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1 Introduction

The nonlinear complementarity problem (NCP) is to
determine a vectorx∈ Rn such that

x≥ 0, F(x)≥ 0 and xTF(x) = 0, (1)

where F is a nonlinear mapping fromRn into itself.
Throughout this paper we assume thatF is monotone
with respect toRn

+ and the solution set of (1), denoted by
Ω ∗, is nonempty.
The interest that attaches to this problem can be measured
through its applications in various fields such as
operations research transport problems, industry,
engineering, optimization, mathematical and physical
sciences in a unified framework. Furthermore, NCP is the
subject of intense research in order to find a rich and less
restrictive theory able to develop suitable iterative
methods for its resolution. These iterative methods have
emerged in the last decades as a powerful technique for
solving NCP effectively. These methods are user friendly
and can be implemented easily.
It is well known that the NCP can be alternatively

formulated as finding the zero of the maximal monotone
operatorT

T(x) = F(x)+NRn
+
(x) (2)

whereNRn
+
(.) is the normal cone operator toRn

+ defined by

NRn
+
(x) :=

{

{y : yT(v−x) ≤ 0, ∀v∈ Rn
+}, if x∈ Rn

+;
/0, otherwise.

The proximal point algorithm (PPA) is the classical
method to solve this problem, it has been proposed
proposed by Martinet [18] and further studied by
Rockafellar [19,20], for given x0 ∈ Rn and for positive
real βk ≥ β > 0, find xk+1 solution of the following
iterative problem

0∈ βkT(x)+∇xQ(x,xk) (3)

Rockafellar [19,20] gave the approximate proximal point
algorithm, which is more practical and attractive than the
exact one. The inexact version of the proximal point
algorithm generates iteratively sequence{xk} satisfying

ξ k ∈ βkT(x)+∇xq(x,x
k) (4)
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whereξ k ∈ Rn is the error term and

q(x,xk) =
1
2
‖x− xk‖2. (5)

Several papers [3,4,6,7,10,12,14,17,21,22] have
focused to improve the PPA via the generalization of this
problem by replacing the usual linear termx− xk with
some nonlinear functionsr(x,xk). Auslenderet al. [1,2]
proposed a new type of proximal interior method through
replacing the linear term by

x− (1− µ)xk− µX2
k x−1 (6)

or

x− xk+ µXklog(
x
xk ) (7)

where µ ∈ (0,1) is a given constant,
Xk = diag(xk

1,x
k
2, ...,x

k
n) andx−1 is ann-vector whosejth

elements is 1
xj

. Auslender et al. [1] proved that the

sequence{xk} generated by (4) converges under the
following conditions:

+∞

∑
k=1

‖ξ k‖<+∞ and
+∞

∑
k=1

〈ξ k,xk〉 exists and is finite.(8)

Note that (8) implies that (4) should be solved exactly. To
release this difficulty Burachik and Svaiter [11] presented
a meaningful modification of the inexact LQP method
with attractive characteristic that the relative error

‖ξ k‖

‖xk−xk+1‖
can be fixed on a constant.

It is easy to see that, at thekth iteration, solving (1) by the
LQP method is equivalent to finding the approximate
positive solution to the following system of nonlinear
equations

βkF(x)+ x− (1− µ)xk− µX2
k x−1 = ξ k (9)

or

βkF(x)+ x− xk+ µXklog(
x
xk ) = ξ k. (10)

In order to improve the LQP method and make it
more practical, Heet al. [16] , Xu et al. [23],
Bnouhachemet al. [5] and Bnouhachem [8] proposed
some new LQP based prediction-correction methods via
solving the system of nonlinear equation (9) or (10) under
significantly relaxed accuracy criterion than (8). The
above results have motivated us to propose a new LQP
method for solving nonlinear complementarity problems.
The method uses a new searching direction which differs
from the other existing LQP methods, and another
optimal step length is employed to reach substantial
progress in each iteration. We proved the global
convergence of the proposed method under the same
assumptions as in [8]. Some preliminary computational
results are given to illustrate the efficiency of the
proposed method.

2 Preliminaries

In this section, we present some known results which
will be used in the sequel.

Lemma 1. Let K ⊂ Rn
+ be a nonempty closed convex set

and PK [.] denotes the projection on K under the Euclidean
norm, that is, PK [z] = argmin{‖z− x‖ : x ∈ K}. Then the
following statements hold:

(z−PK[z])
T(PK [z])−v)≥ 0, ∀z∈Rn

+, v∈K. (11)

‖PK[z]− v‖2 ≤‖z− v‖2−‖z−PK[z]‖
2,∀z∈Rn

+, v∈K.(12)

Definition 1. The operator F: Rn → Rn is said to be
monotone, if

∀u,v∈ Rn, (v−u)T(F(v)−F(u))≥ 0.

The following lemma is similar to Lemma 2 in [1].
Hence the proof will be omitted.

Lemma 2.[16,23] For given xk > 0 and q∈ Rn, let x be
the positive solution of the following equation:

q+ x− (1− µ)xk− µX2
k x−1 = 0, (13)

then for any y≥ 0 we have

〈y−x,q〉≥ 1+µ
2

(

‖x−y‖2−‖xk−y‖2)+ 1−µ
2 ‖xk−x‖2.(14)

In [8], Bnouhachem used LQP method to suggest and
analyze the following algorithm for solving problem (1).
For given xk > 0 and βk > 0, each iteration of
Bnouhachem’s method consists of three steps, the first
step offers ˜xk, the second step makes ¯xk and the third step
produces the new iteratexk+1.
First step: Find an approximate solution ˜xk of (9), such
that

0≈ βkF(x̃
k)+ x̃k− (1− µ)xk− µX2

k (x̃
k)−1 = ξ k (15)

andξ k satisfies

‖ξ k‖ ≤ η‖xk− x̃k‖, 0< µ ,η < 1. (16)

Second step:̄xk(αk) is defined by

x̄k(αk) = PRn
+

[

xk−
αkβk

1+ µ
F(x̃k)

]

, (17)

where

αk =
ϕk

‖dk‖2 , ϕk =
1

1+µ
‖xk− x̃k‖2+

1
1+µ

(xk− x̃k)Tξ k

and

dk = (xk− x̃k)+
1

1+ µ
ξ k.

Third step: For 0< ρ < 1, the new iteratexk+1(τk) is
defined by

xk+1(τk) = ρxk+(1−ρ)PRn
+

[

xk− τkg(x
k)
]

. (18)
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where

g(xk) = xk− x̄k(αk), τk =
φ(xk)

‖g(xk)‖2 ,

φ(xk) =
‖xk− x̄k(αk)‖

2+Φ(αk)

2

and
Φ(αk) = αkϕk.

The third step of this method can be alternatively
interpreted as follows: starting fromxk, Bouhachem’s
method moves along the direction−g(xk) with the step

size τk = φ(xk)

‖g(xk)‖2 . A natural question is whether there

exists another new profitable direction with a better
optimal step size thanτk. In Han [9] and many other
papers, the authors consideredg(x) as a profitable
direction andφ(x) as an error measure function, which
measures how muchx fails to be a solution of NCP. In
this sense, many efforts have been devoted to constructing
new profitable functions satisfying

‖gnew(x)‖ ≤ ‖g(x)‖ (19)

and

(x− x∗)Tgnew(x)≥ (x− x∗)Tg(x)≥ φ(x) ≥ 0 (20)

whereφ(x) is a continuous function fromRn to R+, and

φ(x) = 0⇐⇒ x is a solution of NCP. (21)

The basic of our idea is very simple and can be
summarized as follows. In the following section, we
propose a new LQP method by using a new descent
direction. The new descent direction can be viewed as
combination of the descent direction of the existing LQP
correction step and the descent direction used in the last
iteration.

The following results are the key to prove the
convergence of the proposed method.

Theorem 1.[8] For given xk > 0, let x̄k(αk) be defined by
(17). Then for any x∗ ∈ Ω ∗, we have

‖xk− x∗‖2−‖x̄k(αk)− x∗‖2 ≥ Φ(αk). (22)

Theorem 2.[8] For given xk > 0 and x̃k satisfies (15),
then we have the following

αk ≥
1−η

2(1+ µ)
(23)

and

Φ(αk)≥
(1−η)2

2(1+ µ)2‖xk− x̃k‖2. (24)

3 Iterative method and convergence results

Now, we suggest the following algorithm for solving
problem (1). Given x1 > 0 and D0 = 0, the proposed
method consists of three steps, the first step offers ˜xk, the
second step makes ¯xk and the third step produces the new
iteratexk+1.
First step: Find an approximate solution ˜xk of (9), such
that

0≈ βkF(x̃k)+ x̃k− (1−µ)xk −µX2
k (x̃

k)−1 = ξ k (25)

andξ k := βk(F(x̃k)−F(xk)) satisfies

‖ξ k‖ ≤ η‖xk− x̃k‖, 0< µ,η < 1.

Second step:̄xk(αk) is defined by

x̄k(αk) = PRn
+

[

xk−
αkβk

1+µ
F(x̃k)

]

,

where
αk =

ϕk

‖dk‖2 .

Third step: For 0< ρ < 1, compute

λk = max

(

0,
−g(xk)TDk−1

‖Dk−1‖2

)

(26)

and

Dk = g(xk)+λkDk−1, (27)

the new iteratexk+1(δk) is defined by

xk+1(δk) = ρxk+(1−ρ)PRn
+

[

xk−δkDk

]

(28)

where

δk =
φ(xk)

‖Dk‖2 and φ(xk) =
‖xk− x̄k(αk)‖

2+Φ(αk)

2
. (29)

Remark 1.

–The solution of (25) can be componentwise obtained by

x̃k
j =

(1−µ)xk
j −βkFj (xk)+

√

[(1−µ)xk
j −βkFj (xk)]2+4µ(xk

j )
2

2
. (30)

Moreover for anyxk > 0 we have always ˜xk > 0.
–The proposed method can be viewed as an extension
for some well-known results, for example the
following.

–If λk = 0, the new method reduces to the method
proposed in [8].

–If λk = 0 andδk = 1, the new method reduces to
the method proposed in [25].

For the convergence analysis, we need the following results.

Lemma 3. Let x∗ ∈ Ω∗,xk > 0. Then, we have

(xk−x∗)Tg(xk)≥ φ(xk)≥ 0.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1378 A. Bnouhachem et al. : Modified LQP method with a new search direction ...

Proof: Using the following identity

(x∗− x̄k(αk))
T(xk− x̄k(αk)) =

1
2

(

‖x̄k(αk)−x∗‖2−‖xk −x∗‖2)+
1
2
‖xk− x̄k(αk)‖

2

which implies that

‖g(xk)‖2−2(x∗− x̄k(αk))
T(xk − x̄k(αk)) = ‖xk −x∗‖2−‖x̄k(αk)−x∗‖2. (31)

Then

g(xk)T(xk−x∗) = (xk− x̄k(αk))
T(xk−x∗)

= ‖xk− x̄k(αk)‖
2+(xk− x̄k(αk))

T(x̄k(αk)−x∗)

= ‖xk− x̄k(αk)‖
2− (xk− x̄k(αk))

T(x∗− x̄k(αk))

= ‖xk− x̄k(αk)‖
2

+
1
2

(

‖xk−x∗‖2−‖x̄k(αk)−x∗‖2
)

−
1
2
‖xk− x̄k(αk)‖

2

≥
1
2
(‖xk− x̄k(αk)‖

2+Φ(αk))

= φ(αk)

≥ 0

where the first inequalities and second inequality follow
from Theorem1 and Theorem2, respectively. ⊓⊔

Lemma 4.[9] Using the definitions of g(xk) and Dk, we
get

‖Dk‖ ≤ ‖g(xk)‖

Proof:
If λk = 0, we have‖Dk‖= ‖g(xk)‖.

If λk =
−g(xk)TDk−1

‖Dk−1‖
2 , we have

‖Dk‖
2 = ‖g(xk)+λkDk−1‖

2

= ‖g(xk)‖2−
(g(xk)TDk−1)

2

‖Dk−1‖2

≤ ‖g(xk)‖2

which implies that

‖Dk‖ ≤ ‖g(xk)‖. ⊓⊔

Lemma 5.[9] For any k≥ 1, we have DTk−1(x
k− x∗)≥ 0.

Proof: Note that this is trivially true fork= 1 sinceD0 =
0. By induction, consider anyk≥ 2 and assume that

DT
k−2(x

k−1− x∗)≥ 0.

Using the definition ofDk−1, we have

DT
k−1(x

k−x∗) = DT
k−1(x

k−1−x∗)+DT
k−1(x

k−xk−1)

= g(xk−1)T(xk−1−x∗)+λk−1DT
k−2(x

k−1−x∗)

+DT
k−1(x

k−xk−1)

≥ g(xk−1)T(xk−1−x∗)+DT
k−1(x

k−xk−1)

≥ φ(xk−1)

−‖Dk−1‖‖PRn
+

[

xk−1−δk−1Dk−1

]

−xk−1‖

≥ φ(xk−1)−‖Dk−1‖‖δk−1Dk−1‖

= 0 ⊓⊔

Using lemma3 and lemma5, we have

(xk− x∗)TDk ≥ (xk− x∗)Tg(xk)≥ φ(xk)≥ 0.

To ensure thatxk+1(δk) is closer to the solution set thanxk.
For this purpose, we define

ϒ (δk) = ‖xk− x∗‖2−‖xk+1(δk)− x∗‖2. (32)

Theorem 3. Let x∗ ∈ Ω ∗, then we have

ϒ (δk) ≥ (1−ρ)(δk{‖g(xk)‖2+‖xk −x∗‖2−‖x̄k(αk)−x∗‖2}

−δ 2
k ‖Dk‖

2). (33)

Proof: Since x∗ ∈ Ω ∗ ⊂ Rn
+ and let

xk
∗(δk) = PRn

+

[

xk− δkDk

]

it follows from (12) that

‖xk
∗(δk)−x∗‖2 ≤‖xk−δkDk−x∗‖2−‖xk−δkDk−xk

∗(δk)‖
2.(34)

On the other hand, we have

‖xk+1(δk)− x∗‖2 = ‖ρ(xk− x∗)+ (1−ρ)(xk
∗(δk)− x∗)‖2

= ρ2‖xk− x∗‖2+(1−ρ)2‖xk
∗(δk)− x∗‖2

+2ρ(1−ρ)(xk− x∗)T(xk
∗(δk)− x∗).

Using the following identity

2(a+b)Tb= ‖a+b‖2−‖a‖2+ ‖b‖2

for a = xk − xk
∗(δk),b = xk

∗(δk)− x∗ and (34), and using
0< ρ < 1, we obtain

‖xk+1(δk)−x∗‖2 = ρ2‖xk −x∗‖2+(1−ρ)2‖xk
∗(δk)−x∗‖2

+ρ(1−ρ){‖xk −x∗‖2−‖xk −xk
∗(δk)‖

2

+‖xk
∗(δk)−x∗‖2}

= ρ‖xk −x∗‖2+(1−ρ)‖xk
∗(δk)−x∗‖2

−ρ(1−ρ)‖xk −xk
∗(δk)‖

2

≤ ρ‖xk −x∗‖2+(1−ρ)‖xk−δkDk −x∗‖2

−(1−ρ)‖xk −δkDk −xk
∗(δk)‖

2

−ρ(1−ρ)‖xk −xk
∗(δk)‖

2

= ‖xk −x∗‖2− (1−ρ){‖xk −xk
∗(δk)−δkDk‖

2

+ρ‖xk −xk
∗(δk)‖

2−δ 2
k ‖Dk‖

2+2δk(x
k −x∗)TDk}

≤ ‖xk −x∗‖2− (1−ρ){2δk(x
k −x∗)T(g(xk)+λkDk−1)

−δ 2
k ‖Dk‖

2}

= ‖xk −x∗‖2− (1−ρ){2δk(x
k −x∗)Tg(xk)

+2δk(x
k −x∗)T λkDk−1−δ 2

k ‖Dk‖
2}

≤ ‖xk −x∗‖2− (1−ρ){2δk(x
k −x∗)Tg(xk)

−δ 2
k ‖Dk‖

2}

where the last inequality follows from Lemma5. Using the
definition ofϒ (δk), we get

ϒ (δk) ≥ (1−ρ){2δk(x
k− x∗)Tg(xk)− δ 2

k ‖Dk‖
2}

= (1−ρ)(2δk{‖g(xk)‖2− (x∗− x̄k(αk))
Tg(xk)}

−δ 2
k ‖Dk‖

2). (35)
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Using (31), we get the assertion of this theorem. ⊓⊔
Remark 2. By using Theorem3 and Theorem1, we get

ϒ (δk)≥ (1−ρ)Γ (δk), (36)

where

Γ (δk) = δk{‖g(xk)‖2+Φ(αk)}− δk
2‖g(xk)‖2

= δk{‖g(xk)‖2+Φ(αk)}
2 . (37)

And from [8], we have

ϒ ′(τk)≥ (1−ρ)Λ(δk), (38)

where

Λ(τk) =
τk{‖g(xk)‖2+Φ(αk)}

2
. (39)

ϒ (δk) and ϒ ′(τk) measure the progresses made by the
new iterates generated by the proposed algorithm and the
algorithm presented in [8], respectively.
It follows from Lemma4 that

δk =
‖g(xk)‖2+Φ(αk)

2‖Dk‖2

≥
‖g(xk)‖2+Φ(αk)

2‖g(xk)‖2

= τk (40)

and

Γ (δk) =
δk{‖g(xk)‖2+Φ(αk)}

2

≥
τk{‖g(xk)‖2+Φ(αk)}

2
= Λ(τk). (41)

Note that ifλk = 0 andδk =1 the proposed method reduces
to the method in [25]. Sinceδk is to maximize the profit
functionΓ (δk), we have

Γ (δk)≥ Γ (1). (42)

Inequalities (41) and (42) show theoretically that the
proposed method is expected to make more progress than
those in [8] and [25] at each iteration, and so it explains
theoretically that the proposed method outperforms the
methods in [8] and [25].
SinceΦ(αk) > 0, and from the definition ofδk it is easy

to prove that

δk ≥ τk ≥
1
2
. (43)

Sinceδk is to maximize the profit functionΓ (δk) and from
(33), Theorems1 and2, we have

Γ (δk) ≥ Γ (1)

≥ Φ(αk)

≥
(1−η)2

2(1+ µ)2‖xk− x̃k‖2. (44)

From the computational point of view, a relaxation factor
γ ∈ [1,2) is preferable in the new iteration. Through simple
manipulations, we obtain

Γ (γδk) = γδk{‖g(xk)‖2+Φ(αk)}− (γ2δk)(δk‖Dk‖
2)

= γ(2− γ)Γ (δk) (45)

It follows from (32), (36), (44) and (45) that there is a
constantc> 0 such that

‖xk+1(γδk)−x∗‖2 ≤‖xk−x∗‖2−c‖xk− x̃k‖2 ∀x∗ ∈Ω∗.(46)

The following result can be proved by similar
arguments as those in [3,16,23]. Hence the proof will be
omitted.

Theorem 4.[3,16,23] If inf∞
k=1 βk = β > 0, then the

sequence{xk} generated by the proposed method
converges to some x∞ which is a solution of NCP.

The detailed algorithm is as follows.
Step 0. Letβ1 > 0, ε > 0, 0 < µ < 1, 0 < η < 1,
0< ρ < 1, 1≤ γ < 2, x1 > 0, D0 = 0 and setk := 1.
Step 1. If‖min(xk,F(xk))‖∞ ≤ ε, then stop. Otherwise,
go to Step 2.
Step2. s := (1 − µ)xk − βkF(xk),

x̃k
i :=

(

si +
√

(si)2+4µ(xk
i )

2
)

/2,

ξ k := βk(F(x̃k) − F(xk)), r :=
‖ξ k‖/‖xk− x̃k‖.
while (r > η)
βk := βk ∗ 0.8/r, s := (1 − µ)xk − βkF(xk),

x̃k
i :=

(

si +
√

(si)2+4µ(xk
i )

2
)

/2,

ξ k := βk(F(x̃k) − F(xk)), r :=
‖ξ k‖/‖xk− x̃k‖.

end while
Step 3. Compute

x̄k(αk) = PRn
+
[xk−

αkβk

1+ µ
F(x̃k)],

where
αk =

γϕk

‖dk‖2

with
ϕk = 1

1+µ ‖xk − x̃k‖2 + 1
1+µ (x

k − x̃k)Tξ k and

dk = (xk− x̃k)+ 1
1+µ ξ k.

Step 4. Compute g(xk) = xk − x̄k(αk),

λk = max(0, −g(xk)TDk−1
‖Dk−1‖

2 )

and
Dk = g(xk)+λkDk−1.
The new iterate is defined by

xk+1 = ρxk+(1−ρ)PRn
+

[

xk− γδkDk

]

where
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δk = ‖g(xk)‖2+Φ(αk)
2‖Dk‖2 ,

and Φ(αk) = 2αkϕk−α2
k‖dk‖2.

Step 5.βk+1 =

{ βk∗0.7
r if r ≤ 0.3;

βk otherwise.

Step 6.k := k+1; go to Step 1.

4 Preliminary computational results

In this section, we consider two examples to
illustrate the efficiency and the performance of the
proposed algorithm.

4.1 Numerical experiments I

We consider the nonlinear complementarity problems

x≥ 0, F(x)≥ 0, xTF(x) = 0, (47)

where
F(x) = D(x)+Mx+q,

D(x) andMx+q are the nonlinear part and linear part of
F(x) respectively.

We form the linear part in the test problems similarly
as in Harker and Pang [13]. The matrix M = ATA+ B,
whereA is an n× n matrix whose entries are randomly
generated in the interval(−5,+5) and a skew-symmetric
matrix B is generated in the same way. The vectorq is
generated from a uniform distribution in the interval
(−500,500) or in (−500,0). In D(x), the nonlinear part
of F(x), the components are chosen to be
D j(x) = d j ∗arctan(x j), whered j is a random variable in
(0,1).

In all tests we take the logarithmic proximal parameter
µ = 0.01,ρ = 0.01,γ = 1.9 andη = 0.9. All iterations
start withx1 = (1, ...,1)T andβ1 = 1, and stopped criterion
whenever

‖min(xk,F(xk))‖∞ ≤ 10−7.

All codes were written in Matlab, and we compare the
proposed method with that in [25]. The test results for
problem (47) are reported in Tables1 and 2. k is the
number of iteration andl denotes the number of
evaluations of mappingF.

Table 1 Numerical results for problem (47) with q ∈
(−500, 500)

The method in [25] The proposed method
n k l CPU(Sec.) k l CPU(Sec.)

200 224 470 0.044 127 279 0.022
300 249 519 0.071 149 323 0.035
400 257 539 0.11 156 338 0.05
500 287 601 0.17 172 374 0.12
700 269 562 0.28 162 354 0.19
1000 262 547 1.28 158 341 0.71

Table 2 Numerical results for problem (47) with q ∈
(−500, 500)

The method in [25] The proposed method
n k l CPU(Sec.) k l CPU(Sec.)

200 445 924 0.071 264 572 0.065
300 425 887 0.11 259 561 0.07
400 531 1104 0.17 333 720 0.13
500 556 1155 0.28 336 726 0.18
700 483 1001 0.46 279 605 0.31
1000 523 1088 1.86 295 638 1.17

Tables1 and2 show that the proposed method is more
efficient. Numerical results indicate that the proposed
method can be save about 59∼ 77 percent of the number
of iterations and about 53∼ 70 of the amount of
computing the value of functionF.

4.2 Numerical experiments II

In this subsection, we apply the new method to a traffic
equilibrium problem, which is a classical and important
problem in transportation science, see, e.g., [15,24]. The
numerical results show that the new method is attractive in
practice.

Consider a network [N,L] of nodesN and directed
links L, which consists of a finite sequence of connecting
links with a certain orientation. Leta,b, etc., denote the
links; p,q, etc., denote the paths;ω denote an
origin/destination (O/D) pair of nodes of the network;Pω
denotes the set of all paths connecting O/D pairω ; up
represent the traffic flow on pathp; dω denote the traffic
demand between O/D pairω , which must satisfy

dω = ∑
p∈Pω

up,
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whereup ≥ 0,∀p; and fa denote the link load on linka,
which must satisfy the following conservation of flow
equation

fa = ∑
p∈P

δapup,

where

δap =

{

1, if a is contained in pathp;
0, otherwise.

Let A be the path-arc incidence matrix of the given
problem andf = { fa,a ∈ L} be the vector of the link
load. Since u is the path-flow,f is given by

f = ATu. (48)

In addition, lett = {ta,a ∈ L} be the row vector of link
costs, withta denoting the user cost of travelling linka
which is given by

ta( fa) = t0
a

[

1+0.15

(

fa
Ca

)4
]

, (49)

wheret0
a is the free-flow travel cost on linka andCa is

designed capacity of linka. Then t is a mapping of the
path-flowu and its mathematical form is

t(u) := t( f ) = t(ATu).

Note that the travel cost on the pathp denoted byθp is

θp = ∑
a∈L

δapta( fa).

Let P denote the set of all the paths concerned. Letθ =
{θp, p ∈ P} be the vector of (path) travel cost. For given
link travel cost vectort, θ is a mapping of the path-flowu,
which is given by

θ (u) = At(u) = At(ATu). (50)

Associated with every O/D pairω , there is a travel
disutility λω(d), which is defined as following

λω(d) =−mω log(dω)+qω . (51)

Note that both the path costs and the travel disutilities are
functions of the flow patternu. The traffic network
equilibrium problem is to seek the path flow patternu∗,
which induces a demand patternd∗ = d(u∗), for every
O/D pairω and each pathp∈ Pω ,

Tp(u) = θp(u)−λω(d(u)). (52)

The problem can be reduced to a nonlinear
complementarity problem in the space of path-flow
patternu: Findu∈ Rn such that

Find u≥ 0 ,T(u)≥ 0 and uTT(u) = 0. (53)

In particular, we test the example studied in [15,24]. The
network is depicted in Fig.1.

The free-flow travel cost and the designed capacity of
links (49) are given in Table3, the O/D pairs and the
coefficientmandq in the disutility function (51) are given
in Table4. For this example, there are together 12 paths
for the 4 given O/D pairs listed in Table6.
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◗
◗
◗
◗
◗
◗◗s
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1

2

11 ♥7

♥4 PPPPPPPPPq
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4

9
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✻
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✑
✑
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✑
✑
✑
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Fig. 1 The network used for the numerical test.

Table 3 The free-flow cost and the designed capacity of links in
(49)

Link Free-flow travel timet0
a CapacityCa Link Free-flow travel timet0

a CapacityCa

1 6 200 7 5 150
2 5 200 8 10 150
3 6 200 9 11 200
4 16 200 10 11 200
5 6 100 11 15 200
6 1 100 - - -

Table 4 The O/D pairs and the coefficientm andq in (51)

No. of the pairO/D pair mω qω
1 (1,7) 25 25log600
2 (2,7) 33 33log500
3 (3,7) 20 20log500
4 (6,7) 20 20log400

Table 5 Numerical results for for differentε

Different The method in [25] The proposed method
ε No. It. CPU(Sec.) No. It. CPU(Sec.)

10−4 136 0.13 95 0.022
10−5 165 0.028 113 0.021
10−6 194 0.033 129 0.022
10−7 220 0.037 148 0.024
10−8 247 0.056 166 0.026

In this example we take the same parameters as in subsection
4.1 and stopped whenever‖min(xk,F(xk))‖∞ ≤ ε. The iteration
numbers and the computational time for the proposed method
and the method in [25] for differentε are reported in Table5. For
the caseε = 10−8, the optimal path flow and link flow are given
in Table6 and7, respectively.
The numerical experiments show that the new method is more
flexible and efficient to solve the traffic equilibrium problem.
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Table 6 The optimal path follow

O/D pair Path no. Link of path Optimal path-flow
1 (1,3) 165.3145

O/D pair (1,7) 2 (2,4) 0
3 (11) 138.5735
4 (5,1,3) 82.5281
5 (5,2,4) 0

O/D pair (2,7) 6 (5,11) 55.7871
7 (8,6,4) 0
8 (8,9) 87.0260

O/D pair (3,7) 9 (7,3) 19.7549
10 (10) 229.9747

O/D pair (6,7) 11 (9) 178.5600
12 (6,4) 0

Table 7 The optimal link flow

Link no. Link flow Link no. Link flow Link no. Link flow
1 247.8426 4 0 7 19.7549
2 0 5 138.3152 8 87.0260
3 267.5974 6 0 9 265.5860

Link no. Link flow
10 229.9747
11 194.3606
− −
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