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Abstract: Payoff of a power option is typified by its underlying share price raised to a constant power. Also known as leveraged option,
a minor change in its underlying may lead to a significant change in its price. In this study, we derive pricing formula for power options
using the martingale approach when the underlying asset follows a jump-diffusion process.
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1 Introduction

Anything that derives its value from an underlying asset is
a derivative, and the underlying asset for stock options is
the stock. Since stock options were first introduced, they
have gained popularity and have been used widely.
According to [5], a call (put) option gives the buyer the
right, but not the obligation, to purchase (sell) the
underlying share at a strike price. At the time of purchase,
the maturity date is agreed upon. Hence, both options are
subject to expiration and can expire worthless. Other than
the call and put options, there are European options which
is exercisable only at its maturity date, and American
options which is exercisable at any time between its
purchase date and its maturity date.

The standard call and put options are referred to as
vanilla options. Many non-standard options emerge from
the extension of vanilla options, and these are called
exotic options. Exotic options are typified by the different
form of the payoffs to that of vanilla options, and power
options, also known as leveraged option is one example.

Power options are options whose payoffs are based on
the underlying asset raised to a power [11,12]. This
additional feature gives the buyer of the option the
potential to receiving a much higher payoff than that from
a vanilla option. A small change in the value of the
underlying of a power option may lead to a significant
change in the option’s price [13,14]. Moreover, [4] and
[12] show that when the dynamics of the underlying share
price is a geometric Brownian motion (GBM), a package

of vanilla options can be used to hedge a single power
option.

Given the underlying asset priceS, strike priceK, and
maturity time T. Then, under the Black-Scholes [2]
environment, the price of a power option is given as
follows (see [4,12]):

PC = Sβ
0 exp

[

(β −1)

(

r+
β σ2

2

)

T

]

N(d1,β )

−Ke−rT N(d2,β ), (1)

wherer is the risk-free rate,σ is the volatility, β is the
constant power, and:

d1,β =
ln
(

Sβ
0/K

)

+β
(

r− σ2

2 +β σ2
)

T

β σ
√

T
,

d2,β = d1,β −β σ
√

T .

Reference [6] shows that the closed-form pricing formulas
for power options as given by Equation (1) can be obtained
from the closed-form pricing formulas for vanilla options
via a transformation on the underlying asset price and the
volatility. Moreover, [3] refers to

Sβ
0 e(β−1)(r+ 1

2β σ2)T

as a power contract with unit strike.
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In the Black-Scholes model, the asset price process
follows a GBM with drift:

dSt = rSt dt +σSt dWt ,

whereWt is a standard Brownian motion. There exists
evidence in the market which shows that GBM with drift
is an inaccurate process to model the movements of asset
prices. In addition, the Black-Scholes model assumes
constant volatility. However, this assumption contradicts
with the fact that market prices exhibit volatility smile
and heavy tails distribution. Stochastic volatility models
and models with jumps are two famous extensions to the
Black-Scholes model which try to capture these
shortcomings.

The dynamics of a share price can be described via
jump-diffusion processes. This is supported by empirical
evidences, such as the work of [1] and [8], which support
the existence of jumps in share prices. To the authors’ best
knowledge, [9] was the pioneer in introducing jumps in the
share price process for option pricing problems. Merton
[9] uses conditional normality of MJD model and presents
the price of the option as a conditional Black-Scholes type
solution. Moreover, [10] compares pure jump models with
Merton jump-diffusion (MJD) model, and shows that the
latter incorporates most of the share price’s behavior.

In this paper, we study the pricing of European-style
power options when the dynamics of the underlying share
price follows a jump-diffusion process. The paper is
organized as follows. Section2 presents the model
derivation for the asset price with jump-diffusion. Section
3 derives the pricing formulas for power options with
jump-diffusion process using a martingale approach.
Section4 provides the numerical results, and Section5
concludes the paper.

2 Merton Jump-Diffusion Model

This section describes the jump-diffusion model as
provided in [9]. In a risk-neutral setting, the dynamics of
the asset price process with jump-diffusion follows the
following stochastic differential equation (SDE):

dSt = (r−λ k)St dt +σSt dWt +(yt −1)St dNt , (2)

wherer is the risk-free rate,σ is the volatility of the asset
return when no jumps occur,Wt is a Wiener process,Nt is
a Poisson process with intensityλ , yt is the absolute price
jump size, and(yt − 1) is the relative price jump size [9,
see].

Merton assumes that the logarithmic asset price jump
sizes follows a normal distribution,

lnyt ∼ N (µJ,δ 2),

where µJ is the log-return jump-size andδ is the
volatility of log-return jump, which are identically and
independently distributed.

Hence,

(yt −1)∼ Lognormal

(

eµJ+
δ2
2 −1, e2µJ+δ 2

(

eδ 2 −1
)

)

.

Using Itô formula for jump-diffusion process, Equation (2)
can be solved as follows:

St = S0exp

[(

µ − σ2

2

)

t +σWt

] Nt

∏
i=1

yi, (3)

or similarly:

St = S0exp

[

(

r− σ2

2
−λ k

)

t +σWt +
Nt

∑
i=1

lnyi

]

, (4)

where the expectation of the price change due to a jump is

k ≡ E(yt −1) = exp

[

µJ +
δ 2

2

]

−1.

Equation (4) can be written as follows:

St = S0exp(Xt),

where the share price process{St : 0≤ t ≤ T} is presented
as an exponential Lévy process{Xt : 0≤ t ≤ T} which is
a GBM with jumps. It follows that the logarithmic returns
can also be modeled as Lévy process as such:

ln

(

St

S0

)

≡ Xt =

(

r− σ2

2
−λ k

)

t +σWt +
Nt

∑
i=1

lnyi. (5)

3 Pricing Power Options with
Jump-Diffusion

Let (Ω ,F ,Q) be a probability space on which a
Brownian motionWt is defined,{Ft : 0 ≤ t ≤ T} is the
filtration generated byWt , and Q is a risk-neutral
measure. The dynamics of the MJD process is given by
Equation (4) as such:

ST = St exp

[

(

r− σ2

2
−λ k

)

t +σWt +
Nt

∑
i=1

lnyi

]

. (6)

A power option has a payoff function of

H
(

Sβ
T

)

where its price is the discounted risk-neutral conditional
expectation of the payoff atr as follows:

PCJD(t,St) = exp[−r(T − t)]EQ
[

H
(

Sβ
T

)

∣

∣Ft

]

. (7)

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 4, 1313-1317 (2016) /www.naturalspublishing.com/Journals.asp 1315

Equation (7) can be expressed as:

PCJD(t,St) = exp[−r(T − t)]

×EQ

[

H

(

Sβ
t exp

[

ln

(

Sβ
T

Sβ
t

)])

∣

∣Ft

]

. (8)

Replacing Equation (5) into Equation (8), and letting
lnyk = Yk yields:

PCJD(t,St)

= e−r(T−t)EQ
[

H

(

Sβ
t e

β
[(

r− σ2
2 −λ k

)

(T−t)+σWt+∑
NT−t
k=1 Yk

])]

.

(9)

The distribution of the compound Poisson process is:

NT−t

∑
k=1

Yk ∼ N
(

iµJ, iδ 2) ,

for i number of jumps:

i ≡ NT−t = 0,1,2,3, . . .

Using the law of iterated expectations, we have the
following:

PCJD(t,St )

= e−r(T−t)EQ
{

EQ
[

H

(

Sβ
t e

β
[(

r− σ2

2 −λk
)

(T−t)+σWt+∑
NT−t
k=1 Yk

]
)

|NT−t = i]} (10)

Therefore, by conditioning oni and lettingt = 0 yields:

PCJD(t,St)

= e−rT
∞

∑
i=0

e−λ T (λ T )i

i!

×EQ
[

H

(

Sβ
0 e

β
[(

r− σ2
2 −λ k

)

T+σWT+∑i
k=1Yk

])]

, (11)

where

β

[

(

r− σ2

2
−λ k

)

T +σWT +
i

∑
k=1

Yk

]

∼ N

(

β
[(

r− σ2

2
−λ k

)

T + iµ
]

; β 2(σ2T + iδ 2)
)

.

(12)

Suppose we consider the payoff of a power option as
follows:

H
(

Sβ
T

)

= max
(

Sβ
T −K,0

)

.

Let

m = β
[(

r− σ2

2
−λ k

)

T + iµ
]

and
s = β

√

σ2T + iδ 2.

Therefore,

ln

(

Sβ
T

Sβ
t

)

∼ N
(

m,s2)∼ m+ sz.

On that account, the price of a power option in Equation
(11) is provided as follows:

PCJD(t,St)

= e−rT
∞

∑
i=0

e−λ T (λ T )i

i!
EQ
[

max

(

Sβ
0 e

ln
(

Sβ
T /Sβ

0

)

−K,0

)]

= e−rT
∞

∑
i=0

e−λ T (λ T )i

i!

×
{

EQ
[

Sβ
0 e

ln
(

Sβ
T /Sβ

0

)

I{
Sβ

0>K
}

]

−K EQ
[

I{
Sβ

0>K
}

]}

= e−rT
∞

∑
i=0

e−λ T (λ T )i

i!

×























EQ













Sβ
0 em+sz I









z>
ln

(

K/S
β
0

)

−m

s























− KEQ













I








z>
ln

(

K/S
β
0

)

−m

s













































. (13)

Let
ln
(

K/Sβ
0

)

−m

s = d1. Then, we have:

PCJD(t,St)

= e−rT
∞

∑
i=0

e−λ T (λ T )i

i!

×



Sβ
0 em

∫ ∞

d1

esz





e−
z2
2

√
2π



 dz−K
∫ ∞

d1

e−
z2
2

√
2π

dz





= e−rT
∞

∑
i=0

e−λ T (λ T )i

i!

×



Sβ
0 em+ s2

2

∫ ∞

d1

e−
(z−s)2

2√
2π

dz−K
∫ ∞

d1

e−
z2
2√

2π
dz



 . (14)
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Let w = z− s. Then,

PCJD(t,St)

= e−rT
∞

∑
i=0

e−λ T (λ T )i

i!

×



Sβ
0 em+ s2

2

∫ ∞

d1−s

e−
w2
2

√
2π

dw−K
∫ ∞

d1

e−
z2
2

√
2π

dz





= e−rT
∞

∑
i=0

e−λ T (λ T )i

i!

×
{

Sβ
0 em+ s2

2 [1−N(d1− s)]−K[1−N(d1)]

}

= e−rT
∞

∑
i=0

e−λ T (λ T )i

i!

[

Sβ
0 em+ s2

2 N(−d1+ s)−KN(−d1)

]

.

This completes the derivation, hence leads us to the
following proposition.

Proposition 1 The price of a power call option with
maturityT and strike priceK, and whose underlying asset
price follows the dynamics in (2) where jumps are
normally distributed is given by:

PCJD(t,St)

= e−rT
∞

∑
i=0

e−λ̂T (λ̂ T )i

i!

×
{

Sβ
0 e

(β−1)

(

r+ βσ2

2

)

T
e

β
(

−λ kT+iµ+ β iδ2

2

)

N(d1,β ,JD)

− K N(d2,β ,JD)
}

, (15)

where

λ̂ = λ
(

eµJ+
δ2
2

)

,

k = eµJ+
δ2
2 −1,

d1,β ,JD =





ln(Sβ
0/K)+β

[(

r− σ2

2 −λ k
)

T + iµJ

]

β
√

σ2T + iδ 2





+β
√

σ2T + iδ 2,

d2,β ,JD = d1,β ,JD −β
√

σ2T + iδ 2.

This proposition is the main result of this paper.

4 Numerical Examples

In this section, we present numerical results for the prices
of a power option under the MJD model.

Given the following parameters of
S = 5, r = 0.05, τ = 0.25, σ = 0.2, µJ = −0.1 and
δ = 0.1, Figure1 shows Merton prices for vanilla options
are higher than Black-Scholes prices. For power options,
the parameters remain the same but we chooseS = 3. It

can be seen in Figures2 and3, where the former we have
β = 1.5, andβ = 2 for the latter, that the Merton prices
are also greater than the Black-Scholes prices. However,
the underlying asset of a power option is raised to a
power. Therefore, the difference between the Merton and
Black-Scholes prices are much higher for the power
options than the vanilla options.

We can also see that in Figures1, 2 and3, asλ (i.e.
intensity of the jumps per unit of time) increases from 1 to
5, the difference between Merton price and Black-Scholes
price becomes larger. This is expected to occur since we
set σBS = σMJD where there existsλ ,µJ, andδ . Hence,
higher Merton prices than Black-Scholes prices.

Fig. 1: Vanilla option prices: Black-Scholes vs Merton

Fig. 2: Power option prices: Black-Scholes vs Merton (β = 1.5)

5 Conclusion

This paper prices power option under Merton’s
jump-diffusion model using a martingale approach. A
pricing formula for power options with jump-diffusion is
derived.

Numerical results display that vanilla option prices
with jump-diffusion are higher than that without jumps.
This is also the case for power options. However the
difference between the Merton prices and the
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Fig. 3: Power option prices: Black-Scholes vs Merton (β = 2.0)

Black-Scholes prices are much higher for power options
than that of vanilla options. This is expected because of
the leverage feature of the power option where a small
change in the underlying of a power option may lead to a
significant change in the price of a power option.

A possible future work is to apply this work to price
power barrier options [7] with jump-diffusion process.
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