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Abstract: It is well known, that any interpolating polynomialp(x,y) on the vector spacePn,m of two-variable polynomials with degree
less thann in terms ofx and less thanm in terms ofy, has various representations that depends on the basis ofPn,m that we select
i.e. monomial, Newton and Lagrange basis e.t.c.. The aim of this short note is twofold : a) to present transformations between the
coordinates of the polynomialp(x,y) in the aforementioned basis and b) to present transformations between these bases. Additionally,
a computational numerical application that illustrate theusefulness of the transformations between two-variable polynomial bases is
presented.
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1 Introduction

Interpolation is the problem of approximating a function
f with another functionp more usable, when its values at
distinct points are known. When the functionp is a
polynomial we call the methodpolynomial interpolation.
In case where the interpolating polynomialp(x) belongs
to the vector spacePn of single variable polynomials with
degree less thann, p(x) has various representations that
depends on the basis ofPn that we select i.e. monomial,
Newton and Lagrange basis e.t.c.. We can use coordinates
relative to a basis to reveal the relationships between
various forms of the interpolating polynomial. [1] shows
how to change the form of the interpolating polynomial
by transforming coordinates via a change of basis matrix.
Moreover, [2] shows the transformations between the
basis functions which map a specific representation to
another. Additional work on this topic, from the
numerical point of view, someone can find in [3], [4], [5].
In Sections2 and3, we are trying to extend the results of
[1] and [2] to the case of two-variable interpolating
polynomials with specific upper bounds in each variable.
In Section 4, we make use of the transformations
described in previous sections for the computation of the
determinant of two-variable polynomial matrix. The
proposed algorithm of the computation is based on the

evaluation-interpolation technique. A numerical approach
for the computation of these transforming matrices is also
given.

2 Representations of the interpolating
two-variable polynomial

Although the one-variable interpolation always has a
solution for given distinct points, the multivariate
interpolation problem through arbitrary given points may
or may not have a solution when the number of unknown
polynomial coefficients agree with the number of points.
An interpolation problem is defined to bepoisedif it has a
unique solution. Unlike the one-variable interpolation
problem, the Hermite, Lagrange and Newton-form
multivariate interpolation problem is not always poised.
Let the set of interpolation points

S(n,m)
∆ =

{

(xi ,y j) | i = 0,1, ...,n, j = 0,1, ...,m
}

wherexi 6= x j and yi 6= y j with function values on that
points given byfi, j := f (xi ,y j). Consider also the matrix
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F ∈ R
(n+1)×(m+1) that is constructed from such values i.e.

F =









f0,0 f0,1 · · · f0,m
f1,0 f1,1 · · · f1,m
...

...
. . .

...
fn,0 fn,1 · · · fn,m









(1)

It is well known [6], that for the specific selection of

points S(n,m)
∆ there exists a unique two-variable

polynomial pn,m(x,y) on Pn,m which interpolates these
values i.e. pn,m(xi ,y j) ≡ f (xi ,y j) =: fi, j and thus the
interpolation problem is poised. This polynomial can be
represented as a matrix product i.e.

pn,m(x,y) = XT ·A ·Y (2)

whereX ∈R[x](n+1)×1 (resp.Y ∈R[y](m+1)×1) are vectors
that depends on the basis that we use (monomial,
Lagrange, Newton) in terms ofx (resp. in terms ofy) and
A ∈ R

(n+1)×(m+1) is a two-dimensional matrix with
elements the coefficients or otherwise the coordinates of
the terms in the respective two-variable basis. (2) can be
written as a Kronecker product i.e.

pn,m(x,y) =
(

YT ⊗XT) ·vec(A) = (Y⊗X)T ·vec(A) =

= vec(A)T · (Y⊗X) = vec(A)T ·g(x,y) (3)

where (⊗) is the Kronecker product andvec(A) is the
vectorization of a matrix, namely, is a linear
transformation which converts the matrix into a column
vector.

2.1 Monomial basis

The interpolating polynomialpn,m(x,y) in terms of the
monomial basis is written as

pn,m(x,y) =
n

∑
i=0

m

∑
j=0

ai, jx
iy j = X

T ·A ·Y (4)

where X =
[

1 x · · · xn
]T , Y =

[

1 y · · · ym
]T and

A ∈ R
(n+1)×(m+1). By taking the relation

pn,m(xi ,y j) ≡ f (xi ,y j) at all the interpolation points we
can easily get the following relation

F =Vx ·A ·VT
y (5)

where

Vx =













1 x0 · · · xn
0

1 x1 · · · xn
1

...
...

. . .
...

1 xn−1 · · · xn
n−1

1 xn · · · xn
n













; Vy =













1 y0 · · · ym
0

1 y1 · · · ym
1

...
...

. . .
...

1 ym−1 · · · ym
m−1

1 ym · · · ym
m













with Vx (resp.Vy) the Vandermonde matrix with respect to
x (resp. toy). It is easily seen that the matrixA is unique

and it is easily computed in case where the Vandermonde
matrices are nonsingular or otherwise the interpolation
points xi (resp. y j ) are different each other and the
solution is given by

A=V−1
x ·F ·V−T

y

However, the computation of the inverse of a
Vandermonde matrix is ill conditioned and standard
numerically stable methods in general fail to accurately
compute the entries of the inverse [7], [8], [9]. For this
reason we may split (5) into the following system of
Vandermonde equations i.e.

Vx ·A1 = P ; A ·VT
y = A1

with unknownsA1, A and solve it by usingLU or QR
decomposition. According to (3), the polynomial
pn,m(x,y) is written as

pn,m(x,y) = X
T ·A ·Y

= vec(A)T · (Y⊗X)

= vec(A)T ·m(x,y)

where

m(x,y) = (Y⊗X) =



























































1
x
x2

...
xn

y
xy
x2y
...

xny
...

ym

xym

...
xnym



























































is the two-variable monomial basis and

vec(A) =



















































a0,0
a1,0

...
an,0
a0,1
a1,1

...
an,1

...
a0,m
a1,m

...
an,m


















































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Additionally, (5) can be rewritten as

vec(F) = (Vy⊗Vx) ·vec(A) (6)

Note thatvec(A) are the coordinates ofpn,m(x,y) in terms
of the monomial basis, whereas as we shall see below
vec(F) are the coordinates ofpn,m(x,y) in terms of the
Lagrange basis.

2.2 Lagrange basis

Similar results with the monomial basis are also applied
to the Lagrange basis. The interpolating polynomial
pn,m(x,y) in terms of the Lagrange basis is written as

pn,m(x,y) =
n

∑
i=0

m

∑
j=0

fi, j Li,n(x)Lm, j (y) = X
T
L ·F ·YL (7)

where
X

T
L =

[

L0,n(x) L1,n(x) · · · Ln,n(x)
]

YL =
[

Lm,0(y) Lm,1(y) · · · Lm,m(y)
]T

with

Li,n(x) =
n

∏
k=0
k6=i

(x− xk)

(xi − xk)
for i = 0,1, ..,n

Lm, j(y) =
m

∏
k=0
k6= j

(y− yk)

(y j − yk)
for j = 0,1, ...,m

and F defined in (1). For the Lagrange basis in
two-variable polynomials see [6], [10], [11] and the
references therein. According to (3), pn,m(x,y) can be
written as

pn,m(x,y) = X
T
L ·F ·YL

= vec(F)T · (YL ⊗XL)

= vec(F)T · ℓ(x,y)

in terms of the Lagrange basis

ℓ(x,y) = YL ⊗XL =



























L0,n(x) ·Lm,0(y)
L1,n(x) ·Lm,0(y)

...
Ln,n(x) ·Lm,0(y)
L0,n(x) ·Lm,1(y)
L1,n(x) ·Lm,1(y)

...
Ln,n(x) ·Lm,m(y)



























2.3 Newton basis

Another representation ofpn,m(x,y) in terms of the
Newton basis [6], [12] is the following

pn,m(x,y) = ∑n
i=0 ∑m

j=0di, j ∏i
k=1(x− xk−1)∏ j

ℓ=1(y− yℓ−1) = X
T
N ·D ·YN

(8)
where

0

∏
k=1

(x− xk−1), 1 and
0

∏
ℓ=1

(y− yℓ−1), 1

XN =













1
x− x0

(x− x0)(x− x1)
...

(x− x0) (x− x1) · · · (x− xn−1)













YN =













1
y− y0

(y− y0)(y− y1)
...

(y− y0)(y− y1) · · · (y− ym−1)













andD is the coefficient matrix of Newton basis given by

D =













d0,0 d0,1 · · · d0,m−1 d0,m
d1,0 d1,1 · · · d1,m−1 d1,m

...
...

. . .
...

...
dn−1,0 dn−1,1 · · · dn−1,m−1 dn−1,m
dn,0 dn,1 · · · dn,m−1 dn,m













By taking the relationpn,m(xi ,y j) ≡ f (xi ,y j) at all the
interpolation points we get

F = NT
x ·D ·Ny (9)

where

Nz=



















1 1 1 · · · 1
0 z1− z0 z2− z0 · · · zn− z0
0 0 (z2− z0) (z2− z1) · · · (zn− z0)(zn− z1)
...

...
...

. . .
...

0 0 0 · · ·
n−1
∏
j=0

(zn− zj)



















andz∈ {x,y}. The matrixD is unique since the matrices
Nx andNy are nonsingular (xi 6= x j andyi 6= y j ) and can be
easily computed by

D = N−T
x ·F ·N−1

y

or similar to the monomial case by solving the system of
equationsNT

x ·D1 = P andD ·Ny = D1 with unknownsD1

c© 2016 NSP
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and D respectively. An alternative way to compute the
coefficients ofD is by means of the divided differences

d(k)i, j :=











































































d(k−1)
i, j −d(k−1)

i−1, j

xi −xi−k
i f ( j < k∧ i ≥ k)

d(k−1)
i, j −d(k−1)

i, j−1

y j −y j−k
i f (i < k∧ j ≥ k)

d(k−1)
i, j +d(k−1)

i−1, j−1−d(k−1)
i−1, j −d(k−1)

i, j−1

(xi −xi−k)
(

y j −y j−k
) i f (i ≥ k∧ j ≥ k)

d(k−1)
i, j i f (i < k∧ j < k)

which are defined in [12]. The polynomialpn,m(x,y) is
written as

pn,m(x,y) = X
T
N ·D ·YN

= vec(D)T · (YN ⊗XN)

= vec(D)T ·n(x,y)

in terms of the Newton basis

n(x,y) = YN ⊗XN =





































1
x− x0

...
n−1
∏
i=0

(x− xi)

(y− y0)
(y− y0)(x− x0)

...
n−1
∏
i=0

(x− xi)
m−1
∏
j=0

(y− yi)





































By using (9), we conclude that the coordinatesvec(D) of
pn,m(x,y) in terms of the Newton basis are connected with
the respective coordinatesvec(F) in terms of the Lagrange
basis by

vec(F) = (Ny⊗Nx)
T ·vec(D) (10)

3 Change of basis in polynomial interpolation

As we show in the previous section, the interpolating
polynomial pn,m(x,y) can be represented in one of the
following ways

pn,m(x,y) = X
T ·A ·Y= X

T
L ·F ·YL = X

T
N ·D ·YN (11)

or equivalently

pn,m(x,y) = vec(A)T ·m(x,y)

= vec(F)T · ℓ(x,y)

= vec(D)T ·n(x,y) (12)

From (12) we have

vec(A)T ·m(x,y)=vec(F)T · ℓ(x,y)
(6)
=⇒ (13)

=⇒ vec(A)T ·m(x,y)=((Vy⊗Vx) ·vec(A))T · ℓ(x,y)

=⇒ vec(A)T ·m(x,y)=vec(A)T · (Vy⊗Vx)
T · ℓ(x,y)

=⇒ m(x,y) = (Vy⊗Vx)
T · ℓ(x,y)

=⇒ m(x,y) =
(

VT
y ⊗VT

x

)

· ℓ(x,y) =VT
xy · ℓ(x,y)

where VT
xy is the transforming matrix between the

coordinates ofpn,m(x,y) in monomial and Lagrange base.
Similarly, from (12) we have

vec(F)T · ℓ(x,y) = vec(D)T ·n(x,y)
(10)
=⇒ (14)

=⇒
(

(Ny⊗Nx)
T ·vec(D)

)T
· ℓ(x,y) = vec(D)T ·n(x,y)

=⇒ n(x,y) = (Ny⊗Nx) · ℓ(x,y) = Nxy · ℓ(x,y)

where Nxy is the transforming matrix between the
coordinates ofpn,m(x,y) in Newton and Lagrange base.

Since, thei-th element of the monomial basem(x,y)
has the same degree with the respective element in the
Newton basen(x,y) there exist a lower triangular matrix
L such that

L ·n(x,y) = m(x,y)

From (13) and (14) we get

m(x,y) =VT
xy · ℓ(x,y)

n(x,y) = Nxy · ℓ(x,y)

}

=⇒

m(x,y) =VT
xy ·N

−1
xy ·n(x,y)≡ L ·n(x,y)

and thereforeL =VT
xy ·N

−1
xy or equivalently

VT
xy = L ·Nxy (15)

Since,Nxy is upper triangular andL is lower triangular,
(15) is aLU-decomposition ofVT

xy. Note also that

L =VT
xy ·N

−1
xy = (Vy⊗Vx)

T · (Ny⊗Nx)
−1 = (16)

=
(

VT
y ⊗VT

x

)

·
(

N−1
y ⊗N−1

x

)

=
(

VT
y ·N−1

y

)

⊗
(

VT
x ·N−1

x

)

According to [2]

Ly =VT
y N−1

y andLx =VT
x N−1

x (17)

where

Lz :=













1
H1(z0) 1
H2(z0) H1(z0,z1) 1

...
...

.. .
. . .

Hn(z0) Hn−1(z0,z1) · · · H1(x0, . . . ,zn−1) 1













with Hp(z0, . . . ,zk) be the sum of all homogeneous
products of degreep of the variablesz0, . . . ,zk and
z∈ {x,y}. From (16) and (17) we conclude that

L = Ly⊗Lx

c© 2016 NSP
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Since the diagonal elements ofL are equal to 1, (15) is
the standardLU-decomposition ofVT

xy. The above results
gives rise to the following Theorem.

Theorem 1.Let VT
xy = Lxy · Nxy be the standard

LU-decomposition of the transposed Kronecker product
of the matrices Vy,Vx i.e. Vxy = Vy ⊗ Vx. Then,
Lxy = Ly ⊗ Lx maps the Newton polynomials to the
monomials and Nxy = Ny ⊗ Nx maps the Lagrange
polynomials to the Newton polynomials.

Theorem1, extends the results presented in [2] for the
one variable case. All the transformations described above
are summarized in Table1.

Table 1: Transformation matrices

Map Basis transform Coefficients transform

Lagrange to Monomial m(x,y) =VT
xy · ℓ(x,y) Vx ·A·VT

y = F
Lagrange to Newton n(x,y) = Nxy · ℓ(x,y) NT

x ·D ·Ny = F
Newton to Monomial m(x,y) = Lxy ·n(x,y) LT

x ·A·Ly = D

4 On the computation of determinant of a
polynomial matrix

The computation of the determinant and the inverse of a
two-variable polynomial matrix are some problems in
linear algebra which are solved with symbolic operations.
However, their main disadvantage, is their complexity. In
order to overcome these difficulties we may use other
techniques such as interpolation methods. Some
remarkable examples, but not the only ones of the use of
interpolation techniques in linear algebra problems, are
the computation of the inverse by [13] and [14], the
calculation of the determinant by [15] and [12].
In this section we present the computation of the
determinant of a two variable polynomial matrix which
by using the Lagrange interpolation instead to Newton
interpolation which is presented in [12]. For the
computation of the determinant we use the
evaluation–interpolation technique. According this
technique, first, we compute the determinants of the
polynomial matrix for specific values and afterwards we
interpolate these values to find the determinant which is a
two-variable polynomial. The interpolation step can be
done with the bivariate Lagrange interpolation method.
An application of the proposed transformations is to
replace the Lagrange interpolation method with the
corresponding transformation. The transformation helps
us to avoid the computational cost and the symbolic
operations of the Lagrange method with numerical linear
algebra operations.

The computation of the determinant is described in the
following algorithm.

Algorithm 1Let the two-variable polynomial matrix
B(x,y) ∈R

ℓ×ℓ where B= [bi, j(x,y)].
Step 1: Calculate the upper bound of the degree of the
determinant in term of each variable with the following
formulas

n= min

{

ℓ

∑
i=1

(

max
1≤ j≤ℓ

{

degx[bi, j(x,y)]
}

)

,

ℓ

∑
j=1

(

max
1≤i≤ℓ

{

degx[bi, j(x,y)]
}

)

}

and

m= min

{

ℓ

∑
i=1

(

max
1≤ j≤ℓ

{

degy[bi, j(x,y)]
}

)

,

ℓ

∑
j=1

(

max
1≤i≤ℓ

{

degy[bi, j(x,y)]
}

)

}

Step 2: Evaluate the determinants at the specific set of
points

S̃(n,m)
∆ =

{

(xi ,y j) | i = 0,1, ...,n , j = 0,1, ...,m
}

which are on a rectangular basis.
In this step we create the matrix F which is contains the
Lagrange coefficients.

Step 3: Interpolate the values at the set̃S(n,m)
∆ . The

interpolating polynomial is the determinant of B(x,y).
In this step we transform the matrix F to the matrix A
where matrix A is the monomial coefficient matrix. Must
be calculate the matrices Vx and Vy.

For the calculation of the matricesVx andVy we select the
same sequential of values for thexi andy j , i.e.xi = i where
i = 1,2, . . . ,n andy j = j where j = 1,2, . . . ,m. With this
approach we need less operations because the matricesVx
andVy have same elements.
The computation of matrixA is given by

A=V−1
x ·F ·V−T

y (18)

Thus, we do not interpolate with the Lagrange method but
we make matrix manipulations for the computation of the
determinant ofB(x,y).

Example 1.Let the polynomial matrix

B(x,y) =





−1 0 x
5 1 −1
2 3xy 2





Step 1: We compute the upper boundn (resp.m) on the
degree ofx (resp.y) in p(x,y) = detB(x,y).

n= min

{

3

∑
i=1

(

max
1≤ j≤3

{

degx[bi, j(x,y)]
}

)

,

3

∑
j=1

(

max
1≤i≤3

{

degx[bi, j(x,y)]
}

)

}
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n= min{1+0+1,0+1+1}= 2

and

m= min

{

m

∑
i=1

(

max
1≤ j≤m

{

degy[bi, j(x,y)]
}

)

,

m

∑
j=1

(

max
1≤i≤m

{

degy[bi, j(x,y)]
}

)

}

m= min{0+0+1,0+1+0}= 1

Step 2: We evaluate the determinants at the set

S̃(2,1)∆ =
{

(xi = i,y j = j) | i = 0,1,2, j = 0,1
}

and we create the matrixF which is given by

F =





det(B(x0,y0)) =−2 det(B(x0,y1)) =−2
det(B(x1,y0)) =−4 det(B(x1,y1)) = 8
det(B(x2,y0)) =−6 det(B(x2,y1)) = 48





Step 3:Sincen> m, we compute the matrixVx where

Vx =





1 x0 x2
0

1 x1 x2
1

1 x2 x2
2



=





1 0 0
1 1 1
1 2 4





and the matrixVy is a sub-matrix of the matrixVx, that is,

Vy =

[

1 0
1 1

]

Then, the matrixA is given by

A=V−1
x ·F ·V−T

y =





−2 0
−2 −3
0 15





Thus, the interpolating polynomial is

p(x,y) =−2−2x−3xy+15x2y

which is the determinant of the polynomial matrixB(x,y).

The matricesV−1
x and V−T

y defined in (18) can be
calculate with an alternative way. As in the papers [16,3],
we will use the wrapped convolution

a⋆b=
(

c0 c1 . . . cn+m−1
)

where

a=
(

a0 a1 . . . an−1
)

, b=
(

b0 b1 . . . bm−1
)

with coordinates equal to

ci =
i

∑
k=0

akbi−k i = 0,1, . . . ,n+m−1

whereak = 0 if k< 0 ork≥ n andbk = 0 if k< 0 ork≥m.
Let the matrices

Xk =
[

−xk 1
]

where k= 0,1, . . .n

and
Yk =

[

−yk 1
]

where k= 0,1, . . .m

which are the corresponding coefficient matrices of the
terms(x− xk) and(y− yk) respectively.
We define the coefficient transformations matrices

TLx =





































X1⋆X2⋆X3 · · ·Xn−1⋆Xn

Π x
0

X0⋆X2⋆X3 · · ·Xn−1⋆Xn

Π x
1

X0⋆X1⋆X3 · · ·Xn−1⋆Xn

Π x
2
...

X0⋆X1⋆X2 · · ·Xn−2⋆Xn

Π x
n−1

X0⋆X1⋆X2 · · ·Xn−2⋆Xn−1

Π x
n





































where

Π x
i =

n

∏
k=0
k6=i

(xi − xk)

and

TLy =





































Y1⋆Y2⋆Y3 · · ·Yn−1⋆Yn

Π y
0

Y0⋆Y2⋆Y3 · · ·Yn−1⋆Yn

Π y
1

Y0⋆Y1⋆Y3 · · ·Yn−1⋆Yn

Π y
2
...

Y0⋆Y1⋆Y2 · · ·Yn−2⋆Yn

Π y
n−1

Y0⋆Y1⋆Y2 · · ·Yn−2⋆Yn−1

Π y
n





































where

Π y
j =

n

∏
k=0
k6= j

(y j − yk)

In case wherexk = x0+k ·hx andyk = y0+k ·hy with x0 =
y0 = 0 andhx = hy = 1 we havexk = yk = k. Thus, the
above products are given by

Π x
i =

n

∏
k=0
k6=i

(i − k) and Π y
j =

n

∏
k=0
k6= j

( j − k)

or equivalently

Πx
i = (−1)n−i · (n− i)! · i! and Πy

j = (−1)n− j · (n− j)! · j !
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For the matricesXL, TLx andX holds that

XL = TLx ·X

Similarly, for the respectively matricesYL, TLy andY holds
that

YL = TLy ·Y

Thus, the polynomial can be written

p(x,y) = X
T
L ·F ·YL = X

T ·TT
Lx
·F ·TLy ·Y

and we have that

A= TT
Lx
·F ·TLy

Therefore, we show that

TT
Lx
≡V−1

x and TLy ≡V−T
y

Example 2.According to Example1 we have the set

S̃(2,1)∆ =
{

(xi = i,y j = j) | i = 0,1,2, j = 0,1
}

and the matrixF which is given by

F =





−2 −2
−4 8
−6 48





We compute the elements of the matricesTLx andTLy

X1⋆X2 = [2,−3,1]
X0⋆X2 = [0,−2,1]
X0⋆X1 = [0,−1,1]

Π x
0 = (−1)n−i · (n− i)! · i! = (−1)2−0 · (2−0)! ·0!= 2
Π x

1 = (−1)n−i · (n− i)! · i! = (−1)1 ·1! ·1!=−1
Π x

2 = (−1)n−i · (n− i)! · i! = (−1)0 ·0! ·2!= 2

and

Y1 = [−1,1]
Y0 = [0,1]

Π y
0 = (−1)n− j · (n− j)! · j! = (−1)1−0 · (1−0)! ·0!=−1

Π y
1 = (−1)n− j · (n− j)! · j! = (−1)0 ·0! ·1!= 1

Thus, we have

TLx =















X1⋆X2

Π x
0

X0⋆X2

Π x
1

X0⋆X1

Π x
2















=





1 − 3
2

1
2

0 2 −1
0 − 1

2
1
2





and

TLy =









Y1

Π y
0

Y0

Π y
1









=

[

1 −1
0 1

]

Then, the matrixA is given by

A= TT
Lx
·F ·TLy =





−2 0
−2 −3
0 15





Thus, the interpolating polynomial is

p(x,y) =−2−2x−3xy+15x2y

which is the determinant of the polynomial matrixB(x,y).

5 Conclusions

The first result that comes directly from this short note is
that in case where we select interpolation points that

belongs toS(n,m)
∆ the interpolating polynomial problem is

poised, since in that case the transforming matrices that
we use become nonsingular and a unique solution of the
coordinate vectors exists. The second result, is that any
interpolating polynomial is easily expressed in the
Lagrange basis, since in that case the only we need are the
values of the function that we want to interpolate. Then,
by using the transformations that we have presented in
this work we can always express the interpolating
polynomial in other bases like the monomial and the
Newton base. Additionally, transformations between the
monomial, Lagrange and Newton bases have been
provided and the results in [1] and [2] have been extended
to the bivariate polynomials. Finally, an illustrative
example has been presented which uses the
transformations from the Lagrange to the monomial basis.
A numerical algorithm for the computation of the
transforming matrices used in this application, is also
given.
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