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Abstract: Payoff of a power option is typified by its underlying sharieerraised to a constant power. Also known as leveragedmptio
a minor change in its underlying may lead to a significant gedn its price. In this study, we derive pricing formula fawer options
using the martingale approach when the underlying asdet®la jump-diffusion process.
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1 Introduction of vanilla options can be used to hedge a single power
option.

Anything that derives its value from an underlying assetis  Given the underlying asset priGstrike priceK, and

a derivative, and the underlying asset for stock options isnaturity time T. Then, under the Black-Schole€][

the stock. Since stock options were first introduced, theyenvironment, the price of a power option is given as

have gained popularity and have been used widelyfollows (see #,12)):

According to p], a call (put) option gives the buyer the

right, but not the obligation, to purchase (sell) the Bao?

underlying share at a strike price. At the time of purchase, PC= % EXP[(B -1 (r + —) T] N(dyp)

the maturity date is agreed upon. Hence, both options are T

subject to expiration and can expire worthless. Other than —Ke™" ' N(dzp), 1)

the call and put options, there are European options which . , . - .

is exercisable only at its maturity date, and AmericanWherer is the risk-free rateg is the volatility, 8 is the

options which is exercisable at any time between jtsconstant power, and:

purchase date and its maturity date.

The standard call and put options are referred to as In (i/K) +p (r — "72 +B02) T
vanilla options. Many non-standard options emerge from tig= ,
the extension of vanilla options, and these are called BovT
exotic options. Exotic options are typified by the different
form of the payoffs to that of vanilla options, and power dyg=dig— BoVT.

options, also known as leveraged option is one example. .

Power options are options whose payoffs are based offéferenceq] shows that the closed-form pricing formulas
the underlying asset raised to a powdrL[L2]. This for poweroptions as given by Equatiat) €an be obtained
additional feature gives the buyer of the option the from the closed-form pricing formulas for vanilla options
potential to receiving a much higher payoff than that from Via @ transformation on the underlying asset price and the
a vanilla option. A small change in the value of the Volatility. Moreover, B] refers to
underlying of a power option may lead to a significant 1o
change in the option’s pricelB,14]. Moreover, ] and FLelp-(r+3p0%)T
[12] show that when the dynamics of the underlying share
price is a geometric Brownian motion (GBM), a package as a power contract with unit strike.
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In the Black-Scholes model, the asset price process Hence,
follows a GBM with drift:

dS = rSdt + oS AW, (% —1) ~ Lognormal (e‘”*%g i G 1)) .

whereW is a standard Brownian motion. There exists Usi A ; ee :
X . . i .~ Using Itd formula for jump-diffusion process, Equati@) (
evidence in the market which shows that GBM with drift can be solved as follows:

is an inaccurate process to model the movements of asset
prices. In addition, the Black-Scholes model assumes o2 N
constant volatility. However, this assumption contraslict S = S)epru — 7) t+ UW} rlyi, 3)
with the fact that market prices exhibit volatility smile i=
and heavy tails distribution. Stochastic volatility maslel .
and models with jumps are two famous extensions to the?" Similarly:
Black-Scholes model which try to capture these ) N
shortcomings. _ g _
The dynamics of a share price can be described via S = Soexp[(r 2 _/\k)t+ oW ﬂZl'”y'] - @
jump-diffusion processes. This is supported by empirical B
evidences, such as the work df gnd [8], which support  \yhere the expectation of the price change due to a jump is
the existence of jumps in share prices. To the authors’ best
knowledge, 9] was the pioneer in introducing jumps in the 52
share price process for option pricing problems. Merton K=E(x—1)=exp [IJJ + ?] -1
[9] uses conditional normality of MJD model and presents
the price of the option as a conditional Black-Scholes type
solution. Moreover,10] compares pure jump models with
Merton jump-diffusion (MJD) model, and shows that the S = SoexpX)
latter incorporates most of the share price’s behavior. ’

In this.paper, we study the pricing of Europe_an-stylewhere the share price procgs$: 0 <t < T} is presented
power options when the dynamics of the underlying share,. | exponential Levy proce&¥, 0<t< T} which is

price .fO"éJWS af jl?mp-dlgus;(.)naprocess.t T?he pape(zjr IIS a GBM with jumps. It follows that the logarithmic returns
organized as 1ollows. Sectiod presents the mModel ., 5156 pe modeled as Lévy process as such:
derivation for the asset price with jump-diffusion. Sentio

3 derives the pricing formulas for power options with » N
jump-diffusion process using a martingale approach. |n (3) =X = (r o _)\k)t+o'\M+ Iny. (5)
Section4 provides the numerical results, and Sect®n S 2 i;
concludes the paper.

Equation @) can be written as follows:

) ) 3 Pricing Power Optionswith
2 Merton Jump-Diffusion M odel Jump-Diffusion

This section describes the jump-diffusion model as . .
provided in P]. In a risk-neutral setting, the dynamics of Let (Q’*OJ’Q). be a prqbablhty §pace on Wh'Ch a
the asset price process with jump-diffusion follows the Brownian motionw is defined,{# : 0 <t < T} is the

following stochastic differential equation (SDE): filration generated byW, and Q is a risk-neutral
measure. The dynamics of the MJD process is given by

dS = (r—Ak)Sdt+0SdW + (s —1)SdN, (2)  Equation @) as such:

wherer is the risk-free rateg is the volatility of the asset o2 N
return when no jumps occudy is a Wiener process; is Sr =Sexp (f ) —/\k) t+ oW + _Zlm)ﬁ . (6)
a Poisson process with intensity y; is the absolute price 1=
jump size, andy; — 1) is the relative price jump size& ) )
Jsee]? -1 P ump { A power option has a payoff function of
Merton assumes that the logarithmic asset price jump
sizes follows a normal distribution, H (i)
2
Iy, ~ A" (13,67, where its price is the discounted risk-neutral conditional

where 1y is the log-return jump-size and is the EXPectation of the payoff atas follows:

volatility of log-return jump, which are identically and
independently distributed. PCip(t,S) = exg—r(T —t)]E? [H (i) |%} NG
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Equation ) can be expressed as: Therefore,

PCip(t,S) = expg—r(T —1t)]

x EQ [H <SBexplln (%)D I%] . (8) In <§> ~ AN (MP) ~mis

Replacing Equation5) into Equation 8), and letting
Inyx = Y yields:

On that account, the price of a power option in Equation

PCoip(t,S) (11) is provided as follows:
g (gl E T o)
)

The distribution of the compound Poisson process is:

Nt _t
> Y~ A (ips,i8%),
=1

o Te AT
£ il
for i number of jumps: = | (i/%)
Q n Q
=Ny =0,123,... “F [ie {%x}} KE ['{gﬂ”
Using the law of iterated expectations, we have the _ T - ef)\T(/\T)I
following: i; il
PCip(t.S) [
— o TTUEQ {EQ {H (gieﬁKrfa—ng)\k)(T—t)+oW+ZE:T{‘Yk}) « { EQ | fem |
In (K/Sg)—m
INT—¢ =]} (10) > ——
Therefore, by conditioning ohand lettingt = O yields: -
PCip(t,S) _ _KEQ || (13)
T e aT(AT) In(K/%)—m
—@ rT %e AT : >
& i! i
a2 k)T LY,
« EQ |:H (iep[(rz ) +O'Wr+2k:1 k]>:| ’ (11)
In(K/S)-
where Let L;sﬁ)m =d;. Then, we have:
2 i
B (r—a——/\k)T+O”Wr+ 3 Y
2 k=1
2
NJV<B[(r—a——)\k>T+iu};BZ(GZTH(SZ)). PCJDS’S‘) i
2 _ efrT ef)\T (/\T)
28 T
Suppose we consider the payoff of a power option as © e“zz% © ,_z,;
follows: X Sfem/ e¥ | —=| dz—K
H (S?) = max(S? - K,O) : dl ven e \/_"
Let ) _ e %ef)\T (/\T)
m:BKr—U——)\k)T—Hu] = i
2—25)2 © 67§
and em+ dz—-K [ —=dz|. (14)
s= B\ 02T +i82. <% & \/_" & V/2m
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Letw=z—s Then, can be seen in Figur&and3, where the former we have
B =15, andB = 2 for the latter, that the Merton prices
PCin (1, S) , are also greater than the Black-Scholes prices. However,
T ie_”()\T)' the underlying asset of a power option is raised to a
1=

il power. Therefore, the difference between the Merton and
Black-Scholes prices are much higher for the power

2 [ e—-WzE o e__222_ options than the vanilla options.
X %em%‘r/d _sﬁdw_ K/d Edz We can also see that in Figurés2 and3, asA (i.e.
' ' intensity of the jumps per unit of time) increases from 1 to
T e T (AT) 5, the difference between Merton price and Black-Scholes
=¢€ 'zoe T price becomes larger. This is expected to occur since we
1= ' setogs = omip Where there existd, u;, and 6. Hence,
y {Sgemng - N(ch— )] — K[1— N(dl)]} higher Merton prices than Black-Scholes prices.

This completes the derivation, hence leads us to the
following proposition.

Proposition 1 The price of a power call option with

maturity T and strike pric&, and whose underlying asset
price follows the dynamics in2j where jumps are

normally distributed is given by:

PCip(t,S) M e o

T m e—ﬁT(}\T)'
2,

il Fig. 1: Vanilla option prices: Black-Scholes vs Merton

o {%e(ﬁl) (r+L‘§2)Teﬁ <7)\kT+iu+L§2> N(dl,/z,JD)
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52 005 :
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(£ /K) + B [(r—%—)\k)T+iuJ} .
dlB D= 0o s Mo rersias,
B, o 50 5 ; S, AR piaa i
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1BV 02T +id2,
dapop =dipap—B V2T +id

This proposition is the main result of this paper.

Fig. 2: Power option prices: Black-Scholes vs Mertgh=£ 1.5)

. 5 Conclusion
4 Numerical Examples
This paper prices power option under Merton’s
In this section, we present numerical results for the pricegump-diffusion model using a martingale approach. A

of a power option under the MJD model. pricing formula for power options with jump-diffusion is
Given the following parameters of derived.
S=5r=00571=0250 =02 = —-0.1 and Numerical results display that vanilla option prices

0 = 0.1, Figurel shows Merton prices for vanilla options with jump-diffusion are higher than that without jumps.
are higher than Black-Scholes prices. For power optionsThis is also the case for power options. However the
the parameters remain the same but we ch&se3. It difference between the Merton prices and the
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