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Abstract: The article aims how to use evolutionary algorithms in sajv@ set-covering problem. We have focused on the bin packing
problem. This problem is known to be NP-hard; hence manyistauprocedures for its solution have been suggested. \gose a
new solution of the problem by a genetic algorithm. The ideldiexperimental study presents the use of a genetic dgotd find an
optimal layout for the placement of regular patterns of figemts and simple shapes to minimize the waste. This studgaites that
genetic algorithms can effectively be used to obtain higffilicient solutions.
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1 Global optimization hill-climbing and derivative-based techniques. Examples
of such problems are multimodal nondifferentiable, and

Global optimizations utilize techniques that can discontinuous problems. Since the emergence of genetic

distinguish between the global optimum and numerousalgorithms in early 1970s, global optimization has been

local optima within a region of interest. Global one of their major targets, and a lot of effort has been

optimization problems usually take from of unconstraineddevoted to developing powerful algorithms for global

optimization; that is, the problem is one of minimizing or optimization problemsZ2].

maximizing a function in the absence of restrictiodk [

In general, an unconstrained optimization problem can be

represented mathematically as follovty, (1]: 2 Evolutionary algorithms - genetic

minf(x), subjectto xe€ Q (1) algorithms

where f is real-valued function and , the feasible set, is a

subset ofE". When attention is restricted to the case Evolutionary algorithms (EAs) have many interesting
where Q = E", it corresponds to the completely properties and have been widely used in various
unconstrained case. In many applications we just need toptimization problems from combinatorial problems such
consider the case where is particular subseEdf A as job shop scheduling to real valued parameter
point x* € Q is said to be a local minimum of f over if optimization fl], [21]. In computer science, evolutionary
there is ane > 0 such thatf(x) < f(x«) for all x € Q computation is a subfield of artificial intelligence (more
within a distances of x*. A pointx* € Q is said to be a particularly computational intelligence) that involves
global minimum of f over Q if f(x) > f(x*) for all combinatorial optimization problems. Evolutionary
x € Q. Even though most practical optimization problems computation uses iterative progress, such as growth or
have side restrictions that must be satisfied, the study oflevelopment in a population. This population is then
techniques for unconstrained optimization provides aselected in a guided random search using parallel
basis for further study. Conventional global optimization processing to achieve the desired end. Such processes are
methods can roughly be categorized into two classes: apften inspired by biological mechanisms of evolution. As
deterministic methods and b) stochastic methods. Genetievolution can produce highly optimised processes and
algorithms have been fairly successful at solving networks, it has many applications in computer science
problems of the type that are too all-behaved,[4]. Problem solution using evolutionary algorithms is
nondifferentiable, and discontinuous for conventionalshown in Figurel.
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—» SOLUTION Combinatorical optimization study problems, which are
characterized by a finite nhumber of feasible solutions,
abound in everyday life, particularly in engineering
design. An important and widespread area of applications
concerns the efficient use of scarce resources to increase
productivity. Typical engineering design problem relate t
set covering, bin packing, knapsack packing, quadratic
assignment, minimum spanning tree determination,
machine scheduling, sequencing and balancing, cellular
manufacturing design, vehicle routing, network design,
facility location and layout, traveling salesman
assignment, and so on. Although, in principle, the optimal
solution to such problems can be found by simple
enumeration, in practice it is frequently impossible,
especially for practical problems of realistic size, where
the number of feasible solutions can be extremely high.
One of the most challenging problems in combinatorial
A genetic algorithm is a type of a searching Optimization is to deal effectively with the combinatorial

algorithm. It searches a solution space for an optimalexplosion. A major trend in solving such difficult

solution to a problem. The key characteristic of the Problemsis to the use of genetic algorithms.

genetic algorithm is how the searching is done. The

algorithm creates a population of possible solutions to the

problem and lets them evolve over multiple generations to4 Set-Covering problem

find better and better solutions. The generic form of the

genetic algorithm is shown in Figu& The items in bold The set-covering problem is a typical problem in

in the algorithm are defined herg|[[17]. combinatorial optimization. The problem is to cover the
rows of anmrow/n-column zero-one matrix with subset

The population consists of the collection of candidate of columns at minimal cost. Consider a vecksuch that
solutions that we are considering during the course of the<j = 1 if columnj (with a costc;j > 0) is in solution and

algorithm. Over the generations of the algorithm, newx; = 0 otherwise j = 1,2,...,n). The set-covering
members are born into the population, while others dieproblem is then formulated as

out of the population. A single solution in the population
is referred to as an individual. The fitness of an individual
is a measure of how good is the solution represented by
the individual. The better solution has a higher fithness
value obviously, this is dependent on the problem to be , n ,

solved. The selection process is analogous to the survival subjecttoy ajxj>1, i=12...,n 3
of the fittest in the natural world. Individuals are selected =1

for breeding (or cross-over) based upon their fitness :
values. Thegcr(ossover occur)s by mingli%g two solutions  €{0.1},j=12....n ()
together to produce two new individuals. During each  Equation 8) ensures that each row is covered by at
generation, there is a small chance for each individual tdeast one column and equatiod) (is the integrality
mutate. Genetic optimization deals with problems of constraint. If all the cost coefficients; are equal, the
minimizing or maximizing a function with several problem is called a unicost set-covering problem. If
variables usually subject to equality and/or inequality equation @) is an equality function, the problem above is
constrains. It plays a central role in operations researchreferred to as a set partitioning problem. Several network
management science, and engineering design. Manproblems can be modeled as a set-covering problem with
industrial engineering design problems are very complexa particularA = (&) matrix, such as the node-covering
and difficult to solve using conventional optimization problem of Salkin a Sahdlf], the matching problem of
techniques19. In recent years, genetic algorithms have Balinski [2], and the maximum problem of Salkin and
received considerable attention regarding their potentiaMathur [13]. Besides, many applications of real-world
as a novel optimization technique. Because of theirproblems have been reported iB].[ The set-covering
simplicity, ease of operation, minimal requirements, andproblem has been proven to be NP (nondetermisted
parallel and global perspective, genetic algorithms havepolynominal) - complete. As with other sizable
been applied successfully in a wide variety of problemcombinatorial problems, there has recently been an
domains b]. increasing interest in evolutionary computing solution
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Fig. 1: Problem solution using evolutionary algorithms (adapted
from http://jpmc.sourceforge.net )
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1. Create a population of random candidate solutions named pop.
2. Until the algorithm termination conditions are met, do the following:
(a) Create an empty population named new-pop.
(b) While new-pop is not full, do the following:
1. Select two individuals at random from pop so that individuals, which are more fit are more likely to
be selected.
ii. Cross-over the two individuals to produce two new individuals.
(c) Let each individual in new-pop have a random chance to mutate.
(d) Replace pop with new-pop.
3. Select the individual from pop with the highest fitness as the solution to the problem.

Fig. 2: The genetic algorithm

techniques. Jacobs and Brusco developed a simulatedse as few trucks as possible to carry the loads without
annealing algorithm and reported considerable success oexceeding the capacity of each truck. Another example is
problem with up to 1000 rows and 10000 columi@s [ where tubes or cables are to be cut from quantities of
Sen investigated the performances of simulated annealingtandard length C. We want to use as few tubes or cables
algorithm and a simple genetic algorithnl5. The  of standard length as possible to meet the demand. The
genetic algorithm approach to set-covering problemsame idea is used in metal working where steel sheets of
proposed by Beasley and Chu is summarized in Fi@ure different sizes must be cut from "master” sheets. Yet
[3]. In [22], authors investigate a largely underexplored another example is in scheduling, where tasks of varying
issue: the approximation performance of EAs in terms ofduration must be allocated using the least number of
how close the solution obtained is to an optimal solution.machines or processors. The most obvious is the two
Authors study an EA framework named simple EA with dimensional bin packing problem, where in addition to
isolated population (SEIP) that was implemented as aweight, the volume of the objects too, have to be taken
single- or multi-objective EA. Their theoretical analysis into account. That is instead of one set of constraints, we
suggests that EAs can achieve solutions with guaranteedave two sets of constraint6][ [20]. A variation on this
performance. Specifically, they analysed SEIP using a setwo dimensional problem is the "strip packing” problem.
cover problem. In 23], authors concerned with the The problem is to pack a set afrectangles into an open
approximated solution of large scale set coveringended bin of fixed width C so that the height of the bin is
problems arising from crew scheduling in airline minimized. The rectangles must not overlap. There are
companies. They propose an adaptive heuristic-basedlso other extensions such as three dimensional and
evolutionary algorithm, whose main ingredient is a maximum value problems, for which the reader is referred
mechanism for selecting a small core subproblem whichto many good references on this subject sucta [

is dynamically updated during the execution. Experiments

conducted on real-word benchmark instances from crew

scheduling in airline companies. 6 Bin packing problem asinstance of
set-covering problem

5 Bin Packing problem , . . . : A
Given a binS of size C and a list ofn items with sizes

In one dimensional bin packing problem the objects havews, ..., Wn to pack, find an integer number of biBsand
one dimension. Objects value is weight, size, cost or timea B partition SjU, ...,USg of the set{1,...,n} such that
The term bin here is in fact a generic name which couldfor all k=1,..., B. A solution is optimal if it has minimal
stand for a container, as in the transportation contextB. The B value for an optimal solution is denoted OPT.
work stations  in industrial assembly lines (line Mathematically the one dimensional bin packing problem
balancing), a space in time in scheduling, or a surfacecan be formulated as[.

area, as in metal working, for example. The one

dimensional bin packing problem can be stated as follows min B — 4 i 5)

[9]. We are given a set ofi objects each with a given i; !

weight (or sizejw; > 0). We want to place these objects
into bins of a given capacity @C > w;) so that the total
number of bins needed is minimized. Other words, the
problem is to find a best assignment of objects to bins
such that the total weight of the objects in each bin does
not exceed its capacity and the number of bhins is
minimized. This problem has many practical applications:

n
Trucks are to be loaded with different items. The aim is to =1

n
subject toz wjxij <Cy;,Vi € {1,...,n} (6)
=1

xj=1Vie{l,....n} 7
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eGenerate an initial population of N random solutions. Set t:=0.

eSelect two solutions, P, and P,, from the population using binary tournament selection.

-

eCombine P, and P, to form a new solution, C, using the fusion crossover operator.

*Mutate k randomly selected columnsin C, where k is determined by the variable mutation schedule.

KK«

4

*Make C feasible and remove redundant columnsin C by applying the heuristic operator.

Z,

eIf Cis identical to any of the solutionsin the population, go to step 2; otherwise, set t:=t+1 and go to step 7.

— S

*Replace a randomly chosen solution with above-average fitness in the population by C.

~4

*Repeat steps 2 to 7 until t=M (i.e., M nonduplicate) solution have been generated. The best solution found
is the one with the smallest fitness in the population.

| NE—

(/

Fig. 3: Genetic algorithm for the set-covering problem.

C/2, the algorithm will not open a new bin for any item
yi € {0,1},Vie {1,...,n} and (8) whose size is at most C/2. Only after the bin fills with
more than C/2 or if an item with a size larger than C/2
arrives, the algorithm may open a new bin. Thus if we
haveB bins, at leasB 1 bins are more than half full.

Xj€{01hVie (L .nhVje{l .,np (9 aeB NS 2

where

n B-1
Z\Wi > TC (12)
~J 1lifbiniisused 10 i=
= 0 otherwise (10) becausd 3,
B
~J Lifobjectjisputintobini 1) % (13)
0 otherwise is a lower bound of the optimum value OPT, we get

. L N thatB 1 < 20PT and thereforB < 20PT [18]. The bin

In this model the objective minimizes the total 4cking problem can be solved using standard procedures
number of used bins5]. Constraints €) ensure that the ¢, the solution of integer programs, such as branch and
weights of objects placed in bin do not exceed thepq, ng: put since the number of cases to be considered by
capacity of the bin. Note tha_lt here we gssumed tha.t all th numerating all possible combinations is, the
bins have the same capacity, C, but in general this need,mpyational efforts needed to solve this problem is
not be the case. Finally, constrain® ensure that each onipitive for largen's. It is known that the bin packing
object is placed only in one bin. This is a Very proplem is NP-Hard. Hence, heuristic procedures such as
straightforward greedy approximation algorithm. The peyq fit first fit, best fit, to name a few, are proposed for
algorithm processes the items in arbitrary order. For eachy;g problem. Since these methods are easily
item, it attempts to place the item in the first bin that CaNimplemented, they are usually embedded in a genetic

accommodate the item. If no bin is found, it opens a newyqqrithm to enhance its performance. We have adopted
bin and puts the item within the new bin. It is rather ;g practice here, too.

simple to show this algorithm achieves an approximation
factor of 2, that is, the number of bins used by this
algorithm is no more than twice the optimal number of .
bins. In other words, it is impossible for 2 bins to be at 7 ThQ proposed approach based on genetic

most half full because such a possibility implies that atalgorithms

some point, exactly one bin was at most half full and a

new one was opened to accommodate an item of size afve present a proposed methodology to generate a suitable
most C/2. But since the first one has at least a space adhape layout solution using a genetic algorithm. Figure

(@© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 4, 1293-1301 (2016)www.naturalspublishing.com/Journals.asp NS = 1297

where a represents number of rectangles with width
(W = 2-1). The best individual is automatically included
to the next generation. Then, for each fitness function the
probability of reproduction of its existing individual is
Fig. 4: Types of pieces: triangle, square, rectangle calculated by means of standard meth&H All of the
calculated fitness function values of the two consecutive
generations are sorted descending and individuals
attached to the first half creates the new generation. A
shows convex shapes, which are used in the experimeritew individual may be created by either a crossover or a
study [16]. These shapes are modeled as polygonamutation.
objects. Each of the shapes has a default initial ~Thecrossover runsin the following steps:
orientation, but they may be rotated. A solution is a
structure with the following format:S = [(Pp,O1),
(P,02), ..., (F,0n), L] where S is the solution,P
represents object§) is the orientation of these objects: 0
for O degrees, or 1 for 90 degrees, 2 for 180 degrees or 3 3
for 270 degrees, andis the length (cost) of the solution. :
Every individually is represented by its chromosome
that is a define set of pieces with their own orientations,
see Figure5. Iy = (P,01), (P,02), ..., (P,0On);
O € {0,p/2,p,3p/2}; P = rectangle, square, triangle;
i=1,...,n(nis number of pieces in thieth individual);

1.We pick a suitable chromosome from our population to
crossover at random. It represents the chosen parent.
2.We generate a number (a strips position) that is
bounded above by its strips length.
The first new individual includes the first substring of
the parent and then we insert all the remaining pieces
from the parent in its second substring - that are
randomly located, but their orientations are given.
4.The second new individual includes the second
substring of the parent and then we insert all the
remaining pieces from this parent in its first substring

k=1, L N (N is number of individuals in the - that are randomly located, but their orientations are
population). given.

Particular individuals are strips with the fixed widt¥ . B o _ .
(e.g.W = 2.1, where | is a constant). In our experimental If the input condition ofmutation is fulfilled (e.g. if a

work, we have used 10 pieces (e.g. 2 rectangle pieces, landomly number is generated that is equal to the defined
square pieces, and 4 triangle pieces). All these pieces areonstant), therossover runs in the following steps:
used just once in each chromosome. This model of
chromosome is similar to that inl{]. Each piece is
placed starting at the upper-left edge of the strip. If there
is no space to place the piece, we move downwards until 3
there is a space or we run to the right on the strip. When
placing a new piece we have to check that a space is
available. We do this by means of a simple 2-D graphics  The calculation is finished when an upper limit on the
algorithm for checking that none of the vertices of our number of generation is reached or if the chance of
polygon is inside another, previously placed polygon. Toachieving significant changes in the next generation is
encode an individual into a string, we use a triangle gridexcessively low (e.g if the significant majority of
(Figure6). individuals in the population are the same).

The proposed methodology based on genetic
algorithm works as follows. The initial population is
created by randomly generating N individuals. Number of§ Experimental results
individuals in the population was constant during the

whole calculation. The fitness function value of each We have used a popu|ation which size throughout our

1.0ne of the individuals is randomly chosen.

2.We generate a number (a strips position) that is
bounded above by its strips length.

If the piece is at the position, its orientation is
randomly changed.

chromosome is calculated as the follovi) experiments was constant. Every individual consists of all
10 pieces from the defined set of pieces. The initial
F=K-Kk (14)  population was created by randomly generating

individuals (Figure7). Each piece was placed in the
chromosome (e.g. a strips with the fixed width= 2-1,
where | is a constant) at random and its orientation was
generated from the set of the possible orientations.
Parameters of the experimental part are the following:

wherei = 1,..., N (N is number of individuals in the
population).K is a constant that represents the maximal
number of triangles; in the grid (e.gkj = 1,...K). k;
represents the maximal used grid in the individual
Figure 6 shows the worst potential individual in the
population. According to the figuile = 168 andK should 1.the number of individuals: 30
be bigger than 176. In our experimental study, we have 2.probability of crossover: 0.5
used K equals 200. We can state that the fitness function 3.probability of mutation: 0.01
value of each chromosome is proportionlal to1 the 4.the maximal number of triangles in the gri€l:lequals

reciprocal of value of its strips length:= % = of = a1 200
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Object Hireslerond Orientation: 0°, 907, 1807, 270°
OCCUrrences
N !
triangle 4
o
square 4
rectangle 2
&
]
Fig. 5: Pieces in each individual.
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Fig. 6: The triangle grid.
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Fig. 7: The worst individual, which may appear in the population
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Fig. 8: The best individual from the initial population. Its fitness
value equals 96. 0a

Generation

Fig. 12: The history of fitness function value during whole
calculation.

Fig. 9: The best individual from the 100th generation. Its fitness
value equals 112.

Fitness

120

100

80 -

60 -

Fig. 10: The best individual from the 200th generation. Its fitness

value equals 115. 20 |
20
N N, 7 0

= l] A N <l_ N

U 1 - - ‘

[ <

~ l] < . A4 Fig. 13: Results representing fitness values of the best individual

i - in the last generation.
1 L L L L
L=5-1

Fig. 11: The best individual from the final population (e.g.

solution). Its fithess value equals 120.
compare our results to those of human experts, we can

observe that it is the only possible solution.

. ) . . In Figure 12, the history of fitness function values is

~ An evolution of the population during the calculation shown as: (a) the best individual in the population and (b)
is shown in Figures-11 the average individual in the population during whole

Our experimental results indicate that our geneticcalculation. Fitness function is represented here in a
algorithm is reasonably good. The calculation wasrelative way so that value one means the upper-most
finished in the 244th generation to be characterised by th@ossible fithess function value and value zero means the
population of the same individual. FiguBeshows the best lowest fitness function value. Other numerical simulations
individual (e.g. solution) of the final population: its fise  give similar results. The box-plots in Figures3and 14
function value corresponds to the minimal value of therepresent fitness values of the best individual in the last
strips length. All used 10 pieces (e.g. 2 rectangle pieces, generation as well as the generations, when the
square pieces, and 4 triangle pieces) are distributed over @alculation was finished. Every calculation was run 50
strip of widthW = 2-1 and length_ = 5-1. The area of the times. The median is indicated by the horizontal line that
entire strip is fully utilized, there is no waste. If we lies inside the box dividing it into two parts.
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referee for a careful checking of the details and for
helpful comments that improved this paper.
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