate. However,
reconsider the general model and derive some new resuligie insurance coverage for the other risks is still in effect
on ordering of optimal allocations and deductible. The |f (I3,...,In) are the allocated policy we hawé : l; > 0

results extend the main results in Cheudgj Hua and n . o
Cheung #] and Zhuang et al.14] and _lei = 1. When| is n-tuple admissible and(l)

RemarkA very good property of the mod¢M1) is that
Xi's characterize the scales of the losses whHil@})
characterize the chances of the losses.
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denote the class of all suaktuples. Ifl = (I1,...,In) € 2.1 Stochastic order
/(1) is chosen, then the discounted value of benefits

obtained from the insurer would be We use the following references for this subsection,
which Denuit et al. 2,3], Kaas et al. §,6], Muller and
A XA 1) F (Y. Stoyan P], Shaked and Shanthikumadrl, 12], Zeghdoudi
i;( 1) F(4) and Remita 13], Zhuang et al. 14]. Throughout this

o o paper, all the random variables considered are defined on
If we take expected utility of wealth as the criterion for 5 common probability space?,.#,P) and that all the
the optimal allocation, then the problem of the optimal expectations mentioned exist. Also, we introduce some
allocation of policy limits is important definitions, known proposition and properties,
which lay good foundations for the next section.

[u (w— i[xi X Al)] fm)ﬂ . Definition 1([3]). Let X and Y be two random variables,

ProblemL : maxE
lesh(l)

1.X is said to be smaller than Y in the usual stochastic
order (resp.increasing convex order,decreasing convex
order,convex order), denoted by<g Y (respX <icx
Y7 X Sdch7 X SCXY). if

whereu is the utility function of the policyholder and is
the wealth (after premium).
Similarly, instead of policy limits, the policyholder

may be granted a total af dollars(d > 0) as the policy E[p(X)] < E[@(Y)]
deductible with which (s)he can allocate arbitrarily -
among then risks. If d = (di,...,dn) € o,(d) are the for all increasing (resp. increasing convex, decreasing

convex, convex) functiap
& 2.X is said to be smaller than Y in the likelihood ratio
discounted value of benefits obtained from the insurer order, denoted by X, Y , if
would be

allocated deductibleyi : di > 0, Edi = d, and the

fx (X)gv (y) > fx(Y)gy(x) forallx <y

n
zi(xi —di), f(Y) where & and g are the density functions of X and Y,
= respectively.

Then the problem of the optimal allocation of policy
deductible is ) )
2.1.1 Convex ordering random variables

ProblemD: max E
dean(d)

n
. (W_i21 X = (6 —d). ] f(mﬂ ’ In the continuation, we will consider random variables
. . _ with finite mean. In the actuarial literature it is often to
The paper is organized as follows : In sectidnwe  submit a random variable by a "less attractive” random

introduce the preliminaries and the notations and we willyariable which has a simpler structure, making it easier to
recall some basic concepts and lemmas which will begetermine its distribution function.

used in later sections. Sectihis devoted to state the The stop-loss premium is defined B{(X —d),] =
main results and its proofs. Finally, we give some « . .
examples and application of the theory of ordering risksg(l_ Fx(x))dx —o < d < 0. And the notationS will

in modern actuarial. be used for the sum of the random veatot, Xz, ..., Xp) :
S= Xg+Xo+ ...+ X

. . ) Now, we define the stop-loss order between random
2 Preliminaries and notations variables.

In this section, we will collect some basic definitions and Definition 2([2]). (Stop-loss order). Consider two random
facts that are useful in the sequel. Notations andvariables X and Y then X is said to precede Y in the stop-
conventions used throughout the paper will also be fixed. loss order sense, notation Xg Y if and only if X has

In the following, we define  lower stop-loss premium then Y:
fn = {(al,...,an) c RN a SS an} and .
T = {(a,...,an) € R" 1 ay >-> an}. The notationx; E[(X—d);] <E[(Y—d);]; —e0 < d < 400

andx arg thei-th largest and theth smallest element of with (x—d).. = maxx—d,0).

x respectively. For any vectot = (xi,...,X,) € R", the

increasing rearrangemer(y),...,Xn)) € #n Wwill be Definition 3([2]). (convex order). Consider two random
denoted asx f, and the decreasing rearrangementvariables X andY such thatt [p(X)] < E[¢(Y)], for all
(X(2],---» X)) € Zn Will be denoted as |.. If T representsa  convex functionsp,provided expectation exit. Then X is
permutation of the se{1,2,...,n}, then the permuted said to be smaller than Y in the convex order denoted as

vector(Xyy,, ..., Xy, ) Will be denoted ago 7. X <xY.
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Proposition 1([2]). (Convex order characterization using 11.LetX <Y if and only E[u(X)] < E[u(Y)] for all
stop-loss pemrium). Consider two random variables X and  convex functioru, provided expectation exit.(Seé]]
Y . Then X is said to precede Y in convex order sense if andL2.LetX,Y andZ be random variables such that<. Y

only if and Y <c Zthen X <. Z.(It suffices to use the
E(X) =E(Y) proposition 1) . . .
E[(X —d),] <E[(Y —d),]; o0 <d< o 13.1f X <)y Y and ¢ is any decreasing function, then

o o , @(X) >ir p(Y) See [L2.
Definition 4([6]). (Majorization Order). Given any two 14.Let X € R and X; <, .... <y X, are mutually
vectorsa,b € R", independent. 1b is weakly majorities bya (denoted
n n

1) b is said to be majorized bg (denoted by < a), if by b << a) anda € %, then S bix; <iex S aX; (see
] o i1 =1
{ Yita by =il ay [4)).

Eln;lb[l] < z{llam, m=1..n-1

2) b is said to be weakly majorized lay(denoted by << 2.2 Arrangement Increasing

a), if
b < San me1..n Definition 5.A function f: R" — R is said to be
i; il = i_Z il = ST arrangement increasing [decreasing], if for all i and |
B B suchthat:1<i<j<n

2.1.2 Properties of Convex Ordering of Random Variables® =X {f (XX, oo, Xj, o Xn) = F(X3, o0, X, 0. Xn)} < [2]0,

1.If X precede¥ in convex order sense i.e ¥ <Y, f ncgg?w g;alir?r tez)a(l?mﬁldee ise n%i\éﬁ? rgz dt)hn‘i j(;irr'l;bcli:s??:gt
thenE[X] = E[Y] andV [X] < V[Y], whereV[X] is  'unct! utually indep varl

variance ofX.(See p]) are ordered by the likelihood ratio order.

21f X <cxY andZ is independent oK andY thenX+  Lemma 1. If Xy,....X, are mutually independent and

Z <cxY+Z.(See P]) . X1 <ir .... <ir X, then the joint density function of
3.LetX andY be two random variable, thex <Y (X1,...,X%n) is arrangement increasing.

= —X <cx—Y. (See B])
4.Llet X andY be two random variable such that Proof. see].

E( X) = E(Y).Then X < Y if and only if  pefinition 6.A function gx,A) : R" x R" — R is said to

E|X—a] <E|Y —a|,VacR.(See B]) ti iHAD function if
5.The convex order is closed under mixtures: Kety be an arrangement increasir@l) function |

andZ be random variables such thi¢ | Z = 7 < 1.g is permutation invariant, i.e.(8,A) =g(XoT,A oT)
[Y | Z=Z Vvzin the support oZ. ThenX < Y.(See for any permutatiorr, and
[en 2.9 exhibits permutation order, i.e.(>g),A 1) < g(x |

6.The convex order is closed under convolution: let ,AoT)<g(xl|,A ]) forany permutatiorr .
X1,X2,....,Xm be a set of independent random variable
and Y1,Y2,....Yn be another set of independent
random variables. IK; < Yj, for j =1,....,m, then

The following lemma give us two examples &
functions. Proofs can be found it][

YL Xj <ex Y. Yi-(See B]) Lemma 2The function g R" x R" — R defined by
7.Let X be a random variable with finite mean. Th€n . .

+E(X) <cx 2X.(It suffices to use the proposition 1) _ Y - g
8.Let Xy, Xp,.. %y andY be (n+ 1) random variables. If g(x,A) = i;(m Ai)+ and gx,A) = i;(x. A

Xi <«xY,i=1,....n thenS aX <c Y, whenever
a>0,i=1,...,nandy" ; a = 1.(It suffices to use the ~ are an Al function.
property 6)

9.LetX andY be two independent random variables.
ThenX <Y ifand only ifE[®(X,Y)] <E[®D(Y,X)], Lemma 3 Suppose that the functiap(x,A) : R? — R is
where increasing both in x and . If the function

®:R%2 5 R:O(X,Y) - DY, X) }

Proofs of the following lemmas can be found #.[

VO € Yox = { is convex for alix € y

n
g(x.A) =Y @(x.A)
i; | |
(It suffices to use the proposition 1)

n n . .
10.Let X; and X, be a pair of independent random fromR"x R" to R is an Al function, then

variables and lety; and Y, be another pair of DIXLIAN) << O(XLAoT) << @(xLA
independent random variables. Xf < Y, , i = 1,2 PXLAT) <= @A 1) << p(xl,A L)
thenX;Xo <ex YiYo.(See B]) for any permutatiorr.
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Lemma 4 Suppose that the functiapix,A) : R> - Ris 3.1 Policy Limits and Deductible
increasing in one variable and decreasing in the other. If

the function If the sum of policy limits or the sum of deductible is
n fixed, thenX; <g Xj implies that I < I}‘ and d > d}‘
9(x,A) = i;(p(x.,)\.) when ( X1, Xz,....,Xn) is comonotonic, wherd" and d*
. o are the optimal policy limit and the optimal deductible
fromR" x R"to R is an Al function, then allocated td-th risk.
- - - In this section we present the problem of the optimal
— A — A A
PXLAY) << =01 A0 1) << @(x LA T) allocation of policy limits and deductible, where the
for any permutatiorr. effects of loss severity and loss frequency are considered

separately. For make the new model analytically tractable,
we will make the following assumptions :

2.3 Comonotonicity 1.the policyholder is risk-averse, and therefore thetwtili

function is increasing and concave;

2.the random vectoX = (Xg,...,Xn), which represents
the loss severities, and random vector (Y, ..., Yn),
which represents the time of occurrence of losses, are
independent; moreover,Ys,...,Y, are mutually

Definition 7.A subset Ac R" is said to be comonotonic if
whenevex = (Xg,...,X,) andy = (y1,...,yn) are elements
of A, either x<y; for all i or y;j < x for all i. A random
vectorX = (Xg....,X%n) € R" is said to be comonotonic if
there is a comonotonic subset ARF such that X ¢

A) =1 independent;
' 3.dependence structure of the severities of the risks is
Let F4,...,F, ben univariate distribution functions. We unknown.

useZn(Fi,...,Fn) to denote the Fréchet space of all the ) , )
dimensional random vectors whose marginal distributionsRe€markAssumption 3 means that while the marginal

areFy, ..., Fy respectively. distributions ofX, ..., X, are assumed to be known to the
Furthermore, we will use the notatidh= (Xg,..., %) policyholder, the joint distribution is not.

to indicate a comonotonic random vector belonging to the

Fréchet classZy(Fy, ..., Fn). The random vectoX is often

called a comonotonic counterpart or a comonotonic

modification ofX.

3.1.1 Policy limits with unknown dependent structures

The first problem to be considered is to maximize the

Lemma 5.The following statements are equivalent : expected utility of wealth:
1.The random vectoX = (Xy ..., Xn) is comonotonic.
2.A random vector Z and non-decreasing function _ n
f1,..., fn exist such that max minE [u | w— Zi[xi — (X AL F(Y)
lean()Xez i=
d
X=(11(2),- Tn(2)) whereu and w are the utility function (increasing and

concave), the wealth (after premium) respectively amsl ~
an increasing convex function. The problem is equivalent
to

where the notatior is used to indicate ‘equality in
distribution’.

This lemma implies that comonotonicity is preserved
under a non-decreasing transform on each component of

n
X. min maxE U<izl(>ﬁ—h)+f(\ﬁ)>
Lemma 6((2]). If Lemma 7If (Xy,...,Xn) € Z is comonotonic, then
(X1, ...,%) € Zn(Fu, ..., Fn) ) )
is comonotonic, then E [ﬁ ('Zl(Xi —li); f(%))] <E |0 <Z (Xi—1i), f(%))]

Xp 4 oo+ X <ex Kq + .+ X
' %o ok %o for any (l1,...,In) € @4(l) and (Xi,....%X) € Z
for any (Xi,...,Xn) € Zn(Fi,....Fn). independent of .

ProofLet X = (Xg,...,X,) € #Z be comonotonic and
3 Main Results independent ofY. For any fixed constantys,...,Yn,
Lemma 5 implies that
The main results of this paper are the following theorem, . -
proposition and lemmas. ((Xl_ 1), fy1) -y (Xn—1n), f(Yn))
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is still comonotonic. Therefore, by Lemma 6 and Theorem By taking expectations conditional 0 we obtain

1, we have E(@(06 =1+ 106+ 04 =1+ 1) + 5 (%
n noo_ L) f (Y
2, (6=l o) <ex § (X =h)., Fn) / S(]Ek(ggm—lj)Jrf(Yi)‘F(xi_li)+f(Yj))+ > (%
= = KA, |

and hence Iv)+f(Y%))). The result follows.

E {‘] (iz (X =10, f(yi))} <E {G <iz (;(' - 'i)+ f(y‘)ﬂ 3.1.2 Policy deductible with unknown dependent

=1

structures
becauseu”is increasing and convex. Then by the
independence of andY, Similar to the study of policy limits, now we consider the
| . : -
E {G (_El(xi 1)L ))] problem of the optimal allocation of deductible :
=
i n
—E E{"(E(Xi—l-) f(Y)>|Y1,...,YH "
_ 2 i) TV n max minElu <W—zi[xi—(xi—di)+} f(Y|)>]
(N~ deah(d)Xez =
<E E{u (_zl (% 1), f(Yi)) Yo, Yo }
i=
[/ n which is equivalent to
_Ea ( 3 (%), f(Y.)H
i=

min max E

Now, the initial problem becomes dec(d)X e

ProblemL’ :{ m|n E[ (T (% =1i) F(Y)]

u(_iwawm)]

Lemma8If (Xi,...X,) € # is comonotonic and
Proposition2Let ¥ = (I],...,1;) be the solution to independentoY, then

Problem L, then
n n
Xi A di <E XA d) f
<I;( )4 f (Y )) l (i;( ). ))
ProofAssume thal; <1; . Sincex — f(Y;) is decreasing ,

by property 13 for any (di,....,dn) € @n(d) and (Xg,..., %) € Z
independent of .

Yi > Vi, X <st Xj = I <5 E

Yi > Yy = f(Y) <ir () . . . o
ProofThe proof is omitted because it is very similar to the
Since (X,X;) is comonotonic and X <g X; , ProofofLemma?.

Xi(w) < Xj(w) foranyw € Q. By the independence of
and Y, we can hereafter fix an outcome of From the above lemma, our problem becomes

(X1, ooy Xiy ooy Xjy oo, Xn) @S (X1, o0, Xiyoos Xy oo, Xn) - With ProblemD’:{ mm IE A d). f(Y
X <Xj.Asg(x,1) = -3, (% —li)+ is anAl function by deh(d [0(Ea 6 d). F(4)]
Lemma 2 and the function(x,l) — —(x—1)4 is - .
increasing il but decreasing iw, then by Lemma 4 Proposition 3Let d* = (dj,...,d;) be the solution to

Problem D’, then
(06 = 1)+, (X = 1j)+) <= (6 = 1)+, (X = 1i)+)

Yi > Y, X <t Xj = a’ > d?.
Since we also havieg — 1)+ < (x; —1i)4, then by property

14 we have ProofAssume thatd; > dj.As in the proof of Proposition
2, we have
06 = 1)+ FOG) + (x5 = 1)+ £(Y))
iox(% = 1)+ FOM) + (% = 1)+ F(Y))- Yi 2 Y = F() <ie £(Y)),
By independence convolution and for the increasing,,q we can fix an outcome of
convex functioru; we have (X : : i
Ly ooy Xiy ooy Xjy o, Xn) @S (X1, 00, Xy o5 Xy o0, Xn) - With
E(G((x _l) FOY) + O = 1)+ F(Y))) X < Xj. As g(x,d) = S ;(x Adj) is anAl function by
+ g (% = i)+ F(Y))) Lemma 2 and the functiofix,d) — x A d is increasing
< E(G((% | lj)-'?f(Yi)"' (X — 1)+ F(Y;)) both inx andd, then by Lemma 3,
— Yi))).
T U 0 T00) (04 A1), 0 A ) <= (06 A ). (x5 Ach)).
(@© 2016 NSP
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Since we also havé Adj) < (Xj Adi), then by property  According to B] we have

14 we have n
(X Ad)F(Y) + 0 Ad)F(Y)) E[(SN—d)+]Zi;E[(Xif(Yi)—dih]
<iox (A FOY) + (x5 A d) F(YG) h .
en,
By independence convolution, we have N <ex .

(x Ad) T+ (x5 Ad)T(Y) + ; (X Adi) 4 F(Ye) Proposition 4 For any random vector %= (X, ..., Xn), any
kAT, random variableA and for U -~ Uniform(0,1), which is
<iox (5 A FO) + (A ) F(Y)) + Z (X A di) 1 F(Yio) assumed to be a function of X and fdiYf) > 1,i=1,...,n,

k] we have,
Therefore, the increasing convex functign ~ @) S<ex SN
E((GO A d)FOE) + (x5 A dp)FiYy) + Z ( (b)
dk)+f(Yk))) éScxé\l
= (€)
E((G06 A dj) (V) + (X /\di)f(Yj);;% (XA die) + F(Yk)))- _iE[Xa Al <erSu
(d)

3.2 Convex bounds fof N ~
NS 'ZLE Xi [ A] <ex S
In risk theory and finance, one is often interested in = .
distribution of the sumsS= X1 + ... + X, or the form  Proof(a) We have f(Y,) > 1,i = 1,.n and we used
Sv = X f (Y1) + Xof (Y2) + ... + Xnf(Yn)(our model) of  property 10 and 6, we obtain
individual risks of a portfolioX. In this subsection we
give a short overview of these stochastic ordering results. X1 T X2+ +Xn SocXa f (Y1) + X f (Y2) +... 4 Xaf (Yn)
For proofs and more details on the presented results, wg, g
refer to the overview paper of Dhaene et &] gpnd S<ex SN

Zeghdoudi and Remitdl B].
g B (b) We will omit the proof here because the idea is very

Theorem 1We note that: similar to the proof in &).
(c) According to Dhaene et al. 2] we have,
i~ v 7 v n
Su =X f (Y1) + X2 f (Y2) + ... + Xnf (Vo). 3 E[X | A] <cx Sand (a), we deduce that
i£1

For any random vector X% (Xg,...,X,) and f(Y;),i=1,..n ,
EDX [A] <ex SN
i; CX

we have

_ &
SN Sox SN (d) According to Zeghdoudi and Remitald we

Prooflt is suffices to prove stop-loss order becausehave ZE[Xl |A] < S, using property 12 an¢b), we
E(SN) :E(SN) Hence, we have to prove that

obtaln .
E[(SN - d)+] < E[(g\l - d)+] ZiE [>~<| | /\] <ex éN
i=
The following holds for all
(XaF(Y2), Xof (Ya), ... X (Vo)) when In addition, if f(Y;) < 1,i =1,..n, we can check easily

G+t .. +0y—d that

(Xa F(Y2) 4 .. + Xnf(Yn) —
= (X f(Yr) —di+ ...+ X f(Y;

SN <ex S <exS<x S
d),

n) = Ch), 4 Some examples and application
< (X f(Y) —d1) ...+ (X (Yo) =) ) | €y
= (Xaf (Y1) = d1), + ..+ (X F (Yn) — Cn) In this section we will describe several examples that show
+ how distribution function of the sum of random variables
Now taking expectations, we get that can be approximated by convex order of random variable

(seeRuschendorf[8]) for lower convex order of random
E[(Xf (Y1) + ...+ %0 f(Yo) —d) ] S SPLE[(Xf(Y) —di). ] variables and comparison of two families of copulas.
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4.1 Individual and collective risk model Definition 9(Bivariate orthant convex order). Given
non-negative random vectorsX = (X;,X2) and

The classical individual and collective model of risk theor Y = (Y1,Y2). We say that X is smaller thanY in the

has the formXng = S, bili, Xcon = S, biNi, where orthant convex order denoted aX =<yo-cx Y if the
inequalities

li «~ Bernoulli(p;) andN; «~ poissori;).
E [vi(X0)v2(X2)] < E [va(Y1)v2(Y2)]
With probability p; contract will yield a claim of sizeb; >
0 for any of then policies. As an application of stochastic holds for all non-decreasing convex functioramd v .
and stop loss ordering we get that the collective risk model
Xcoll leads to an overestimate of the risks and, therefore,  characterization: X <yo_c Y if and only, if
also to an increase of the corresponding risk premiums for -

the whole portfolidXing <sicx) Xcoll- LE[(X — di),] <E[(Y, —d),] foralld >0,i=1,2
2E[(Xy — d1)+ (X2 — d2)+] < E[(Y1 — d1)+(Y2 — d2)+]

forall di,dy > 0.

4.2 Reinsurance contracts
Consequently:

We consider reinsurance contradteX) for a risk X,

where 0< [(X) < X is the reinsured part of the riskand X Zuo-ex Y = X st Yiyi =1,2

X —1(X) is the retained risk of the insurer. Consider the N N

stop loss reinsurance contrdgtX) = (X —a),, wherea  This shows that<y, can be viewed as bivariate

is chosen such thaEla(X) = EI(X). Then for any extension of stop-loss order.

reinsurance contra¢tX) Crossing condition for the bivariate orthant convex
order:
X —1a(X) <siex) X = 1(X). Let X = (X1,X2) andY = (Y1,Y2) be non-negative

random vectors with survival functiofsandG. Leth be
a level curve defined by
4.3 Dependent portfolios increase risk
F (x,h(X)) = G(x,h(x)) =0, x> 0.

m
LetY, =™, aiX;, wherea; andX; -~ Bernoulliwith 3 q; Let

i=1
= 1,thenY; -~ Bernoulli. It is interesting to compare the C= {(x,y) eRT xRT:y< h(x)}
total risk T, = ¥, Y in the mixed mode(X;) with the B
total risk S, = 3' ;W in an independent portfolio model we denote by the complement of in R* x R*.
(W), whereW — Bernoulliare distributed identical t;.
Then we obtain RemarkThe concordance order is used to compare

S <sl(ex Tn- members of a given copula famillCy when the
dependence parameter varies:

4.4 Comparison of two families of copulas 61 < 6, = Cq, =cCo,

Definition 8(copulas). C(ug,...,u,) is distribution In general, there is no comparison between a copulas from
function whose marginal are all uniformly distributed different families with=c:

(see NelsonIQ).
Cgl ﬁc ng and ng ﬁc Cgl
Now we consider two riskx andY with given survival
functionsF andG. A sufficient condition of the stop-loss  Example 1Let Cq, be a Clayton copula with parameter
order is given by: 61 = 1 andCg, be a Frank copula with parameigy = 2.
Cut-criterion ( Karlin and Novikoff [7]): Let X andY  Since=,_cx Is weaker than<c . Thus one can expect to
be two risks withE [X] < E[Y]. If there exists a constant  rank the copulas Cg, and Cy, with respect to=<yo—cx

such that instead of<¢ . Therefore, one can use our cut-criterion to

_ _ establish a such comparison with respggt_cx. To this

{F_(X) > G(x) forallx <c, end, we can see th&ls, <uo_cx Cg,. This means that the
(X) < G(x) for all x > c, 1 .
upper orthant convex order can be more convenient for
then compare the concordance between two different families
X =sY of copulas.
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5 Conclusions [9] Milller, A., Stoyan, D. Comparison Methods for Stochast
Models and Risks. John Wiley and Sons (2002).
In this work, we give an extensive bibliographic overview [10] Nelson, Roger B. An Introduction to Copulas, Springer
of the developments of the theory of stochastic orderings,  (2006). _ _ _
comonotonicity and their applications. Also, we presentl11] iha:fedth-' S:an(tjhlkgmsr,J.G(.lztgo:)hastlc Orders &wett T
the problems of optimal allocation of policy limits and ppiications. Academic Fress : .
deductibles are studied. By applying the bivariate [12] ggﬁﬁgzr (zl\(/l).d?)Shantmkumar, J.G. Stochastic - Orders.
charac_terlzatlons of stochastic ordermg relations, Wer13] zeghdoudi, H., Remita, M.R. Around Convex Ordering and
reconsider the general model and derive some new refine Comonotonicity. Int.J.Appl.Math.Stat, Vol 30, Issue ng. 6

results on orderings of optimal allocations of policy limit 27-36 (2012).

and deductibles from the viewpoint of the policyholder. In [14] Zhuang, W., Chen, Z. and Hu, T. Optimal allocation
addition, when the severity and the chance of the loss are  of policy limits and deductibles under distortion risk
both larger, a larger policy limit and a smaller policy measures. Insurance: Mathematics and Economics, 44:409-
deductible will be allocated to that risk by a risk-averse 414 (2009).

policyholder. Moreover, we obtain an convex upper and
lower bound in terms of comonotonic portfolios for
Sv=X (Y1) + Xof (Y2) + ... + Xa f(Yn) (our model). For Meriem Bouhadjar
future studies, we may try to explore the following . is doctoral student of
directions. First, we can relax the condition imposed on mathematics class at Badii
f(Y;) and introduce financial risks to the model. Second, Mokhtar University Annaba
we can remakes same work for obtain the optimal - Algeria. She received her
allocation of policy limits and deductibles in a model with | master degree in mathematics

mixture and discount factors. R from . Badji Mokhtar
I ! University. Her research areas

i LN are in: Applied Statistics,
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