
Appl. Math. Inf. Sci.10, No. 4, 1293-1301 (2016) 1293

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100408

Evolutionary Optimization of Set-Covering Problem
Eva Volna∗ and Martin Kotyrba

Department of Informatics and Computers, University of Ostrava, 30 dubna 22, Ostrava, Czech Republic

Received: 21 Mar. 2016, Revised: 7 May 2016, Accepted: 8 May 2016
Published online: 1 Jul. 2016

Abstract: The article aims how to use evolutionary algorithms in solving a set-covering problem. We have focused on the bin packing
problem. This problem is known to be NP-hard; hence many heuristic procedures for its solution have been suggested. We propose a
new solution of the problem by a genetic algorithm. The included experimental study presents the use of a genetic algorithm to find an
optimal layout for the placement of regular patterns of fixedsizes and simple shapes to minimize the waste. This study indicates that
genetic algorithms can effectively be used to obtain highlyefficient solutions.
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1 Global optimization

Global optimizations utilize techniques that can
distinguish between the global optimum and numerous
local optima within a region of interest. Global
optimization problems usually take from of unconstrained
optimization; that is, the problem is one of minimizing or
maximizing a function in the absence of restrictions [5].
In general, an unconstrained optimization problem can be
represented mathematically as follows (1), [1]:

min f (x), subject to x ∈ Ω (1)

where f is real-valued function and , the feasible set, is a
subset ofEn. When attention is restricted to the case
where Ω = En, it corresponds to the completely
unconstrained case. In many applications we just need to
consider the case where is particular subset ofEn. A
point x∗ ∈ Ω is said to be a local minimum of f over if
there is anε > 0 such thatf (x) ≤ f (x∗) for all x ∈ Ω
within a distanceε of x∗. A point x∗ ∈ Ω is said to be a
global minimum of f over Ω if f (x) ≥ f (x∗) for all
x ∈ Ω . Even though most practical optimization problems
have side restrictions that must be satisfied, the study of
techniques for unconstrained optimization provides a
basis for further study. Conventional global optimization
methods can roughly be categorized into two classes: a)
deterministic methods and b) stochastic methods. Genetic
algorithms have been fairly successful at solving
problems of the type that are too all-behaved,
nondifferentiable, and discontinuous for conventional

hill-climbing and derivative-based techniques. Examples
of such problems are multimodal nondifferentiable, and
discontinuous problems. Since the emergence of genetic
algorithms in early 1970s, global optimization has been
one of their major targets, and a lot of effort has been
devoted to developing powerful algorithms for global
optimization problems [12].

2 Evolutionary algorithms - genetic
algorithms

Evolutionary algorithms (EAs) have many interesting
properties and have been widely used in various
optimization problems from combinatorial problems such
as job shop scheduling to real valued parameter
optimization [1], [21]. In computer science, evolutionary
computation is a subfield of artificial intelligence (more
particularly computational intelligence) that involves
combinatorial optimization problems. Evolutionary
computation uses iterative progress, such as growth or
development in a population. This population is then
selected in a guided random search using parallel
processing to achieve the desired end. Such processes are
often inspired by biological mechanisms of evolution. As
evolution can produce highly optimised processes and
networks, it has many applications in computer science
[4]. Problem solution using evolutionary algorithms is
shown in Figure1.
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Fig. 1: Problem solution using evolutionary algorithms (adapted
from http://jpmc.sourceforge.net )

A genetic algorithm is a type of a searching
algorithm. It searches a solution space for an optimal
solution to a problem. The key characteristic of the
genetic algorithm is how the searching is done. The
algorithm creates a population of possible solutions to the
problem and lets them evolve over multiple generations to
find better and better solutions. The generic form of the
genetic algorithm is shown in Figure2. The items in bold
in the algorithm are defined here [2], [17].

The population consists of the collection of candidate
solutions that we are considering during the course of the
algorithm. Over the generations of the algorithm, new
members are born into the population, while others die
out of the population. A single solution in the population
is referred to as an individual. The fitness of an individual
is a measure of how good is the solution represented by
the individual. The better solution has a higher fitness
value obviously, this is dependent on the problem to be
solved. The selection process is analogous to the survival
of the fittest in the natural world. Individuals are selected
for breeding (or cross-over) based upon their fitness
values. The crossover occurs by mingling two solutions
together to produce two new individuals. During each
generation, there is a small chance for each individual to
mutate. Genetic optimization deals with problems of
minimizing or maximizing a function with several
variables usually subject to equality and/or inequality
constrains. It plays a central role in operations research,
management science, and engineering design. Many
industrial engineering design problems are very complex
and difficult to solve using conventional optimization
techniques [19]. In recent years, genetic algorithms have
received considerable attention regarding their potential
as a novel optimization technique. Because of their
simplicity, ease of operation, minimal requirements, and
parallel and global perspective, genetic algorithms have
been applied successfully in a wide variety of problem
domains [5].

3 Combinatorical optimization problems

Combinatorical optimization study problems, which are
characterized by a finite number of feasible solutions,
abound in everyday life, particularly in engineering
design. An important and widespread area of applications
concerns the efficient use of scarce resources to increase
productivity. Typical engineering design problem relate to
set covering, bin packing, knapsack packing, quadratic
assignment, minimum spanning tree determination,
machine scheduling, sequencing and balancing, cellular
manufacturing design, vehicle routing, network design,
facility location and layout, traveling salesman
assignment, and so on. Although, in principle, the optimal
solution to such problems can be found by simple
enumeration, in practice it is frequently impossible,
especially for practical problems of realistic size, where
the number of feasible solutions can be extremely high.
One of the most challenging problems in combinatorial
optimization is to deal effectively with the combinatorial
explosion. A major trend in solving such difficult
problems is to the use of genetic algorithms.

4 Set-Covering problem

The set-covering problem is a typical problem in
combinatorial optimization. The problem is to cover the
rows of anm-row/n-column zero-one matrix with subset
of columns at minimal cost. Consider a vectorx such that
x j = 1 if column j (with a costc j > 0) is in solution and
x j = 0 otherwise (j = 1,2, . . . ,n). The set-covering
problem is then formulated as

min z(x) =
n

∑
j=1

c jx j (2)

subject to
n

∑
j=1

ai jx j ≥ 1, i = 1,2, . . . ,n (3)

x j ∈ {0,1}, j = 1,2, . . . ,n (4)

Equation (3) ensures that each row is covered by at
least one column and equation (4) is the integrality
constraint. If all the cost coefficientsc j are equal, the
problem is called a unicost set-covering problem. If
equation (2) is an equality function, the problem above is
referred to as a set partitioning problem. Several network
problems can be modeled as a set-covering problem with
a particularA = (ai j) matrix, such as the node-covering
problem of Salkin a Saha [14], the matching problem of
Balinski [2], and the maximum problem of Salkin and
Mathur [13]. Besides, many applications of real-world
problems have been reported in [5]. The set-covering
problem has been proven to be NP (nondetermisted
polynominal) - complete. As with other sizable
combinatorial problems, there has recently been an
increasing interest in evolutionary computing solution
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Fig. 2: The genetic algorithm

techniques. Jacobs and Brusco developed a simulated
annealing algorithm and reported considerable success on
problem with up to 1000 rows and 10000 columns [7].
Sen investigated the performances of simulated annealing
algorithm and a simple genetic algorithm [15]. The
genetic algorithm approach to set-covering problem
proposed by Beasley and Chu is summarized in Figure3
[3]. In [22], authors investigate a largely underexplored
issue: the approximation performance of EAs in terms of
how close the solution obtained is to an optimal solution.
Authors study an EA framework named simple EA with
isolated population (SEIP) that was implemented as a
single- or multi-objective EA. Their theoretical analysis
suggests that EAs can achieve solutions with guaranteed
performance. Specifically, they analysed SEIP using a set
cover problem. In [23], authors concerned with the
approximated solution of large scale set covering
problems arising from crew scheduling in airline
companies. They propose an adaptive heuristic-based
evolutionary algorithm, whose main ingredient is a
mechanism for selecting a small core subproblem which
is dynamically updated during the execution. Experiments
conducted on real-word benchmark instances from crew
scheduling in airline companies.

5 Bin Packing problem

In one dimensional bin packing problem the objects have
one dimension. Objects value is weight, size, cost or time.
The term bin here is in fact a generic name which could
stand for a container, as in the transportation context,
work stations in industrial assembly lines (line
balancing), a space in time in scheduling, or a surface
area, as in metal working, for example. The one
dimensional bin packing problem can be stated as follows
[9]. We are given a set ofn objects each with a given
weight (or size)(wi > 0). We want to place these objects
into bins of a given capacity C(C > wi) so that the total
number of bins needed is minimized. Other words, the
problem is to find a best assignment of objects to bins
such that the total weight of the objects in each bin does
not exceed its capacity and the number of bins is
minimized. This problem has many practical applications:
Trucks are to be loaded with different items. The aim is to

use as few trucks as possible to carry the loads without
exceeding the capacity of each truck. Another example is
where tubes or cables are to be cut from quantities of
standard length C. We want to use as few tubes or cables
of standard length as possible to meet the demand. The
same idea is used in metal working where steel sheets of
different sizes must be cut from ”master” sheets. Yet
another example is in scheduling, where tasks of varying
duration must be allocated using the least number of
machines or processors. The most obvious is the two
dimensional bin packing problem, where in addition to
weight, the volume of the objects too, have to be taken
into account. That is instead of one set of constraints, we
have two sets of constraints [6], [20]. A variation on this
two dimensional problem is the ”strip packing” problem.
The problem is to pack a set ofn rectangles into an open
ended bin of fixed width C so that the height of the bin is
minimized. The rectangles must not overlap. There are
also other extensions such as three dimensional and
maximum value problems, for which the reader is referred
to many good references on this subject such as [11].

6 Bin packing problem as instance of
set-covering problem

Given a binS of size C and a list ofn items with sizes
w1, . . . ,wn to pack, find an integer number of binsB and
a B partition S1∪, . . . ,∪SB of the set{1, . . . ,n} such that
for all k=1, . . . , B. A solution is optimal if it has minimal
B. The B value for an optimal solution is denoted OPT.
Mathematically the one dimensional bin packing problem
can be formulated as [5]:

min B =
n

∑
i=1

yi (5)

subject to
n

∑
j=1

w jxi j ≤Cy j,∀i ∈ {1, . . . ,n} (6)

n

∑
j=1

xi j = 1,∀i ∈ {1, . . . ,n} (7)
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Fig. 3: Genetic algorithm for the set-covering problem.

yi ∈ {0,1},∀i ∈ {1, . . . ,n} and (8)

xi j ∈ {0,1},∀i ∈ {1, . . . ,n},∀ j ∈ {1, . . . ,n} (9)

where

yi =







1 if bin i is used

0 otherwise
(10)

xi j =







1 if object j is put into bin i

0 otherwise
(11)

In this model the objective minimizes the total
number of used bins (5). Constraints (6) ensure that the
weights of objects placed in bin do not exceed the
capacity of the bin. Note that here we assumed that all the
bins have the same capacity, C, but in general this need
not be the case. Finally, constraints (7) ensure that each
object is placed only in one bin. This is a very
straightforward greedy approximation algorithm. The
algorithm processes the items in arbitrary order. For each
item, it attempts to place the item in the first bin that can
accommodate the item. If no bin is found, it opens a new
bin and puts the item within the new bin. It is rather
simple to show this algorithm achieves an approximation
factor of 2, that is, the number of bins used by this
algorithm is no more than twice the optimal number of
bins. In other words, it is impossible for 2 bins to be at
most half full because such a possibility implies that at
some point, exactly one bin was at most half full and a
new one was opened to accommodate an item of size at
most C/2. But since the first one has at least a space of

C/2, the algorithm will not open a new bin for any item
whose size is at most C/2. Only after the bin fills with
more than C/2 or if an item with a size larger than C/2
arrives, the algorithm may open a new bin. Thus if we
haveB bins, at leastB 1 bins are more than half full.
Therefore in12,

n

∑
i=1

wi >
B−1

2
C (12)

because13,

∑n
i=1wi

C
(13)

is a lower bound of the optimum value OPT, we get
thatB 1 < 2OPT and thereforeB ≤ 2OPT [18]. The bin
packing problem can be solved using standard procedures
for the solution of integer programs, such as branch and
bound; but since the number of cases to be considered by
enumerating all possible combinations is, the
computational efforts needed to solve this problem is
prohibitive for largen’s. It is known that the bin packing
problem is NP-Hard. Hence, heuristic procedures such as
next fit, first fit, best fit, to name a few, are proposed for
this problem. Since these methods are easily
implemented, they are usually embedded in a genetic
algorithm to enhance its performance. We have adopted
this practice here, too.

7 The proposed approach based on genetic
algorithms

We present a proposed methodology to generate a suitable
shape layout solution using a genetic algorithm. Figure4
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Fig. 4: Types of pieces: triangle, square, rectangle

shows convex shapes, which are used in the experiment
study [16]. These shapes are modeled as polygonal
objects. Each of the shapes has a default initial
orientation, but they may be rotated. A solution is a
structure with the following format:S = [(P1,O1),
(P2,O2), . . ., (Pn,On), L] where S is the solution,P
represents objects,O is the orientation of these objects: 0
for 0 degrees, or 1 for 90 degrees, 2 for 180 degrees or 3
for 270 degrees, andL is the length (cost) of the solution.

Every individualIk is represented by its chromosome
that is a define set of pieces with their own orientations,
see Figure 5. Ik = (P1,O1), (P2,O2), . . ., (Pn,On);
Oi ∈ {0, p/2, p,3p/2}; Pi = rectangle, square, triangle;
i = 1, . . . , n (n is number of pieces in thei-th individual);
k = 1, . . . , N (N is number of individuals in the
population).

Particular individuals are strips with the fixed widthW
(e.g.W = 2 · l, where l is a constant). In our experimental
work, we have used 10 pieces (e.g. 2 rectangle pieces, 4
square pieces, and 4 triangle pieces). All these pieces are
used just once in each chromosome. This model of
chromosome is similar to that in [10]. Each piece is
placed starting at the upper-left edge of the strip. If there
is no space to place the piece, we move downwards until
there is a space or we run to the right on the strip. When
placing a new piece we have to check that a space is
available. We do this by means of a simple 2-D graphics
algorithm for checking that none of the vertices of our
polygon is inside another, previously placed polygon. To
encode an individual into a string, we use a triangle grid
(Figure6).

The proposed methodology based on genetic
algorithm works as follows. The initial population is
created by randomly generating N individuals. Number of
individuals in the population was constant during the
whole calculation. The fitness function value of each
chromosome is calculated as the follows (14)

Fi = K − ki (14)

wherei = 1, . . . , N (N is number of individuals in the
population).K is a constant that represents the maximal
number of trianglesk j in the grid (e.gk j = 1, . . .K). ki
represents the maximal used grid in the individuali.
Figure 6 shows the worst potential individual in the
population. According to the figureki = 168 andK should
be bigger than 176. In our experimental study, we have
used K equals 200. We can state that the fitness function
value of each chromosome is proportional to the
reciprocal of value of its strips length:F ≈

1
L = l

a·l =
1
a ,

wherea represents number of rectangles with widthW
(W = 2 · l). The best individual is automatically included
to the next generation. Then, for each fitness function the
probability of reproduction of its existing individual is
calculated by means of standard method [8]. All of the
calculated fitness function values of the two consecutive
generations are sorted descending and individuals
attached to the first half creates the new generation. A
new individual may be created by either a crossover or a
mutation.

Thecrossover runs in the following steps:

1.We pick a suitable chromosome from our population to
crossover at random. It represents the chosen parent.

2.We generate a number (a strips position) that is
bounded above by its strips length.

3.The first new individual includes the first substring of
the parent and then we insert all the remaining pieces
from the parent in its second substring - that are
randomly located, but their orientations are given.

4.The second new individual includes the second
substring of the parent and then we insert all the
remaining pieces from this parent in its first substring
- that are randomly located, but their orientations are
given.

If the input condition ofmutation is fulfilled (e.g. if a
randomly number is generated that is equal to the defined
constant), thecrossover runs in the following steps:

1.One of the individuals is randomly chosen.
2.We generate a number (a strips position) that is

bounded above by its strips length.
3.If the piece is at the position, its orientation is

randomly changed.

The calculation is finished when an upper limit on the
number of generation is reached or if the chance of
achieving significant changes in the next generation is
excessively low (e.g if the significant majority of
individuals in the population are the same).

8 Experimental results

We have used a population which size throughout our
experiments was constant. Every individual consists of all
10 pieces from the defined set of pieces. The initial
population was created by randomly generating
individuals (Figure7). Each piece was placed in the
chromosome (e.g. a strips with the fixed widthW = 2 · l,
where l is a constant) at random and its orientation was
generated from the set of the possible orientations.
Parameters of the experimental part are the following:

1.the number of individuals: 30
2.probability of crossover: 0.5
3.probability of mutation: 0.01
4.the maximal number of triangles in the grid:K equals

200
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Fig. 5: Pieces in each individual.

Fig. 6: The triangle grid.

Fig. 7: The worst individual, which may appear in the population
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Fig. 8: The best individual from the initial population. Its fitness
value equals 96.

Fig. 9: The best individual from the 100th generation. Its fitness
value equals 112.

Fig. 10: The best individual from the 200th generation. Its fitness
value equals 115.

Fig. 11: The best individual from the final population (e.g.
solution). Its fitness value equals 120.

An evolution of the population during the calculation
is shown in Figures8-11.

Our experimental results indicate that our genetic
algorithm is reasonably good. The calculation was
finished in the 244th generation to be characterised by the
population of the same individual. Figure9 shows the best
individual (e.g. solution) of the final population: its fitness
function value corresponds to the minimal value of the
strips length. All used 10 pieces (e.g. 2 rectangle pieces, 4
square pieces, and 4 triangle pieces) are distributed over a
strip of widthW = 2· l and lengthL = 5· l. The area of the
entire strip is fully utilized, there is no waste. If we

Fig. 12: The history of fitness function value during whole
calculation.

Fig. 13: Results representing fitness values of the best individual
in the last generation.

compare our results to those of human experts, we can
observe that it is the only possible solution.

In Figure12, the history of fitness function values is
shown as: (a) the best individual in the population and (b)
the average individual in the population during whole
calculation. Fitness function is represented here in a
relative way so that value one means the upper-most
possible fitness function value and value zero means the
lowest fitness function value. Other numerical simulations
give similar results. The box-plots in Figures13 and 14
represent fitness values of the best individual in the last
generation as well as the generations, when the
calculation was finished. Every calculation was run 50
times. The median is indicated by the horizontal line that
lies inside the box dividing it into two parts.
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Fig. 14: Results representing generations, when the calculation
was finished.

9 Conclusion

We have proposed a new algorithm which can be seen as
a variant of the unicost set covering problem. The
approach proposed in this paper we consider as a very
promising way in order to find minimal covers of various
on two dimensional bin packing problems. Results from
our experimental study on various pattern designs
indicate that genetic algorithms can effectively be used to
obtain highly efficient solutions. A comparison of our
results with other researchers is rather difficult, since the
overall efficiency depends on the shape of the patterns
used.In [21], three techniques are used to solve set
covering problem: LINGO, genetic algorithm and ant
colony optimization. Comparing the experimental study
with our research, authors [21] used set of benchmark set
covering problems and genetic algorithm was performed
by using MATLAB Genetic Algorithm Tool, but despite
of its flexibility genetic algorithm in [21] does not
perform well in solving problems that have larger search
space. Our future step will be a comparison of our
technique with that of other researchers using the same
test data. Before we do that a standard test data set has to
be established. On the other hand, if we compare our
experimental results to those of human experts, we can
observe that we have received the only possible solution.
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