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Abstract: Itis well known, that any interpolating polynomipix,y) on the vector spadeé, m of two-variable polynomials with degree
less tham in terms ofx and less tham in terms ofy, has various representations that depends on the baBjs.othat we select
i.e. monomial, Newton and Lagrange basis e.t.c.. The ainhiefghort note is twofold : a) to present transformationsveen the
coordinates of the polynomigl(x,y) in the aforementioned basis and b) to present transformabetween these bases. Additionally,
a computational numerical application that illustrate tisefulness of the transformations between two-variablgnpmial bases is
presented.
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1 Introduction evaluation-interpolation technique. A numerical apptoac
for the computation of these transforming matrices is also

Interpolation is the problem of approximating a function given.

f with another functiorp more usable, when its values at

distinct points are known. When the functign is a

polynomial we call the methopolynomial interpolation

In case where the interpolating polynomialx) belongs 2 Representations of the interpolating

to the vector spack, of single variable polynomials with  t\vo-variable polynomial

degree less than, p(x) has various representations that

depends on the basis Bf that we select i.e. monomial,

Newton and Lagrange basis e.t.c.. We can use coordinategthough the one-variable interpolation always has a

relative to a basis to reveal the relationships betweenso|ution for given distinct points, the multivariate

various forms of the interpolating polynomial][shows ~ interpolation problem through arbitrary given points may

how to change the form of the interpolating polynomial or may not have a solution when the number of unknown

by transforming Coordinates Via a Chaﬂge Of baSiS matrix.po|ynomia| Coefﬁcients agree Wlth the number of pointS.

Moreover, P] shows the transformations between the apinterpolation problem is defined to peisedif it has a

basis functions which map a specific representation tqnjque solution. Unlike the one-variable interpolation

numerical point of view, someone can find B},[[4], [S].  multivariate interpolation problem is not always poised.
In Sections? and3, we are trying to extend the results of | gt the set of interpolation points

[1] and [2] to the case of two-variable interpolating

polynomials with specific upper bounds in each variable. ‘ ) .

In Section 4, we make use of the transformations S¢™ = {(x.y)) [i=0.1,...n.j=0,1,...m}
described in previous sections for the computation of the

determinant of two-variable polynomial matrix. The wherex # xj andy; # y; with function values on that
proposed algorithm of the computation is based on thepoints given byf; ; := f(x;,yj). Consider also the matrix
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F e RMDx(MH1) that is constructed from such values i.e.

foo for -+ fom
fio fi1 - fim

@)
fn,O fn,l fn,m

It is well known [6], that for the specific selection of
points S<A”’m> there exists a unique two-variable
polynomial pnm(X,y) on Pym which interpolates these
values i.e.pnm(Xi,yj) = f(x,y;) =: fij and thus the

and it is easily computed in case where the Vandermonde
matrices are nonsingular or otherwise the interpolation
points x; (resp.yj) are different each other and the
solution is given by

A=V, 1 F VT

However, the computation of the inverse of a
Vandermonde matrix is ill conditioned and standard
numerically stable methods in general fail to accurately
compute the entries of the inversd,[[8], [9]. For this
reason we may splity) into the following system of

interpolation problem is poised. This polynomial can be Vandermonde equationsii.e.

represented as a matrix product i.e.
Pam(X,y) = XT-AY (2

whereX € R[X™Y*1 (resp.Y € R]y]™1*1) are vectors

that depends on the basis that we use (monomial,pmm

Lagrange, Newton) in terms af(resp. in terms o¥) and
A € RMDx(MD) is 3 two-dimensional matrix with

elements the coefficients or otherwise the coordinates of

the terms in the respective two-variable bas®.qan be
written as a Kronecker producti.e.

Pam(xy) = (YT @XT)-vedA) = (Y@ X)" -veqA) =
=veqA)"-(YaX)=vedA)T -gxy) ()

where (®) is the Kronecker product andeqA) is the

vectorization of a matrix, namely, is a linear

transformation which converts the matrix into a column
vector.

2.1 Monomial basis

The interpolating polynomiapnm(X,y) in terms of the
monomial basis is written as

n

m . .
Prm(X,y) = 20 a Xy =XT-A-Y 4)
==

where X = [1x--x"]" , ¥ = [1y---y"" and

A e RMx(mY By taking the  relation
Pnm(Xi,Yj) = f(Xi,y;) at all the interpolation points we
can easily get the following relation

F=Ve- AV (5)
where
1 % X3 1 vo Yo'
1 x1 X1 1y v
Va= |t ¢ .o W=
11 Xp g 1yYm-1-"" Ym1
1 X X 1 Ym -+ Ym

with Vx (resp.Vy) the Vandermonde matrix with respect to
X (resp. toy). It is easily seen that the matriis unique

Vi Ar=P ; AV =A

with unknownsA;, A and solve it by usindU or QR
decomposition. According to 3, the polynomial
(X,y) is written as

Pnm(X,y) = XT-AY
=vedA)" - (Y ®X)
= vedA)"-m(x,y)
where

m(x,y) = (Y®X) =

xy"

RO
is the two-variable monomial basis and

200]
aLo

ano
o1
all
vedA) = | :
an1

aom
a-l,m

anm|
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Additionally, (5) can be rewritten as

vedF) = (Vy Vi) - vedA) (6)

Note thatveqA) are the coordinates g, m(X,y) in terms

of the monomial basis, whereas as we shall see beIonJ

vedF) are the coordinates gbnm(X,y) in terms of the
Lagrange basis.

2.2 Lagrange basis

Similar results with the monomial basis are also applied
to the Lagrange basis. The interpolating polynomial
pn.m(X,Y) in terms of the Lagrange basis is written as

Pom(X.y) = ijofljl—ln Lmj(y) = XE-F-YL @)

where
X{ = [Lon(®) L1n(X) -+ Lan(X) ]
Y. = [Lm,O(Y) Lm,l(Y) Lm,m(y)]T
with
ox=x) o
Lin(X) = fori=0,1,..,
n(X) kll(;é!i)(xi_xk) ori n
for i=0,1,.

m
J

and F defined in (). For the Lagrange basis in
two-variable polynomials see6], [10], [11] and the
references therein. According t@)( pnm(X,y) can be

written as

Pam(X,Y) = X[ -F-Y_
=vedF)" - (YL ®X.)
= vedF)" - £(xy)

in terms of the Lagrange basis

Lon(X) -
Ll’n(X)

Lm,O(Y) i
“Lmo(y)

Lnn(X) '. Lmo(Y)
Lon(X) - Lma(y)
Lin(X) - Lma(y)

Lxy) =YL @X =

Lan() Lmun(Y)

2.3 Newton basis

Another representation ofpnm(X,y) in terms of the

Newton basis§], [12] is the following

X[ -D-Yy

=303 o j M (X— % DMy (y—Ye1) =
(8)

where

0
|'|x X1)=1 and J‘|y yr1) =1

. ]
X—Xo
Xy = (X—%o0) (X— )
(X=X0) (X— )+ (X—Xo_1)]
. ]
Y—Yo
Yy = (Y—Yo) (Y—y1)
(Y= Yo) (y—y1) -+ (Y= Y1)

andD is the coefficient matrix of Newton basis given by

doo do1 -+ dom-1 dom
dio dig -+ dym1 Oim
D= : : : : :
Oh-100dn-11 - Ar1m-1 Oh1m
dn,O dn,l T dn,mfl dn,m

By taking the relationpnm(xi,yj) = f(x,y;) at all the
interpolation points we get

F=N{-D-Ny (9)
where
1 1 1 1 1
0z—2 L -7 h—2n
0 0 (z—2)(—2)  (Zn—2)(zn—127)
NZ: . . . . .
n-1
0 0 0 (=~ 2)
L 1= i

andz € {x,y}. The matrixD is unique since the matrices
Nx andNy are nonsingulang # x;j andy; # y;) and can be
easily computed by

D:N;T.F.Nyfl

or similar to the monomial case by solving the system of
equations\] - D; = P andD - N, = D; with unknownsD;
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and D respectively. An alternative way to compute the
coefficients oD is by means of the divided differences

k—1 k-1
di(,j )_ditl,j) o .
_ - if (j<kAi>Kk)
X —Xi—k
gk _ g
B if (i<kAj>kK)
a® . Yi—Yj-«k
i
B I A (S R )
1] i—1,j—1 i—1,] i,j—1 if (iZk/\j Zk)
(X —%i—k) (Yj — Yj—k)
g if (i<knj<Kk)

which are defined in12]. The polynomialpnm(x,y) is
written as

Pum(xy) = X{-D- Y
=vedD)" - (Yn®XN)
= veqD)"-n(x,y)

in terms of the Newton basis

T (x=x%)
oY) =¥ | Ty
(Y —Yo) (X—Xo)

n—1 m-1

M (x=x) 1 (y=v)
i=0 j=0

By using @), we conclude that the coordinatesqD) of

Pn.m(X,Y) in terms of the Newton basis are connected with
the respective coordinatesdF ) in terms of the Lagrange

basis by
vedF) = (Ny@Ny) T -vedD) (10)

3 Change of basisin polynomial inter polation

As we show in the previous section, the interpolating
polynomial pnm(X,y) can be represented in one of the

following ways
Pam(xy) =XT-A-Y=X] -F-Y =X-D-Yn (11)
or equivalently

Pnm(Xy) = vedA)T -m(x,y)
= veqF)" - ((x,y)
= veqD)" -n(x,y) (12)

From (12) we have

vedA)T - mx y)=vedF)T-f(xy) &  (13)
—> vedA)T-m(x,y)=((Vy @ V) - vedA))" - £(x,y)
— vedA)T-m(x,y)=vedA)" - (V,@Vk)" - £(xY)
— m(xy) = (@WK -£(xy)
= m(xy) = (V] @V ) -L(xy) = Vi, £(X,Y)
where VXK, is the transforming matrix between the

coordinates opn m(X,y) in monomial and Lagrange base.
Similarly, from (12) we have

vedF)T-£(x,y) = vedD)T -n(x,y) &2 (14)

— ((Ny® Nx)T -vec(D))T L(Xy) = vec(D)T ‘n(x,y)
= n(X,y) = (Ny@Ny) - £(X,y) = Nuy - £(X,y)

where Ny is the transforming matrix between the

coordinates opnm(X,y) in Newton and Lagrange base.
Since, thei-th element of the monomial base(x,y)

has the same degree with the respective element in the

Newton basen(x,y) there exist a lower triangular matrix

L such that

L- n(X7 y) = m(X, y)
From @3) and (L4) we get
m(x,y) = Vig, - £(X,Y)
n(xy) =Ng £(xy) |~
m(x.y) =V, - Nyt - n(x.y) = L-n(x,y)

and thereforé. = V- N,.! or equivalently

Vi =L Nyy (15)

Since, Nyy is upper triangular andl is lower triangular,
(15) is aLU-decomposition of/g,. Note also that

L=V Ngt= (o) (NeN) = (16)
= (W) (NN = (W N e (5 N
According to P]

Ly=Vy N, tandLy =V, N, * 17)
where
1
H1(20) 1
Ly = Ha(zo

(20) Hi(zo,z1) 1
Hn(ZO) anl(.zmzl) - Hl(XOa--.-aznfl) 1

with Hp(z,...,%) be the sum of all homogeneous
products of degreep of the variablesz,...,z and
ze {x,y}. From (16) and (L7) we conclude that
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Since the diagonal elements bfare equal to 1,15) is Algorithm 1Let the two-variable polynomial matrix
the standardU-decomposition of]. The above results B(x,y) € R**‘ where B= [b; j(x,y)].
gives rise to the following Theorem. Step 1: Calculate the upper bound of the degree of the

determinant in term of each variable with the followin
Theorem 1.Let \/XTy = Ly - Ny be the standard ¢ ias g

LU-decomposition of the transposed Kronecker product

of the matrices YVy ie. My = W ® Vx. Then, ¢

Ly = Ly ® Ly maps the Newton polynomials to the n=min Z(
i=

max {deg 5, (xy)]} ).
monomials and { = Ny ® Ny maps the Lagrange

1<j<t

polynomials to the Newton polynomials. ¢
max {deg[b; i (X
Theoreml, extends the results presented2hfpr the 121 <1<i<£{ obr; ( ,y)]})
one variable case. All the transformations described above
are summarized in Table and
¢
m= min max {deg,[b; i (x
. _ _ {ZI<1<J'<”{ g [bij(x, )]});
Table 1: Transformation matrices =
Map Basis transform Coefficients transform 4 q b
Lagrange to Monomial m(x,y) =Vl -£(xy) Vx-A-VJ =F 'Zl ({2,@;{ eg/[ "J(X’y)]}>
Lagrange to Newton — n(x,y) = Nyy-£(xy) N} -D-Ny=F !
Newton to Monomial ~ m(x,y) = Lxy-n(xy) Ly-A-Ly=D Step 2: Evaluate the determinants at the specific set of
points

S0 = {06.y1) [1=0.1,...0, j=0.1....,m}

) ) which are on a rectangular basis.
4 On the computation of determinant of a In this step we create the matrix F which is contains the

polynomial matrix Lagrange coefficients.

, , _ Step 3: Interpolate the values at the SQ(A""“). The
The computation of th'e determmant and the inverse o'f 3nterpolating polynomial is the determinant opBy).
two-variable polynomial matrix are some problems in | this step we transform the matrix F to the matrix A

linear algebra which are solved with symbolic operations.,yhere matrix A is the monomial coefficient matrix. Must
However, their main disadvantage, is their complexity. In g cgiculate the matricesand \{.

order to overcome these difficulties we may use othe
techniques such as interpolation methods. Som . X i
remarkable examples, but not the only ones of the use of2".¢ sequential of values for tg@andy;, i.e.x = i where
interpolation techniques in linear algebra problems, are — 1,2,....nandy; = | Wherej' =1,2,...,m With th|§
the computation of the inverse by and [14], the approach we need less operations because the mafgices
calculation of the determinant bg%] and [12]. .Ia_?]dvy have same eflemer.]);s'. ven b

In this section we present the computation of the € computation of matrikis given by

determinant of a two variable polynomial matrix which A:VX—1.|: .Vy—T (18)

by using the Lagrange interpolation instead to Newton ) )
interpolation which is presented in1%. For the Thus, we do not interpolate with the Lagrange method but

computation of the determinant we use we make matrix manipulations for the computation of the

evaluation—interpolation technique. According this determinantoB(x.y).
technique, first, we compute the determinants of theExample 1Let the polynomial matrix
polynomial matrix for specific values and afterwards we

g:or the calculation of the matric&g andVy we select the

interpolate these values to find the determinant which is a B B _51 2 Xl
two-variable polynomial. The interpolation step can be (xy) = 5 3xy_2

done with the bivariate Lagrange interpolation method.

An application of the proposed transformations is to Step 1: We compute the upper boumd(resp.m) on the

replace the Lagrange interpolation method with thedegree ok (resp.y)in p(x,y) = detB(x,y).
corresponding transformation. The transformation helps

us to avoid the computational cost and the symbolic (3
operations of the Lagrange method with numerical linear Nn= min Z <1rl1a<x3{deg([bm (X,Y)]}) )
algebra operations. =1 \=s

3
The computation of the determinant is described in the Z (Ei@é{de@k[bm (X, Y)]}> }
following algorithm. j=1 \*=1=

(@© 2016 NSP
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n=min{1+0+104+1+1}=2 whereay =0ifk<0ork>nandb,=0if k<Oork>m.
and Let the matrices

m= min {i (1r<njg>r<n{de9/[bi,j (X,Y)]}> :
i (JPE?% {degb (x,y)]}) }

m=min{0+0+1,0+1+0}=1
Step 2: We evaluate the determinants at the set

and we create the matrk which is given by

82— {(x=iyj=1)]i=012 j=01}

det(B(Xo,Yo)) = —2 detB(xo,y1)) —2]
det(B(x1,Yo)) = —4 de(B(xy,y1)) =8

det(B(Xz,yo)) —6 de(B(xz,yl)) 48

Step 3:Sincen > m, we compute the matridx where

F =

1 X X3 100
Va= |1xg x¢| =111
1x2x§ 124

and the matriy is a sub-matrix of the matriy, that is,

10
¥= 113

Then, the matripA is given by
-2 0
A=V, 1 FV T =1-2-3
0 15
Thus, the interpolating polynomial is
p(X,y) = —2 — 2x — 3xy+ 15¢%

which is the determinant of the polynomial matBxx,y).

The matricesV, * andV, T defined in (8) can be
calculate with an alternative way. As in the papdi§ 8],
we will use the wrapped convolution

axb=(coC1 ... Coym-1)
where
a= (ao a ... an_l), b= (bo by ... bm—l)

with coordinates equal to

i
G = Zakbi_k i=01,...,n+m-1
K=o

Xc=[-%1] where k=0,1,...n
and

Ye=[-Y«1] where k=0,1,...m

which are the corresponding coefficient matrices of the
terms(x— Xx) and(y — yi) respectively.
We define the coefficient transformations matrices

T XexXox Xz - Xn_1%Xn 7
My
Xox XgH X3+« Xn—1%Xn
g
Xox Xy x X3+ Xn—1% Xn
T, = 3

Xo* Xg 5 Xz -+ Xn_2% Xn

X

n_
XO*Xl*XZ"'g(n—Z*Xn—l

L 1 i
where
n
= |'L(>q — %)
k=
ki
and
T YixYox Y3 Yo_1xYq 7
ny
0
Yo*Yz*Yg---Ynfl*Yn
”y
1
Yo*Yl*Yg---Ynfl*Yn
T, = rn
Yox YixYa-- Yo 2% Y
nl
YO*Yl*YZ"'¢n—2*Yn—1
L ry |
where
n
n = rL(YJ — ¥k
k=

K]
In case wherey = Xg + k- hy andyy = yo+ k- hy with xg =

yo = 0 andhy = hy = 1 we havex, = yx = k. Thus, the
above products are given by

n n
m* = i—k) and 1= j—k
i l!:!)( ) J l!:!)( )
ket k]

or equivalently

M= (=™ (n—i)t-it and M= (1" (n—j)j!
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For the matriceX,, T, andX holds that

Xy =T, -X

Similarly, for the respectively matricég , T, andY holds

that
Yo=T, Y

Thus, the polynomial can be written
pxy) =X -F-Y =X"-T F-T,Y
and we have that
A=T! -F-T,
Therefore, we show that
T =V*' and T, =V, "
Example 2According to Exampld we have the set
&Y = {(x=iy;=1)1i=012 j=01}
and the matridr which is given by
—2-2
F=1|-438
—6 48

We compute the elements of the matridgsandT,,

Xl*X2 = [2,—3, 1]
XO*XZ = [07_27 1]
 XoxX1=1[0,-1,1]

Mng= (1" (n—i)-it=(-1)2°(2-0)-01=2
ny=(-y""(n—it-it= (-1t 1-11=-1
Y= (-1 (n-il-il=(-1)°.01.21=2

and

Y =[-1,1]
_ Yo =[0,1]
ny=-y"i-n—j-jr=(-1+°@1-0)-0l=-1
n ==yl (n—jjl=(-1)°.0-11=1
Thus, we have
Xl*XZ
I—IX
Xo*OXZ 1_% %
Tu= | | =102 -1
Xo*lxl 0_% %
3
and
Y1
n 1-1
- %) =[5
my

Then, the matriA is given by

-2 0
A=T  F-T, = —02—12

Thus, the interpolating polynomial is
p(X,y) = —2 — 2x— 3xy+ 15¢%

which is the determinant of the polynomial matBxx,y).

5 Conclusions

The first result that comes directly from this short note is
that in case where we select interpolation points that

belongs tosg"m) the interpolating polynomial problem is
poised, since in that case the transforming matrices that
we use become nonsingular and a unique solution of the
coordinate vectors exists. The second result, is that any
interpolating polynomial is easily expressed in the
Lagrange basis, since in that case the only we need are the
values of the function that we want to interpolate. Then,
by using the transformations that we have presented in
this work we can always express the interpolating
polynomial in other bases like the monomial and the
Newton base. Additionally, transformations between the
monomial, Lagrange and Newton bases have been
provided and the results id]and [2] have been extended

to the bivariate polynomials. Finally, an illustrative
example has been presented which uses the
transformations from the Lagrange to the monomial basis.
A numerical algorithm for the computation of the
transforming matrices used in this application, is also
given.
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