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progress in each iteration. We prove the global convergehttee proposed method under the same assumptions as in pahBohem

al., A note on LQP method for nonlinear complimentarity probdedv. Model. Optim14(1), 269-283 (2012)]. Some preliminary
computational results are given to illustrate the efficjeoicthe proposed method.
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1 Introduction formulated as finding the zero of the maximal monotone
operatofT
The nonlinear complementarity problem (NCP) is to T(x) = F(X) + Nr2 (X) 2

determine a vector € R" such that ) i
whereNgy (.) is the normal cone operator®). defined by
x>0, F(x)>0 and X F(x)=0, (1)
Nr

n
.

¥ ::{{y:yT(v—x) <0, WeRl}, if xeRY
where F is a nonlinear mapping fronR" into itself. 0, otherwise.
Throughout this paper we assume thatis monotone
with respect taR! and the solution set oflf, denoted by
Q*, is nonempty.
The interest that attaches to this problem can be measur
through its applications in various fields such as
operations research transport problems, industry
engineering, optimization, mathematical and physical
sciences in a unified framework. Furthe.rmore,.NCP is theg ¢ BT (X) + Oy Q(x, X< 3)
subject of intense research in order to find a rich and less
restrictive theory able to develop suitable iterative Rockafellar L9, 20] gave the approximate proximal point
methods for its resolution. These iterative methods havelgorithm, which is more practical and attractive than the
emerged in the last decades as a powerful technique foexact one. The inexact version of the proximal point
solving NCP effectively. These methods are user friendlyalgorithm generates iteratively sequert} satisfying
and can be implemented easily.
It is well known that the NCP can be alternatively EX e BT () + Oxq(x, ) 4)

The proximal point algorithm (PPA) is the classical
method to solve this problem, it has been proposed
oposed by Martinet 8] and further studied by
ockafellar [L9,20], for %iven x? € R" and for positive
real B > B > 0, find X*1 solution of the following
iterative problem
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whereék € 2" is the error term and

1
ax,X) = 5 [x— x| (5)

Several papers 3[4,6,7,10,12,14,17,21,22] have

focused to improve the PPA via the generalization of this

problem by replacing the usual linear tepm- Xk with
some nonlinear functionsg(x,x¢). Auslenderet al. [1,2]

proposed a new type of proximal interior method through

replacing the linear term by

X— (1= p)x— pxx (6)
or
K X
X=X+ iXdog (=) )
where u € (0,1) is a given constant,

X = diag(xs, %k, ..., x) andx~* is ann-vector whosejth
elements isx—lj. Auslenderet al. [1] proved that the

sequence{x*} generated by 4) converges under the
following conditions:

+00 +00
S €<+ and $ (£4X) exists and is finitd8)
k=1 k=1

Note that 8) implies that &) should be solved exactly. To
release this difficulty Burachik and Svaitérl] presented

2 Preliminaries

In this section, we present some known results which
will be used in the sequel.

Lemma 1. Let KC R} be a nonempty closed convex set
and R[.] denotes the projection on K under the Euclidean
norm, that is, R[Z = argmin{||z—x|| : x € K}. Then the
following statements hold:

(z—P[2)"(F«[Z) V) >0, VzeRl,vekK. (11)

IP[Z —VI]” < [|lz— VI[P~ ||z— Fx[Z %, V€ R}, ve K.(12)

Definition 1. The operator F: R" — R" is said to be
monotone, if
vuveR",  (v—u)T(F(v)—F(u)) >0.

The following lemma is similar to Lemma 2 irl]
Hence the proof will be omitted.

Lemma 2][16,23 For given X > 0 and ge R", let x be
the positive solution of the following equation:
q+x—(1— )= ux2x1t=0, (13)
then for any y> 0 we have

(y—x,0) > 52 (|[x—y|2— X<~ y]|) + 52 ¥ —x|[%.(14)

a meaningful modification of the inexact LQP method |, [8], Bnouhachem used LQP method to suggest and

withk attractive characteristic that the
H_X'J‘Téxk“*_l\\ can be fixed on a constant.

Itis easy to see that, at tlkéh iteration, solving 1) by the

relative  error gnalyze the following algorithm for solving problert(

For given X > 0 and B¢ > 0, each iteration of

Bnouhachem’s method consists of three steps, the first

LQP method is equivalent to finding the approximate step offersct, the second step makesand the third step
positive solution to the following system of nonlinear produces the new itera**.

equations

BiF (X) +x— (1= )X — uXgx* = &~ 9
or

BF () +X— X+ pXdog( ) = & (10)

First step: Find an approximate solutioxt f (9), such
that

In order to improve the LQP method and make it Second stepx*(ay) is defined by

more practical, Heet al. [16 , Xu et al. [23],
Bnouhachemet al. [5] and Bnouhachem8] proposed

some new LQP based prediction-correction methods via

solving the system of nonlinear equati®) ér (10) under
significantly relaxed accuracy criterion tha®).( The

above results have motivated us to propose a new LQP 0k= ijak[2°
method for solving nonlinear complementarity problems.

The method uses a new searching direction which differsand

from the other existing LQP methods, and another
optimal step length is employed to reach substantial
iteration. We proved the global

progress in each

0~ BeF (R) 4+ 5K — (1— )Xk — ux@(R)~t =gk (15)
and&X satisfies
[EX <nlX<—%,  O0<p,n<Ll. (16)
() = Pro [¥€— “k—BkF(zk)} (17)
+ 1+u )
where
1 g
¢k ¢k: m”xk_xk‘|2+m(xk_~k)1—£k
dk — (xk _ gk k
(X=X + 1+“E

convergence of the proposed method under the sam&hird step: For 0< p < 1, the new iterated*1(t) is

assumptions as in8[. Some preliminary computational
results are given to illustrate the efficiency of the

proposed method.

defined by

XH(1) = pX+ (1= p) e [~ X (18)
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where 3 Iterative method and convergence results
g0 = Xk — (o), Tk = P(x) Now, we suggest the following algorithm for solving
C KT g2’ problem (). Given x* > 0 and Do = 0, the proposed
method consists of three steps, the first step offerghe
N (XK — X(ae) |12+ @ (o) _second step make& and the third step produces the new
P(X) = > iteratexk*1,
First step: Find an approximate solutioxt df (9), such
and that
Plaw) = o 0~ B (%) + % (1 e — ()2 = £¥ 25)

The third step of this method can be alternatively

k._ 2K (xK iofi
interpreted as follows: starting from¥, Bouhachem’s ande™:= fi(F (X) —F (x)) satisfies

method moves along the directiong(xX¥) with the step 1K < Xk — | O<un<i
i _ o0 ion i N 7 o
Sizeé T« = (a2 A natural question is whether there e _ i
exists another new profitable direction with a betterSeconcl stepx’(ay) is defined by
optimal step size thamy. In Han B] and many other o OB ok
papers, the authors consideregx) as a profitable (o) = Pry [X - 1+HF(X )],
direction and@(x) as an error measure function, which
measures how muck fails to be a solution of NCP. In where i
this sense, many efforts have been devoted to constructing ok = T
new profitable functions satisfying
Third step: For 0< p < 1, compute
Ig")1| < llg) (19) SR
and M= max(O, —90) Dica D|2(,1) (26)
(D1l
(x=x)Tg""(x) > (x—x)Tg(x) > ¢(x) > 0 (20)  and
where@(x) is a continuous function froR" to R, and
Dic = gX) + ADk-1. 27)
. . i k i i
@(x) =0 <= x is a solution of NCP (21)  the new iteratex +1(g) is defined by
The basic of our idea is very simple and can beX" (&) =pX+(1-p)Px [Xk—@Dk] (28)
summarized as follows. In the following section, we here
propose a new LQP method by using a new descent’
direction. The new descent direction can be viewed a P(x) Ky X=X (o) ° + @ ()
o o s =-—= and @X°)= . (29
combination of the descent direction of the existing LQP [ID12 2
correction step and the descent direction used in the Iag{2
. . emark 1.
iteration.

The following results are the key to prove the —The solution of 25) can be componentwise obtained by
convergence of the proposed method.

(1= p)X — BFy (X6) + \/[(1* X — By (X2 + 41 (X6)2

. i = . (30)

Theorem 1[8] For given X > 0, let X(ay) be defined by 2
(17). Then for any xc Q*, we have Moreover for anyX > 0 we have always<™ 0.

K oxn2 n—k 2 —The proposed method can be viewed as an extension
X =7 “ = [[X*(a) = x7[|° = @(a). (22) for some well-known results, for example the

; K i g following.
Theorem 2[8] For given %> 0 and % satisfies 19), —If Ax = 0, the new method reduces to the method
then we have the following proposed ing].
1-n —If Ax =0 andd = 1, the new method reduces to

o > ——— 23 the method proposed i25].

“Z 3050 (23) prop 9]
and For the convergence analysis, we need the following results

(1—n)? Lemma 3. Letx' € Q* X< > 0. Then, we have

D(ay) > = || X — 5|2 24

(= o X 4 (K —x)Tgx) = 90) > 0
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Proof: Using the following identity
(X**)_(k(ak))T(Xk*Rk(ak)):%(H)_(k(qk)*X*HZ*HXk*X*H )+5 Hx —x(aw)|?

which implies that
) 1% = 20x" =X (a)) T (¥ — X (aw)) =
Then

(X=X 7 = I () =x[%. (31)

1 k * 112 K *12
5 (I = 2= [ (i) x| ?)

~ = (a2
> 3 (4~ % () P+ @(a)
= ¢(aw)
>0

k
where the first inequalities and second inequality follow LECY

from Theoreni and Theoren2, respectively. O

Lemma 4]9] Using the definitions of g&) and Dy, we
get

1Dkl < [lg(x¥)
Proof:
If Ax =0, we have||Dy|| = [|g(x)|.
_ —9() D
If Ak = 7“2 we have

D
IDK)I? = [|9(X) + ADy_1]|2
(9(X)"Dy_1)?

ky |12
= X —
9012~ 5=
< [lg(x)|I?
which implies that
1Dk < llg(x)]l- o

Lemma 5[9] Forany k> 1, we have [y ,(x*—x*) > 0.

Proof: Note that this is trivially true fok = 1 sinceDg =
0. By induction, consider anly> 2 and assume that

Df L, t—x)>0.
Using the definition oDk 1, we have

Dy 1(X —X*) = Dg_ ( —X)+Dg_ 1(X X1

= g T —x*) + A 1D (K —x)
+Dk 1(Xk X 1)
> g HT (L —x) + D (K — X

> (XY
— 1Dk allIFry [ = & 1Dy 1] -

> (X 1)~ | Dal[| 81Dk 1
=0 O

Using lemma3 and lemméb, we have
—x)Tg(x) > p(x) >0

To ensure that“*1(§,) is closer to the solution set thath
For this purpose, we define

(Xk _ X*)T Dy > (Xk

Y(80) = X = x| = X80 — x| . (32)

Theorem 3. Let X' € Q*, then we have

Y(&) > (1= p) (a9 |7+ X = 7|7 = [IX (aw) —x“[|*}
~&|IDk?)- (33)

Proof: Since x* € Q* < Rl and let

X4(8) = Pran [xk - 5ka] it follows from (12) that

=X |2 < X = 8D =X |2 [|IX — 8Dy — X< (3 | .(34)
On the other hand, we have
IXLB) — X2 = (X~ x*) + (1 - p) (¥ (B —x*)]2
= p||x<— x||2 + (1 pPI¥ (&) —X|12
+2p(1- ) (¥ —x)T (80 — X).
Using the following identity

2(a+b)"b=|a-+b||*~[al*+ b]?

for a = x€— x£(&),b = xX(&) — x* and B4), and using
0 < p < 1, we obtain
[XH(8) =X |7 = 7Y =X [+ (1= p)?[IXE(8) —x"|1?

(L= p){[IXE =X |7 = X =X (&) |7

+[X(30) —x[1?}
= plX—x |2+ (1—p)|X(&) — x|
—p(1—p) X< —xK (32

< PIXE =X+ (L p) X — 8Dk x|
—(1—p)[X — 8Dk —X(30) |12
—p(L-p) X~ xE(80)II?
= X=X = (1= p){[IX — X (&) — 3Dl
+pIIX = X&) ” — 1Dk 1” + 28 (X —x*) T Dy}
< X=X = (L= ) {23 = x) T (9(X) + ADx 1)
— 821Dk 1}
= I =x 7 = (1 p){28(x —x")Tg(x)
+28(X —x") T ADic-1 — &F|Dil |}
< X=X P = (1 - p) {23 —x) Tg(x)
—&211Dk 1}
where the last inequality follows from LemmBaUsing the
definition of (&), we get

Y(8) > (1—p){28(x* —x*)Tg(x¥) — 82| Dy[|*}
= (1-P) (28 [|9(x)[|? — (x* = X(a)) Tg(x)}
—82[Dkl3). (35)
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Using 1), we get the assertion of this theorem. O From the computational point of view, a relaxation factor
Remark 2. By using Theoren3 and Theoreni, we get y€ [1,2) is preferable in the new iteration. Through simple
manipulations, we obtain
Y(8) = (1-p)F (&), (36) P > )
where F(v&) = yalg0¢) 1+ @ (aw)} = (8 (&IDk|)
- s s = V2=Vl (&) (45)
(30 = Ac{llg0I 1=+ k(gk)}_d‘ IgC It follows from (32), (36), (44) and @5) that there is a
— w. (37)  constant > 0 such that
And from [8], we have XLy —x |2 < [ —x 2~k —|2 vx € Q*.(46)
The following result can be proved by similar
> _
V(1) > (1-p)A (&), (38) arguments as those i8,[L6,23]. Hence the proof will be
where omitted.
Ky (12 e
Az = B+ (a0} (39) Theorem4[3,1623 If infi ;B = B > O, then the
2 sequence {x<} generated by the proposed method

Y(&) and Y'(1,) measure the progresses made by theconverges to someéwhich is a solution of NCP.
new iterates generated by the proposed algorithm and the
algorithm presented ir8], respectively.

It follows from Lemmad that The detailed algorithm is as follows.

Step 0. LetB; >0,e>0,0<pu<1 0<n<l,

& = 19017 + @ () 0<p<1, 1<y<2,x'>0,Dg=0andsek:=1.
B 2||Dy||2 Step 1. If||min(x¥,F (xX))||» < &, then stop. Otherwise,
go to Step 2.
> ”g(X2k|)|gz)I)T2(ak) Step2. s = (1 — X — BFK,
. w X= (s+ V()2 ¢ audy? )/2k,
= K(F(X) — F(X9), roo=
" 5lllg0%) 2+ ®(a)} it oy
g(X a while (r > n
(&) = 2 . B« = B¢ * 08/r, s = (1 — p)x¢ — BF(xN),
- i {|lg0¢) 12+ @ (o)} K= (S+\/(3)2+4H(X=‘)2)/2,
_ 2 o BFR) - F), -
= A(T)- (A1) gk /X - =4

Note that ifA, = 0 andd, = 1 the proposed method reduces _ €nd while
to the method in25]. Sinced is to maximize the profit Stép 3. Compute
functionrl” (&), we have

%(ca0) = Pen X< — 2P ()

(&) >Tr(1). (42) 1+pu
Inequalities 41) and @2) show theoretically that the ere
proposed method is expected to make more progress than Yk
those in B] and [25 at each iteration, and so it explains Ok = (a2
theoretically that the proposed method outperforms the
methods in §] and [25]. with
Since®(ay) > 0, and from the definition o itis easy ¢ = ri|¥ — R|* + (¢ — )Tek and
df = (XK — &)+ 28K
t that Lru
O provetha Step 4. Compute g(x) = x — XX(ay),
1 _ 908Dy
&> T > > (43)  Ax=max0, W)
and
Sincedy is to maximize the profit functiof (&) and from Dy = g(xk) + MDi_1.
(33), Theoremd and2, we have The new iterate is defined by
r(d) >r(1)
> ®(ay) K= pX o+ (1 ) Frn [~ yaD
(1-n)% ko2
> 2(1+u)2||x —X || . (44) where
(@© 2016 NSP
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B llgO) |12+ D(a)
5 = 207
and @(ay) = 2akPx — a?||d¥|2.
BeOT iy <0.3:
Step 5Bc1 = { ék otherwise.

Step 6k :=k+1; go to Step 1.

4 Preliminary computational results

In this section, we consider two examples to
illustrate the efficiency and the performance of the
proposed algorithm.

4.1 Numerical experiments |

We consider the nonlinear complementarity problems
x>0, F(Xx) >0 x'F(x) =0, (47)

where
F(x) = D(x) + Mx+q,

D(x) andMx+-q are the nonlinear part and linear part of
F(x) respectively.

We form the linear part in the test problems similarly
as in Harker and Pandlf]. The matrixM = ATA+ B,
whereA is ann x n matrix whose entries are randomly
generated in the interval-5,+5) and a skew-symmetric
matrix B is generated in the same way. The veajos
generated from a uniform distribution in the interval
(—500,500) or in (—500,0). In D(x), the nonlinear part
of F(x), the components are chosen to be
Dj(x) = d; x arctarix;), whered; is a random variable in

In all tests we take the logarithmic proximal parameter
U =0.01p=0.0L,y=19 andn = 0.9. All iterations
start withx! = (1,...,1)" andB; = 1, and stopped criterion
whenever

| min(x, F (X)) < 1077,

All codes were written in Matlab, and we compare the
proposed method with that ir2}]. The test results for
problem @7) are reported in Tableg and 2. k is the
number of iteration andl denotes the number of
evaluations of mappinB.

Table 1 Numerical results for problem 47) with q €

(—500, 500)

The method in25] The proposed method

n k I CPU(Sec.)|| k | CPU(Sec.)
200 || 224 | 470 0.044 127 | 279 0.022
300 || 249 | 519 0.071 149 | 323 0.035
400 || 257 | 539 0.11 156 | 338 0.05
500 || 287 | 601 0.17 172 | 374 0.12
700 || 269 | 562 0.28 162 | 354 0.19
1000 || 262 | 547 1.28 158 | 341 0.71

Table 2 Numerical results for problem 47) with q €

(—500, 500)

The method in25] The proposed method

n k I CPU(Sec.)|| k I CPU(Sec.)
200 || 445 | 924 0.071 264 | 572 0.065
300 || 425 | 887 0.11 259 | 561 0.07
400 || 531 | 1104 0.17 333 | 720 0.13
500 || 556 | 1155 0.28 336 | 726 0.18
700 || 483 | 1001 0.46 279 | 605 0.31
1000 || 523 | 1088 1.86 295 | 638 1.17

Tablesl and2 show that the proposed method is more
efficient. Numerical results indicate that the proposed
method can be save about 5977 percent of the number
of iterations and about 53- 70 of the amount of
computing the value of functioR.

4.2 Numerical experiments Il

In this subsection, we apply the new method to a traffic
equilibrium problem, which is a classical and important
problem in transportation science, see, e15,74]. The
numerical results show that the new method is attractive in
practice.

Consider a networkN,L] of nodesN and directed
links L, which consists of a finite sequence of connecting
links with a certain orientation. Led, b, etc., denote the
links; p,q, etc.,, denote the pathsw denote an
origin/destination (O/D) pair of nodes of the netwoF;
denotes the set of all paths connecting O/D pajrup
represent the traffic flow on pait d,, denote the traffic
demand between O/D pais, which must satisfy

d(,_): Z Llp7
PEFw

(@© 2016 NSP
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whereup > 0,Vp; and fa denote the link load on linig,
which must satisfy the following conservation of flow

equation
fa= 5apupa
2
where
B = 1, if ais contained in pathp;
P71 0, otherwise.

Let A be the path-arc incidence matrix of the given
problem andf = {fs,a € L} be the vector of the link
load. Since u is the path-flovi,is given by

f=ATu. (48)
In addition, lett = {ty,a € L} be the row vector of link

costs, withty denoting the user cost of travelling lirk
which is given by

fa

&)

ta(fa) =17 (49)

1+0.15<

wheretg is the free-flow travel cost on link andC; is
designed capacity of link. Thent is a mapping of the
path-flowu and its mathematical form is

t(u) :=t(f) =t(ATu).
Note that the travel cost on the patfuenoted byg, is

6p = Zéapta(fa).
ac

Let P denote the set of all the paths concerned. @et
{6p, p € P} be the vector of (path) travel cost. For given
link travel cost vectot, 8 is a mapping of the path-flow,
which is given by

8(u) = At(u) = At(ATu). (50)
Associated with every O/D paiw, there is a travel
disutility A,(d), which is defined as following
Aw(d) = —mglog(dw) + Go-

(51)

Note that both the path costs and the travel disutilities are

functions of the flow patterru. The traffic network
equilibrium problem is to seek the path flow pattern

which induces a demand patted’ = d(u*), for every
O/D pairw and each patp € P,

Tp(u) = 6p(u) — Aw(d(u)). (52)
The problem can be reduced to a nonlinear

complementarity problem in the space of path-flow
patternu: Findu € R" such that

Find u>0 ,T(uy>0 and U T(u)=0. (53)

u
In particular, we test the example studied ib,24]. The
network is depicted in Fig.

The free-flow travel cost and the designed capacity of

links (49 are given in Table3, the O/D pairs and the
coefficientm andq in the disutility function 1) are given

Fig. 1 The network used for the numerical test.

Table 3 The free-flow cost and the designed capacity of links in
(49

Table 4 The O/D pairs and the coefficientandqin (51)

Link Link

=

Free-flow travel timeJ
6

CapacityCa
200
200
200
200
100
100

Free-flow travel timeJ
5
10
11
11
15

CapacityCa
150
150
200
200
200

=
Sown

10
11

O UAWN R
P o

No. of the paifO/D pair| m, o
1 (1,7) |25 25log600
2 (2,7) |33 33log500
3 (3,7) |20 20log500
4 (6,7) | 20 20log400

Table 5 Numerical results for for differerd

Different || The method in25] The proposed method
£ No. It. | CPU(Sec.)|| No.It. | CPU(Sec.)
104 136 0.13 95 0.022
107° 165 0.028 113 0.021
10°© 194 0.033 129 0.022
1077 220 0.037 148 0.024
108 247 0.056 166 0.026

In this example we take the same parameters as in subsection
4.1 and stopped whenevigmin(xX, F (xX))||» < &. The iteration
numbers and the computational time for the proposed method
and the method ir25] for differente are reported in Tablg. For
the case = 108, the optimal path flow and link flow are given
in Table6 and7, respectively.

in Table4. For this example, there are together 12 pathSthe numerical experiments show that the new method is more

for the 4 given O/D pairs listed in Tab&

flexible and efficient to solve the traffic equilibrium proivle
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Table 6 The optimal path follow [9] D. HAN, A new class of projection and contraction methods
O/D pair _[Path nd| Link of pati Optimal path-fiov f:r solving variational inequality problem&omp. Math.
ppl.51, 937-950 (2006).
. 1 (1,3) 1653145 [10] R.S. Burachik and A.N. lusem, A generalized proximal
O/D pair (1,7} 2 (2,4) 0 point algorithm for the variational inequality problem in a
3 (11) 1385735 Hilbert spaceSIAM J. Optim8, 197-216 (1998).
g g ;ig 82'50281 [11] R.S. Burachik and B.F. Svaiter, A relative error tolera
. 1 for a family of generalized proximal point methoddath.
O/D pair (2,7) 6 (5,11 557871 Oper. Res26(4), 816-831 (2001).
7 (8,6,4) 0 [12] J. Eckestein, Approximate terations in Bregman-fioret
. 8 (8,9) 87.0260 based proximal algorithm#lath. Prog.83, 113-123 (1998).
O/Dpair 3,7) 9 (7,3) 19.7549 [13] P. T. Harker and J. S. Pang, A Damped-Newton method for
. 10 (10) 2299747 the linear complementarity probleirectures in Appl. Math.
O/D pair (6,7] 11 (9) 1785600 26, 265-284 (1990).
12 (6,4) 0 [14] D. Han, A new hybrid generalized proximal point algbrit
for variational inequality problems]. Global Optim.26,
125-140 (2003).
[15] B.S. He, Z.H. Yang and X.M. Yuan, An approximate
Table 7 The optimal link flow proximal-extradient type method for monotone variational
inequalities.J. Math. Anl. Appl30Q(2), 362-374 (2004).
Link no.|Link flow|| Link no.|Link flow||Link no.|Link flow [16] B.S. He, L.Z. Liao and X.M. Yuan, A LQP based
1 2478426 4 0 7 19.7549 interior prediction-correction method for nonlinear
2 0 5 1383152 8 87.0260 complementarity poblems]. Comp. Math.24(1) 33-44
3  |267.5974 6 0 9 12655860 (2006).
[17] A. Kaplan and R. Tichatschke, On inexact generalized
Link no.|Link flow proximal method with a weakned error tolerance criterion,
10 |2299747 Optimization53(1), 3-17 (2004).
11 |1943606 [18] B. Martinet, Regularization d’'inequations variatiwiles
— — par approximations successivesRevue Francaise

d’'Informatique et de Recherche Operationele 154-
159 (1970).

[19] R.T. Rockafellar, Augmented Lagrangians and appbcet
of the proximal point algorithm in convex programming,

References Math. Oper. Res1, 97-116 (1976).

[20] R.T. Rockafellar, Monotone operators and the proximal
point algorithm. SIAM J. control. Optim.14, 877-898
(1976).

[21] M.V. Solodov and B.F. Svaiter, An inexact hybrid
generalized proximal point algorithms and some new
Results on the theory of Bregman functiodath. Oper.

[1] A. Auslender, M. Teboulle and S. Ben-Tiba, A Logarithmic
quadratic proximal method for variational inequalities.
Comput. Optim. Appll2, 31-40 (1999).

[2] A. Auslender, M. Teboulle and S. Ben-Tiba, Interior
proximal and multiplier methods based on second order
homogenous kerneldlath. Oper. Re24, 646-668 (1999). Res 25, 214-230 (2000). . . .

[3] A. Bnouhachem, An LOP method for pseudomonotone [22] M. Teboulle, Convergence of proximal-like algorithms

o - L . SIAM J. Optim7, 1069-1083 (1997).
\(/gcr)g\él)onal inequalitiesJ. Global Optim.36( 3), 351-363 [23]Y. Xu, B.S. He and X. M. Yuan, A hybrid inexact
\ e . logarithmic-quadratic proximal method for nolinear

[4]M.A. Noor and A. Bnouhachem, Modified proximal ;
point method for nonlinear complementarity problems. J. ;(;rgglse;w(ezrggg)ty ProblemsJ. Math. Anal. Appl. 322
Comput. Appl. Math197, 395-405 (2006). ' . : -

(5] A Bne)uuha(?r?em M.A Noor. M Kh(alfaOl)Ji and S. Zhaohan [24] H. Yang and M.G.H. Bell, Traffic restraint, road priciagd

: o VLA o : ’ network equilibrium.Transportation research B1, 303-
A new logarithmic-quadratic proximal method for nonlinear 314 (1997)q_ P
complementarity problem#ppl. Math. Comput215, 695 1551% M. yuan, The prediction-correction approach to

706 (2009). nonlinear complementarity problemBurop. J. Oper. Res.
[6] A. Bnouhachem and X.M. Yuan, An extended LQP method 176, 1357-1370 (2007).

for monotone nonlinear complementarity problemk.
Optim. Th. Appl1353), 343-353 (2007).

[7] A. Bnouhachem and M.A. Noor, A new predictor-corrector
method for pseudomonotone nonlinear complementarity
problems.Inter. J. Compt. Math85, 1023-1038 (2008).

[8] A. Bnouhachem, M.A. Noor, A. Massaq and S. Zhaohan,
A note on LQP method for nonlinear complimentarity
problems Adv. Model. Optim14(1), 269-283 (2012).

(@© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 4, 1375-1383 (2016)www.naturalspublishing.com/Journals.asp NS = 1383

Abdellah Bnouhachem
graduate from Nanjing
university,  Nanjing, China.
He received his Ph.D. degree
in Computational Mathematics
in 2005. He has been honored
by Ministry of  Science
and Technology of China
during the launching ceremony
of Partnership Africa and
China in the field of science
and technology on November 24,

Ali Ou-yassine PhD
Student at the University Ibn
Zohr, ENSA, Agadir, Morocco.

Muhammad Aslam
Noor earned his PhD degree
from Brunel University, London,
UK (1975) in the field of

\ PE Applied Mathematics(Numerical
4}%\ Analysis and Optimization). He
- has vast experience of teaching

PN and research at university levels
2

in various countries including

Pakistan, Iran, Canada, Saudi
Arabia and UAE. His field of interest and specialization is
versatile in nature. It covers many areas of Mathematicdl an

2009. He has been awarded SCI Prize, Nanjing University onEngineering sciences such as Variational Inequalities,
June 2009. Currently, he is Associate Professor at the thifye
Ibn Zohr, ENSA, Agadir, Morocco.

Operations Research and Numerical Analysis. He has been
awarded by the President of Pakistan: President's Award for
pride of performance on August 14, 2008, in recognition &f hi
contributions in the field of Mathematical Sciences. He was
awarded HEC Best Research award in 2009. He is currently
member of the Editorial Board of several reputed intermegio
journals of Mathematics and Engineering sciences. He has mo
than 800 research papers to his credit which were published i
leading world class journals. Dr. Noor is one of the highledi
researchers in Mathematical Sciences(Thomson 2015)

Ghizlane Lakhnati
graduated from Paris 1
University, Panthon-Sorbonne,
France. She received her
Ph.D. degree in Applied
Mathematics and Applications of
Mathematics in 2005. Currently,
she is Associate Professor
at IBN ZOHR University,
ENSA, Agadir, Morocco.

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	Introduction
	Preliminaries
	Iterative method and convergence results
	Preliminary computational results

