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Abstract: In this study by applying an own technique we investigate esaaaymptotic approximation properties of new type
discontinuous boundary-value problems, which consista @&turm-Liouville equation together with eigenparamekependent
boundary and transmission conditions.
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1 Introduction differs from the classical case, and its investigation
requires a specific approach based on the method of

Sturm-Liouville problems which contained spectral separation of variables. Note that, eigenfunctions of our

parameter in boundary conditions form an important partproblem are discontinuous at the one inner point of the

of the spectral theory of boundary value problems. Thisconsidered interval, in general.

type problems has a lot of applications in mechanics and

physics (see 1,9,15] and references cited therein).

Variety theoretic question of such type problems was2 Statement of the problem and construction

intensively studied for quite a Ipng time. In the r.ece.ntcpf the fundamental solutions

years, there has been increasing interest of this kin

problems which also may have discontinuities in the g s consider the boundary value problem, consisting of

solution or its derivative at interior points (sek?Z,3,4,5, the differential equation

6,8,10,11,12,16,17]). Such problems are connected with

discontinuous material properties, such as heat and mass Ty:=—y'(X) +q(X)y(x) = Ay(X) 1)

transfer, vibrating string problems when the string loaded o

additionally with points masses, diffraction problenss [ ©n(a,c)U(c,b], with eigenparameter- dependent boundary

15] and varied assortment of physical transfer problemsconditions

In this paper we shall investigated some asymptotic

approximation properties of one discontinuous

Sturm-Liouville problem for which the eigenvalue

parameter takes part in both differential equation andr, (yy:= a,ay(b) — a1y (b) + A (athay(b) — ajyy (b)) = 0

boundary conditions and two supplementary transmission 3)

conditions at one interior point are added to boundaryzng the transmission conditions

conditions. In particular, we find asymptotic

approximation ~ formulas  for  eigenvalues  and t3(y) := By (C—) + Biy(c—) + B (c+) + Bigy(c+) =0,

corresponding eigenfunctions. The problems with 4

transmission conditions arise in mechanics, such as

thermal conduction problems for a thin laminated plate, Ta(y) := ;Y (c—) + Booy(c—) + BaY (C+) + Booy(c+) =0,

which studied in 13]. This class of problems essentially (5)

T1(y) := a1oy(a) + auzy' (@) =0, )
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where the potentiafj(x) is real-valued function, which
continuous in each of the intervgks c) andc,b] and has
a finite limitsq(cF0), A is a complex spectral parameter,

aij, Bj, (i=12andj=0,1), aj, (i=2andj=0,1)

are real numbers. This problem differs from the usua
regular Sturm-Liouville problem in the sense that the ¥2

eigenvalue parametdr are contained in both differential

equation and boundary conditions and two supplementary
transmission conditions at one interior point are added to

boundary conditions. Let

Q21 020
031 A3

%%%%}

BZO BZl BZO BZl

Denote the determinant of the maty by Ag and the
determinant of the k-th and j-th columns of the matrix A

Ag=

andA = {

by Agj. Note that throughout this study we shall assume

that Ag > 0, A1 > 0 andAzs > 0. With a view to

constructing the characteristic function we shall define

two basic solutionp(x,A) and ¢/(x,A) by the following
procedure.
At first, let us consider the initial-value problem on the

left part[a, c) of the considered intervé, c) U (c, b]
_)// + q y )\ya Xe [a7 C) (6)
y(@) =011, Y(a) = —aio @)

By virtue of well-known existence and uniqueness

theorem of ordinary differential equation theory this
initial-value problem for eacth has a unique solution
$1(x,A). Moreover [[L4], theorem 7] this solution is an
entire function ofA for each fixedk € [a,c). By using we
shall investigate the differential equatid®) on (c,b]
together with special type initial conditions
1
y(c) = A—H(A23¢1(C,A)+A24¢i(ca)\)) (8)
-1

y(c)= A—lz(413¢1(0,)\)+414¢i(0,)\))- )
Define a sequence of functiogg(x,A),n=0,1,2,... on
interval(c, bl by the following equations:

Ailz[<4\zg+ CA13)91(c.A) + (Aaa + CAaa) B (cA)

+ (—A1301(c,A) + D143 (c,A))X

X

Yn(xA) = Yo(xA)+ [ (x~2)(a(2) = A)yn-1(2.A)dz

C

for n=1,2,.... It is easy to see that eachypfx,A) is an
entire function ofA for each(c,b] Consider the series

yO(X7/\) =

[ee]

S (¥n(x.A) ~Yn-1(x.A)

n=1

Yo(x,A) + (10)

Denoting
01 = MaXe(cp [A(X)] and Y(A) = maxecp [Yo(X.A)l,

eachn=1,2,....

Because of this inequality the seri€t0) is uniformly
convergent with respect to the variableon (c,b], and
with respect to the variable on every closed baa | <R.
|Let ¢2(x,A) be the sum of the serigd0). Consequently
$2(x,A) is an entire function ofA for each fixed
(c,b]. Since forn > 2

fiwo

Xe

n(x.A) yn 1(%A) = J¥n-1(zA) —¥n2(zA))dz

and

Yo (% A) =¥h-1(%A) = (A(X) = A) (Yn-1(%,A) = Yn-2(x,A))

uniformly with respect tox. Taking into account the last
equality we have

$7(x.A) = )/:{(Xa)‘)+§2(yr<(xa)‘) —Yn-1(xA))
= (Q(X) A)Y1(x,A)
+ ; )(Yn(%,A) = Yn-1(X,A))
= () =A)$2(x,A),

SO ¢2(x,A) satisfies the equatiof6). Moreover, since
eachyn(x,A) satisfies the initial condition&3) and (9),
then the functiong,(x,A) satisfies the initial conditions
(8) and (9). Consequently, the functiof(x,A) defined

by
p1(x,A) forxe [a,c)

PxA)=1{4,(x 1) forxe (c,b].

)=A{ (11)

satisfies equatiofi), the first boundary conditiof2) and
the both transmission conditio) and(5). By applying

the same technigue we can prove that for ang C the
differential equatior{1) has such solution

P (%,
Pa(x,

which satisfies the initial condition(3), the both
transmission  conditions (4) — (5) for each
X € [a,€) U (c,b] and is an entire function of for each
fixed x € [a,c) U (c,b]. Below, for shorting we shall use
also notationsgi(x,A ) := @ix, Yi(X,A) = Yy

A) forxe[ac)

Yix, A) forxe (c,b].

A)=

{ (12)

3 Some asymptotic approximation formulas
for fundamental solutions

Let A = s%. By applying the method of variation of

we get parameters we can prove that the next integral and
Vn(%A) —yn_1(%,A)] < ﬁ (A)(qr+ A" (x—c)®for  integro-differential equations are hold fdr = 0 and
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k=1.
k k
:7¢m (x) = an;—)é( cos[s(x—a)] — @;—% sin[s(x—a)]
Xk
+%/§—%sin[3(x— 2)]q(2)¢1(z,A)dz (13)
dk

1
pvLaE (x) = — o (A1aP2(C,A) + Doa(c, )

dk

1
X G + ——(A13yp(c,A)

cos[s(x—c)] s

K C
g, A) g sinfstx o))+ ¢ [

k

><d—x‘sin[s(x—z)]q(z)wl(z,)\)dz (14)
forx e [a,c) and
dk 1 ,
P2 () = 71— (A23¢1(Ca A) + Daapi(c,A))
k
O cos[s(x—¢)] — i (A13¢1(c,)\)
+A14¢1(c,)\))d% sin[s (x—c)]+%/
x%sin[s(x—z)] (2)¢2(z,A)dz (15)
k
L s (0 = (a2 + Aagy) o cosfs(x-b)
+%(azo+)\a§0)dxksm[ s(x—b)]

k
b [ esinls(x—2]a(2)ua(z)dz (16)

for x € (c,b]. Now we are ready to prove the following
theorems.

Theorem 1.LetA =%, Ims=t. Then ifa;; #0

d* d« k-1 Jt|(x—a)
31 (9 = auy cods(x—a)] +0(s tellt®) - (17)
k

020 = G aussinisic—a) Ly cossix—o)
+0(|g/keltlx-a)y (18)

as|A| — oo, while ifa;; =0

k k

et 00 = 10 % sinisc—a)) 0|5 209 (19)

dk Ao dk

TE92 (0 = —A—lzaloCOS{S(C—a)] o cogsx—o)]
+0(|g Leltlx-a)) (20)

as|A| — o (k= 0,1). Each of this asymptotic equalities
hold uniformly for x

ProofThe asymptotic formulas fof17) in (18) follows
immediately from the Titchmarsh’s Lemma on the
asymptotic behavior o, (x) ([14], Lemma 1.7). But the
corresponding formulas forg,, (x) need individual
consideration. Letri;; # 0. Substituting(17) in (15) we
have the next "asymptotic integral equation”
Py (X) = i0111 [A3c0sS(C— @) COSS(X — C)

A1

—Ap4SSins(C — &) Coss(X — C)
—%’ coss(C— a) sins(x—c)

+A—3 sins(c—a) sins(x—c)]

+% /sin[s(X— 2)|9(2)@(z,A)dz+ O(elt\(xfa)) @1)

e It|(x—a)

Multiplying by and

Y(x,A) = e =8 ¢, (x) we get

denoting

Y(xA) = AilZ a1 0= [Az3c0ss(c - a) coss(x — ¢)

—Ap4Ssins(C — a) coss(X — C)

A3

?coss(c a)sins(x—c)

+A—;4 sins(c—a) sins(x—c)]

+2 [ sinlsix—2]a@e 112V (2.0)dz+0W) (22)

b
= MaXc(ep) [Y(X,A)] andg = [ |q(z)|dz

C
from the last equation we hav§A) = O(1) agA| — o,
SO ¢, (x) = O(ell=?), Supstituting in(21) we obtain
(18) for the casé& = 0. The cas& = 1 of the(18) follows
at once on differentiating15) and making the same
procedure as in the cagke= 0. The proof of(19) in (20)
is similar.

Denoting Y(A)

Similarly we can easily obtain the following Theorem for
LIJi(X,)\)(i = 172)
Theorem 2.LetA =s?, Ims=t. Then ifa}, # 0

dk , ok

RV (0 = @S’ g coss(b—x)] + (s teo ) (23)

dk , dk

SRmg = 7 20, 015 Sinls(b—0)] 1 coss(x—)
+O(|S|k+2e\t| (b— X)) (24)

as|A| — o, while ifay; =0

o o de Kglt|(b

RV (0 = —abos g sinls(b—x)] +O(|se!®) - (25)

dk , k

W (x>:—A—2“azos2cos{s<b o)) coss(x—o)

(|S|k+l \t|(b—x)) (26)

as|A| — o (k = 0,1). Each of this asymptotic equalities
hold uniformly for x
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4 Asymptotic behaviour of eigenvalues and
corresponding eigenfunctions

Itis well-known from ordinary differential equation theor
that the Wronskian8V[¢q, , Y1, |x andW/[¢», , Un,]x are
independent of variabbe Denotingw;(A) =W/[i» , Yirlx
we have

Wa(A) = 92(c.A)(C.A) — $4(.A)Pa(c.A)
- ﬁ—j‘z‘wl(cmwi(cm —$le M (cA))

AT
- Alzwl()\ )

Denotew(A ) := Azawi(A) = A2 ap(A).
By the same technique as idl] we can prove the
following theorem

Theorem 3.The eigenvalues of the probleft)-(5) are
consist of the zeros of the functio.

Now by modifying the standard method we prove that all

eigenvalues of the problefd) — (5) are real.

Theorem 4.All eigenvalues of the probleifi) — (5) are
real.

ProofLet Ag be eigenvalue andjy be eigenfunction
corresponding to  this  eigenvalue.
Ro(y) := azay(b) — a21y'(b),

R, (Y) = aj0y(b) — a5,y (b) by two partial integration we
have

c - b
A1 / (Aoyo) (X)Yo(X)dx+ Aga / (AoYo) ()yo(X)dx

2R RG] (22 [ 3o T

b
+ag4 [ Y0¥ hoyo) (dx-+ %‘%(yo)Rb(yo)}
= WIlyo,Y0;C—]| — A12 W(yo, Yo; & + Aza W|yo, Yo, b]

A
—Asa W0, ¥6;C+] + A—?Rb(YO)RO(YO)

Azg -

(Yo)Ro(Yo)

A @27)

From the boundary condition®) it is follows obviously
that
W(yo.Yo;@) = 0. (28)
The direct calculation gives
Ro(Y0) Ry (Yo) — Ry(Yo)Ro(Yo) = —AdW (Yo, ¥o;b)  (29)
and
W(y0,¥5:¢—) = 3% W(yo,Y; C-+). (30)

Substituting 28), (29) and @G0) in (27) we obtain the
equality

(o—To)B1z | (yol)2lx+ dss [ " (o(x))?d4 = 0

Denoting

Thus, we getAg = Ag since Ai» > 0 and Azs > 0.
Consequently all eigenvalues of the problén— (5) are
real.

Since the Woronskians ofo) (X) and g,y (x) are
independent oX, in particular, by puttingk = a we have

W(A) = ¢1(ar)gr(a i) —di(aA)ya(aA)
= Glllﬂi(a,/\ )+ aron(a,A). (31)

LetA =&, Ims=t. By substituting(23) and(26) in (31)
we obtain easily the following asymptotic representations
(i) If a%, # 0 andaq1 # 0, then

W(A) = Azqa110%,5 sin[s(b— c)] sin[s(a—c)]
+0 (|s|3e‘t‘<b*a>)

(i) If a%, # 0 andai1 =0, then

W(A) = —Az4a1005,S>sin[s(b—c)] cos/s(a— )]
+0 (|s|2e‘t‘<b*a>)

(iii) If a5, =0 anday1 # 0, then

(32)

(33)

W(A) = Q40110505 cosls(b — ¢)]sin[s(a— c)]
+0 (|s|2e‘t‘<b*a>)

(iv) If a5, =0andai1 =0, then

(34)

W(A) = —A24010055> cosls(b— c)| cos[s(a— c)]
+0 (|s| e“‘<b‘a>)

Now we are ready to derived the needed asymptotic
formulas for eigenvalues and eigenfunctions.

(35)

Theorem 5.The boundary-value-transmission problem
(1)-(5) has an precisely numerable many real
eigenvalues, whose behavior may be expressed by two
sequencgA, 1} and {An 2} with following asymptotic as
n— oo(i) If a5, # 0andayy # 0, then

s 1 nrm 1
S = (n—Z)m+O<ﬁ> » Sh2= §+O(ﬁ> ;
(36)
(i) If aj, # 0andai1 = 0, then
1. 1 m 1
Sh1= (n+§)m+0(ﬁ> , Sh2= aTc(n_l)+O(ﬁ> ;
(37)
(iii) If a5, = 0andayy # 0, then
s 1 m 1 1
S1= (n—l)bTCwLO(ﬁ) s Sh2= ﬁ(n+§)+0(ﬁ) ;
(38)

(iv) If a5, =0anday; =0, then

1 1 1 1
S1= (n—i)bT710+o (ﬁ> , Sn2= a—nc(n+§)+o (ﬁ)
(39)

whereAns =3, ,An2 =S5,

(@© 2016 NSP
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ProofLet a5, # 0 andai1 # 0. Denote bywi (s) andwy(s)
the leading term an@-term of the right of(32) by w; (s)
andwx(s) respectively, i.e. we let/($?) = Wi (s) + Wa(s).
Let{&n1} and{&n>} be any two sequence, for which<0
&nj < % and letl, (i = 1,2) are the bounds of the domains

{s=o+it|[t|,|o] < m(n+é&n)} (i=12).
We can choose the sequendes; } and{&, 2} so that
(N+ &,1) # mMmandrr(n+ &, 2) # MM

for everyn andm. Taking in view this and the fact that
0 < &, < 3, it is easy to show thawi(s)| > [Wa(s)|on
both I'h1 and I',» for sufficiently largen. By applying
Rouche’s theorem on a sufficiently large contolis it
follows thatw(A) has the same number zeros inside the
contours i as the leading termwi(s). Hence, if

Ao < A1 < Ag... are the zeros oW(A) ands, = Ap, we
have the needed asymptotic formu(&§). The proofs of
the other formulas are similar.

Using this asymptotic expression of eigenvalues we ca
easily obtain the corresponding asymptotic expression
for eigenfunctions of the problenil)-(5). Denote the
corresponding eigenfunction of the problem by

b1, () forxe [a,c)
¢, (x,) forxe (c.b].

Elsn,i = {

Recalling that, (x) is an eigenfunction according to the
eigenvalue\, by putting @6) in the (17) for k = 0 we get

allcos[(n— Z)HEE:‘Z‘” +0(%) forxe[ac)
Pn1(X) = —a11424% sin|(n—1) ”EE:?:”

(x—¢)
(b—c)

xcos[(n—Z)n +0(1) forx e (c,b]

if a5, # 0 andayy # 0. Similarly, by putting 86) in the
(18) for k=0 yields

(x-a)
(a—c)

allcos[nn } +0(%) forxeac)

)

an,Z(X) = _011A24% S|n[nn’] COS[FWT
+0(1) forx € (c,b]

Similar expressions are as follows:
If a5, # 0 andai; =0, then

_aloi&bnf; sin[n(n+ 3) Eﬁiiﬂ] +0(5)
forx e [a,c)
Pn1(x) = - -
na(X) ol cos[n(n+ 1) ngc‘” cos[n(n+ 3) Eé,g}
+0(%) forxe (c,b]
and
“anogfyysinf(n- g o)
forx e [a,c)
X =
Pn2(%) _alog_i;‘ cos[m(n—1)] COS[T[(H -1) E;:(cﬂ

+0(%) forxe (c,b]

n

If a5, =0andai; # 0, then

(x—a)
(b—c)

—a11424% sin|(n—1)mr

X cos[(n 1L

allcos[n(n—l) ]+O(%) forx € [a,c)
(c—a)

(bfc)}
+0(1) forx e (c,b]

Pn1(x) =
(x=¢)
(b—c)

and
(

X—a)

a—C)

allcos[n(m- 3)
forx e [a,c)
A 5
_ a117TA21‘;<(’;t§)> sin[m(n+3)] cos[(n+ O

+0(1) forx € (c,b]

If a5, =0anday; =0, then

RIE

)

Pn2(x) = (x—0)

(a—c)

)

—qin =9 g _ L2 1
falo(n_[%)n)sm [(n Z)H(bic)} +O(ﬁz)
orxe[ac
Pni(x) = ’ - -
~ 1032 cos{(n )mE=3] cos|(n - ) mlid]

+0(%) forxe (c,b]

gnd

—alo(rgi_%?nsin [(n+ Hm ) :

forx e [a,c)

—a105% cos|(n+ 3)11] cos[(n+ AL }
+0(}) forx € (c,b]

All this asymptotic approximations are hold uniformly for

X.

(x-a)
(a—c)

i
n2

J+of

(x=¢)
(a—c)

$n,2(x) =
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