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Statistics of natural images have shown to be non-Gaussian quantities displaying high
kurtosis, heavy tails and sharp central cusps, i.e. sparse distributions. In this paper
we extend on these results to show that the non-linear filter response distributions of
natural colour images are also sparse. We then incorporate the statistics of natural
images into Bayesian models to illustrate image processing applications in colorization
of gray images, compression of colour images and reconstruction of chroma channels
from corrupted data.
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1 Introduction

Recent decades have witnessed significant interest in the statistics of natural images.
Discoveries in this field have shown the presence of structure in the images of the world we
view around us, sparking an abundant literature that seeks to find symmetries inherent in
all, and specific, categories of images. Motivation for this work has stemmed from results
concerning the nature of the statistics calculated from natural imagery. Beginning with the
statistical analysis of natural luminance images an early finding of Field [1] highlighted the
highly kurtotic shapes of wavelet filter responses. Mallat [2] showed that decomposing nat-
ural images locally, in space and frequency, using wavelet transforms leads to coefficients
that are quite non-Gaussian with the histograms displaying heavy tails and sharp cusps at
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the median. Huang and Mumford [3] gave empirical findings on large databases of images
showing image statistics, such as single pixel, derivative and wavelet to be non-Gaussian.
The distributions typically display high kurtosis with heavy tails that give greater proba-
bility to extrema events than their Gaussian counterparts. This non-Gaussian behaviour of
images has also been studied and modeled by Ruderman [4], Simoncelli and Adelson [5],
Moulin and Liu [6], Wainright and Simoncelli [7] and others; establishing image statistics,
under common representations such as wavelets or subspace bases (PCA, ICA, Fishers
etc.), as non-Gaussian (see the work by Srivastava et al. [8] for a recent review).

Another important discovery that has motivated investigators has been the approximate
invariance to scale of natural images. This experimental finding has shown that marginal
distributions of statistics of natural images remain unchanged if the images are scaled. For
example, any local statistic calculated on n×n images and on block averaged 2n× 2n im-
ages should be the same. By studying the histograms of the pixel contrasts (log(I(x)/I0))
at many scales, Ruderman and Bialek [9] showed its invariance to scaling while Zhu and
Mumford [10] showed a broader invariance by studying the histograms of Wavelet decom-
positions of images. Ruderman [4, 11] and Lee et al. [12] also provided evidence of scale
invariance in natural images and posed physical models for explaining them. The reason
why the discovery of scaling is exciting is that it implies local image models describing
small-scale structures will work as global image models describing the large scale struc-
tures in images where applicable.

Interest in this subject has grown from both a biological and computational point of
view where investigators have sought to incorporate prior information about the visual
world into application models. The biological standpoint has seen the incorporation of the
statistics of natural images into the optimisation goals of a visual system. The theory is
based on construction of statistical models of images combined with Bayesian inference.
Here one can consider the fact that the visual world greatly influences the design of crea-
tures’ visual systems. One of the most important aspects of the luminous environments
being the pattern of light fluctuations, both in space and time, that reach the eye. It is in
this signal that information about the environment is conveyed. Bayesian inference shows
how we can use prior information on the structure of typical images to greatly improve im-
age analysis, and statistical models are used for learning and storing that prior information.
Contributions in this area have shown how redundancy minimisation or decorrelation [13],
maximisation of information transmission [14], sparseness of the neural encoding [15], and
minimising reconstruction error [16] can predict visual processes.

From a computational perspective image priors have been, and still are, being success-
fully used in many image processing tasks. Investigators have utilised the knowledge to
invent more effective denoising [5] and deblurring [17] algorithms, as well as improve-
ments in realistic super-resolution [18], colorization [21] and inpainting [24] applications.
The statistics of images have also been incorporated into various scene categorisation [25],
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object recognition, face detection and clutter classification tasks [26]. Additionally, models
motivated by vision research have found applications in document processing in tasks for
automatic keyword extraction, classification and registration [27].

Motivated by previous investigations into image understanding and applications, in this
article we concisely present a collection of results on the non-linear filter response dis-
tributions of natural colour images [19], and their past and present applications in image
processing. This work details the incorporation of image statistics into Bayesian models
to give effective treatments for the problems of colorizing gray images [21], compressing
colour data [22] and denoising images [23]. Within this context we also develop inter-
esting connections with the emerging field of compressive sensing and utilise it in image
processing applications.

2 Statistics of natural images

A first approach to studying the visual world around us is to look into the images formed
by the projection of three dimensional scenes onto static two dimensional surfaces. We can
then ask whether we can find good models for images in general, or specific categories of
images, through studies on large databases taken as samples of all the possible images that
can be observed. The statistics of natural images have indeed provided fruitful prior infor-
mation on the visual world, consistently displaying statistical regularities. These models
can then be incorporated into Bayesian models to infer information from the visual signal
using past experience. In this section we explore statistical results on colour images and
also model the observed distributions.

2.1 Non-Linear Filter Response Distributions

Many statistical studies on natural image datasets have shown that computing various
zero mean filter response x = (F · I)(i, j) on images I results in distributions that are
heavy tailed and with high kurtosis. This empirical fact has been widely reproduced and
accepted as a fundamental property of natural luminance images. This property has also
carried over onto natural colour images where we observe that the non-linear filter response
distribution of the following filter displays heavy tails:

F (U)(r) = U(r)−
∑

s∈N(r)

w(Y )rsU(s), (2.1)

where r represents a two dimensional point, N(r) a neighborhood (e.g. 3× 3 window) of
points around r, and w(Y )rs a weighting function. For our purpose we define two weights:

w(Y )rs ∝ e−(Y (r)−Y (s))2/2σr
2

, (2.2)
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and

w(Y )rs ∝ 1 +
1

σ2
r

(Y (r)− µr)(Y (s)− µr), (2.3)

where µr and σ2
r are the weighted mean and variance of the intensities in a window around

r. The w(Y )rs sum to one over s and are large when Y (r) is similar to Y (s) yet small
when the two intensities are different. The filter is applied to the chromacity channel U
(and equivalently V ) in the colour space Y UV . This space was chosen as it allows the
decoupling of the luminance and chroma components of an image.

These types of filters arose from the colorization problem by Levin et al. [28]. Here
the authors wanted to minimise a quadratic function to automatically colorize an image
(see section 3.1). This was developed under the assumption that areas of similar luminance
should have similar colours in natural images. The filters are also compatible with the
hypothesis that the essential geometric contents of an image are contained in its level lines
(see [29] for more details).

Figure 3.1 shows a sample of images that were filtered and modeled using the filter
(2.1) in the study [19]. The images give a measure of robustness to the findings as they
were chosen to cover a wide spectrum of natural scenes, ranging from natural landscapes to
urban environments. An example of a filter response image is shown in Figure 3.2. Here the
image ‘objects’ has been filtered on both chromacity channels while Figure 3.3 shows the
filter response histograms (in blue) for the U component only, which has been constructed
from the single pixel intensities. We observe the non-Gaussian heavy tailed distributions
which have also been observed across the dataset, and indeed our own arbitrarily chosen
images, empirically showing it to be a typical response of natural images.

2.2 Modeling sparse distributions

Two models have been proposed for modeling sparse distributions of filter responses.
The first are the Bessel distributions [20] which are analytic and parametric forms that are
efficient and closely match the observed non-Gaussianity. Interestingly, the Bessel repre-
sentations explain this phenomenon via a fundamental hypothesis that images are made up
of objects. The second is the most commonly used model, the ‘Generalised Gaussian Dis-
tribution’ (GGD). To the best of our knowledge satisfactory tests ascertaining which model
best matches the observed distributions have not been made, the difficulty being that they
differ mostly in the tails where the data is inherently most noisy. However, for our purposes
and especially due to its simplicity, we utilse the latter model:

Jα(x) =
1

Z
e−|x/s|α , (2.4)

where Z is a normalising constant so that the integral of Jα(x) is 1, s the scale parameter
and α the shape parameter. The GGD gives a Gaussian or Laplacian distribution when
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α = 2 or 1, respectively. When α < 1 we have a heavy tailed distribution which we call
sparse.

Figure 3.3 shows a fitting of the GGD to the observed histogram in blue, that takes the
form of a sparse distribution function. It is important that when plotting distributions that
the vertical scale shows log of probability, and not just probability. This is so that we can
clearly observe the nature of the tails which would otherwise look alike. This is illustrated
by the overlay of the classical parabola shaped Gaussian distribution which clearly shows
the difference in the tails between the two models.

The statistics for the set of images in Figure 3.1 are summarised in Tables 4.1 and 4.2
where we have used the first and second weighting functions, (2.2) and (2.3), respectively.
Here the numerical constants obtained for the GGD model illustrate the non-Gaussianity
of the filter response, with kurtosis always greater than three, i.e. that of the Gaussian
distribution, and α almost always less than one.

We next discuss the observed GGD distribution in relation to the filter response and
structure. This is important for understanding the particularities of the distribution and for
applications to image processing problems. An example illustrates the relationship clearly.
In general, the filter response of a pixel chosen centrally in the 3 × 3 window of regions
with colour homogeneity add to the central peak and regions where colour differs from
the central pixel map to the tails. The deviance from the median is large where colour
contrasts together with luminance, as is usually assumed to be the case for natural images,
and greatest where there is colour contrast but homogeneous intensity. The implication
here is that images with smooth homogeneous objects of colour will have a sharp central
peak and heavy tails. On the other hand, images with lots of objects in the scene with their
variety of changing colours will tend to have histograms that are less peaked and give more
probability in the tails. The GGD is able use its parameters obtained from histograms of
the filter response to adaptively model these changes in natural images.

3 Applications

Solutions involving statistical priors have played an important role in image processing.
In particular, the increased performance of sparse priors over Gaussian priors (e.g. [17])
have highlighted that the extra costs involved in optimising non-convex functions can be
compensated for by the more sharper and natural results. In the following section we show
how knowledge of the sparse prior for natural colour images can be utlised for solving
several problems.
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3.1 Colorization of Natural Images

The problem of adding colour to a monochrome image has been a long standing one.
The process simply involves trying to add colour to a monochrome canvass with as little
manual effort as possible. However, for natural images this is a difficult task as objects
need to be clearly segmented and shades of colour added so that the results appear natural.
These are substantial problems in image processing that have traditionally been overcome
through skillful and labour intensive work.

Recently, a semi-automatic approach has been proposed in the work [28]. In this paper
the authors proposed a ‘scribble based’ interactive approach to colorization, where users
mark points inside objects and their quadratic optimisation problem ‘spreads’ the colours
under the assumption that areas of similar luminance should have similar colours. This
results in a pleasing image that is visually acceptable.

Partially inspired by this work in this section we give a Bayesian analysis of the col-
orization problem. We begin with a gray level natural image in the RGB colour space
where a user has placed their own points of colour. Converting to the Y UV colour space
we now have the gray image Y and points Uo on a subset of pixels S in the U channel
which the user has marked (the procedure is similar for both U and V channels so we only
explain for one).

Now the problem is to find an estimate U ′ on the whole image s.t.

(c1) U ′|S = Uo,

(c2) and the resulting colour image looks natural.

Formally we have the following: For any A let us denote by PY (A) the conditional prob-
ability P (A|Y ). Then we wish to maximise PY (U

′|Uo). Applying Bayes’ formula results
in maximising PY (Uo|U ′) · PY (U

′), or equivalently to find

argmax
U ′

PY (U
′), (3.1)

under condition (c1).
To model the prior PY (U

′) we utilise the sparse filter response of (2.1), which we
modelled using a GGD. Hence we have the expression

PY (U
′) ∝ e−

∑
|Fi·U ′|α , (3.2)

where Fi is the filter operating on the i’th pixel in the image. Taking logs leads to an
equivalent minimisation objective,

argmin
U ′

∑
i

|(Fi · U ′)|α s.t. U ′|S = Uo. (3.3)

Here the parameter α now details the form of the prior assumed for the filter response.
Taking α = 2 gives the same optimisation problems solved in [28] which illustrates that
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their approach effectively assumed a Gaussian response of the filter Fi. However, the
analysis and modeling of natural images in section 2.1 has shown that α is almost always
less than one. Hence we arrive at the correct optimisation problem. Solving (3.3) for this
case leads to a non-convex optimization problem that unlike least squares regression has no
explicit formula for the solution. Instead we convexify the problem using L1 optimization
which often gives the same results for sparse signals [30].

Taking α = 1 we can rewrite the objective term of (3.3) in the vectorial form

||AU ′||1, (3.4)

where ||·||1 represents the L1 norm. A is an N×N matrix where the i’th row corresponds to
the filter response of the i’th pixel in the image. The constraint term of (3.3) is incorporated
into a matrix B of size |S|×N and with a column vector b holding the values of the marked
pixels, Uo. This allows the problem to be written as a Linear Program (LP) through the
addition of two slack variables νi and µi:

Min
∑

i νi + µi

s.t. AU ′ + ν − µ = 0 (3.5)

BU ′ = b

νi, µi, U
′(i), bi ≥ 0

The objective function and the first constraint allow us to find the smallest pairwise addition
νi + µi, such that their difference is equal to b(i) − Ai→U ′. This occurs precisely when
one of the νi or µi are zero and the other equal to b(i) − Ai→U ′, and allows us to handle
both the positive and negative cases.

The results shown in figures 3.4, 3.5 and 3.6 compare the quality of the colorization
using L1 optimisation against the approach of [28] (L2 optimisation). Here we have solved
the LP’s using the programming package ‘LIPSOL’ [31] available through Matlab and
Scilab. Marking large regions of pixels gives similar results, however, using a much smaller
set of marked pixels highlights the differences between the two methods. (We note here that
since we are only concerned with the correct propagation of colour, and not the choosing
of colour, we use the original colour channels of the images for marking colour points.)
Images (a) in the mentioned figures show the gray image with the marked colour pixels and
(b) show the original image for reference. (d) show the improvement in colorization using
L1 optimization over the L2 approach in (c). We observe more vibrancy in the colours
in (d) against the general ‘washed out’ look of the colorization in (c). Overall we have
a sharper and not an oversmoothed output as usually is the case for assuming a Gaussian
prior. In addition to the qualitative comparison the peak signal to noise ratio (PSNR) values
accompanying the figures provide standard measures for comparing images. The values
obtained using L1 optimisation show an improvement over the L2 approach.
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However, at present the effectiveness of the L1 approach still needs to be improved.
While we obtain sharper results in areas where colour information is sufficient, we also
observe incorrect colour artifacts in regions where not enough colour information has been
given. This is opposed to the L2 approach which simply results in washed out colour
artifacts. These areas then require additional colour markings in order to give convincing
colorizations. In future it would be useful to look into automatically selecting the required
colour points in a given image, or automatically obtaining the information from reference
images, and combining all this with the effectiveness of the L1 approach. This would
reduce the amount of labour and skill required for placing and choosing colours, and also
lead to more natural looking images.

3.2 Compression of Chroma Channels

The advent of digital imaging has led to an explosion in the amounts of data people are
capturing, storing and transmitting across the world. A key element in these activities is
compression. Compression algorithms are able to reduce data by many orders of magnitude
and allow the efficient management of images. Of particular interest are lossy compression
schemes, such as the popular JPEG standard, which aim for high data reduction with min-
imal perceptual loss. These schemes often take advantage of the sparse representation of
images in a suitable basis, keeping the largest coefficients that capture the essential infor-
mation whilst discarding the rest. In line with this philosophy of lossy compression, in this
section we present techniques that use elements of image statistics, compressive sensing
and colorization, as a tool for compressing chroma data. This work develops on the work
in [32] which used a grid of points to select and store colour data, and with L2 coloriza-
tion being used for reconstructing the colour channels. Their approach, while leading to
effective compression rates, resulted in the decompressed images displaying washed out
colours. This has also been mentioned in similar compression schemes by [33] and also
observed in the paper [34].

3.2.1 Sampling Procedure

In the following schemes the U (and V ) elements are sampled using random pixel se-
lection or a random linear combination of the pixel values. Both processes can be approx-
imately expressed as measurements in the compressive sensing framework using a sparse
binary random matrix (SBRM) [35]. Beginning with the direct pixel selection in the spa-
tial domain, we create a SBRM θ of size K × N (K << N ) which only has one unique
element {1} in each row corresponding to sampling K pixels from each of the chroma
channels. The parameter K describes the rate of compression where smaller values imply
less sampling and higher values more sampling. The rasterized chroma components are
then multiplied by θ and the obtained measurements stored as our compressed data. This
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Figure 3.1: The above displays a sample of 8 pictures taken from a dataset of 25 images that were used in the
study [19]. Images are all truecolour RGB obtained by a Canon digital SLR camera of varying resolutions in
uncompressed bitmap format, and reduced to sizes in the region of 200x200 pixels using Adobe photoshop.

process can be considered within the compressive sensing framework with reconstruction
accomplished in a similar fashion. However, for θ to truly be a measurement matrix it needs
to satisfy the Restricted Isometry Property (RIP) [30] for accurate reconstruction using LP.
The second sampling scheme we consider is a SBRM matrix φ of size K × N formed in
the following way: for each column, d random values between 1 and K are generated, and
1’s are placed in that column, in rows corresponding to the d numbers. If the d numbers are
not distinct, the generation for the columns is repeated until they are (this is not really an
issue when d << K). We chose to use d = 8 and store the measurements z = φU as our
coded colour data. By sampling random linear combinations of pixel elements this method
increases the probability of our measurement matrices being suitable within the framework
of compressive sensing and sparse recovery. Indeed, the matrix φ has been shown to satisfy
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Figure 3.2: (a) and (b) the filter response images on the chromacity channels U and V , respectively. The
histogram of single pixel intensities is obtained from these images and modeled using a GGD.

Figure 3.3: This figure shows in blue the histogram of the filter response of the U component of image ‘objects’
from Figure 3.1. Fitted to the data is the GGD distribution that takes the form of a sparse distribution function.
For comparison we have also overlaid the parabola shaped Gaussian distribution which illustrates the difference
in the tails between the two models.

a weaker form of the RIP [35].

3.2.2 Decompression and Examples

The reconstruction process involves solving a convex optimisation problem where we
seek the solution to the program,

argmin
U ′

∑
i

||(Fi · U ′)||1 s.t. ϕU ′ = z = ϕU, (3.6)
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where Fi is the filter (2.1) operating on the i’th pixel and ϕ is the measurement matrix
which is either θ or φ. In words (3.6) is searching for the N -pixel image with the sparsest
filter response that explains the measurements we have observed. This problem is similar to
the one (indeed, identical when ϕ = θ ) solved in the Bayesian analysis of the colorization
problem outlined in section 3.1, where the formulation leads to solving (3.3) for the convex
case α = 1. Hence, (3.6) can be written in a vectorial form and solved using LP as in
section 3.1. The reconstruction process exploits the fact that the filter responses of natural
images observed in section 2.1 have a sparse distribution. Hence the U (and V ) compo-
nent is compressible using the random matrices and reconstructible using L1 optimisation.
Figure 3.7 shows examples where an uncompressed bitmap image is compressed using ran-

Figure 3.4: Colorization example. (a) The gray image marked by a sparse set of colour pixels; (b) the original
image for reference; (c) colorization using L2 optimization; (d) L1 optimization; Here we have colorized using a
sparse set of arbitrarily placed marked pixels. We observe more vibrancy in the colours in (d) against the general
‘washed out’ look of the colorization in (c). Colour blending is also apparent, especially in the green leaves (at
the bottom and centre left) which have taken a red tinge from the pink petals and the red roses. Overall we have
a sharper result and not an oversmoothed output as usually is the case for assuming a Gaussian prior. PSNR: (c)
19.83, (d) 21.73.

domised seed selection and compressive sensing. Here the monochrome image is stored in
uncompressed format and colour information sampled at a rate of 5% of the original image.
Further compression can be achieved with visually indistinguishable results by storing the
gray component using JPEG. Sampling at lower rates resulted in increased artifacts in the
decompressed images. The results show that convincing reconstructions can be made from
a small amount of compressed data using L1 optimisation. The PSNR values quantify the
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results and show acceptable values for a lossy compression scheme.
We note here that the compression scheme sampling seed pixels at a rate of 5% gives

similar results when decompressing using L2 or L1 optimisation. Reducing the rate further
leads to washed out colour artifacts with the former method and incorrect colours using the
latter. However, with results from section 3.1, in future it would be useful to incorporate the
choosing of as few seed pixels as possible together with L1 optimisation in order to increase
the rate of compression. In the case of compressively sensing the chroma components, L2

reconstruction fails as it almost never returns a sparse solution.

3.3 Chroma Denoising

Denoising of images is a classical problem in image processing where we seek to re-
move unwanted artifacts considered to be degrading an image. In mathematical terms the
goal of denoising algorithms are to form an estimate x′ of the original image x given the
observed noisy version x∗, and is modeled as

x∗ = x+ n, (3.7)

where n is the matrix of the random noise pattern.

Figure 3.5: Colorization example. Here we have a comparison of the visual quality produced by L1 and L2

optimization. (a) is an example gray image marked by a sparse set of coloured pixels arbitrarily placed; (b)
the original colour image for reference; (c) shows colorization using L2 optimization; (d) L1 optimization. We
observe a more accurate colorization in (d) e.g. the red balloon in the centre of the image is correctly colorized
against the purple colorization in (c). We also observe more vibrant and sharper colours in (d) over (c). PSNR:
(c) 21.57, (d) 25.79.

In this section we consider the specific problem of denoising the chroma channels of
a colour image from inaccurate measurements in the colour space Y UV . We propose an
algorithm that demonstrates removing real noise from images, as well as images artificially
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Figure 3.6: Here we compare the visual quality produced by L1 and L2 optimization. (a) is a gray image
marked by a sparse set of coloured pixels arbitrarily placed; (b) the original colour image for reference; (c) shows
colorization using L2 optimization; (d) L1 optimization. We observe in particular that the blue feathers of the
bird on the left have had their colours blended with the green and yellow, also the red feathers of the bird on the
right exhibit much more colour vibrancy. This example illustrates the colour sharpness and vibrancy obtained
using L1 optimization over L2. PSNR: (c) 23.63, (d) 25.02.

corrupted by white and impulse noise. In our problem the U (and V ) elements are affected
by noise, while a good version of the Y channel is obtainable using existing methods.

Algorithms such as those in [36], [37] and [38] have successfully exploited the infor-
mation in the gray channel for effectively filtering the chroma components. Since the gray
channel contains the main structural information and chroma noise is more objectionable
to human vision (as opposed to the film grain appearance of gray image noise), separation
allows more intensive denoising of the chroma channels without too much loss of detail.
These models take into account the human perception of colour and allow us to handle the
particular characteristics of the noise affecting each component. In line with this approach
our algorithm utilises the non-linear filter response distributions observed in section 2.1 as
a regularization term (a prior, in Bayesian analysis) to penalize solutions that don’t give a
desired sparse solution when filtering.

Given a noisy chroma component U∗ and a denoised gray image Y , our task is thus
to recover a good approximation U ′ of the original element U . This model results in the
following optimisation scheme,

argminU ′ ||F · U ′||1 + λ||U ′ − U∗||d. (3.8)

Given an n × m image, (we abuse the notation a little and have) F here is an nm × nm

matrix whose rows correspond to filtering a single pixel where U ′ and U∗ are nm × 1

column first rasterized vectors. U ′ is the estimate we seek of U , while U∗ is the noisy
observation of U .
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Figure 3.7: Chromacity channel compression. (a) the original image; (b) reconstruction from 5% of random seed
measurements. (c), (e) and (g) original images; (d),(f) and (h) reconstruction from 5% of compressive sensing
measurements. PSNR: (b) 31.81, (d) 38.91, (f) 31.87, (h) 32.76.

Here the first term is our penalizing function which takes small values for desirable
solutions, and the second is the fidelity term which encourages the solution to be close
to the noisy version in some norm sense. For a real noisy image or one assumed to be
corrupted by Gaussian noise our reconstruction process involves solving (3.8) with d = 2.
When the noise is taken to be impulsive and affecting the image at random points by taking
extrema values, we solve (3.8) with d = 1. Modifying the fidelity term to d = 1 (i.e. L1

norm) has been studied with success within the Total Variation framework, as reviewed
in [39].

We chose to use Neat Image or DenoiseMyImage where appropriate to denoise the Y

channel when needed. These programs are two of several leading commercially available
image enhancing tools and are available free for personal use. We additionally used them
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as a bench mark for comparing our algorithm. An important parameter in our method
is the value of λ (whose values are given in the text accompanying the figures) which
control the relative weight of the difference between the noisy channel and the solution.
Too small a value and the optimisation results in an overly smoothed output, while too high
a value results in a solution that is too close to its noisy version. We found experimentally
that λ ∈ (0, 5] gave the best results, with half-integer adjustments for optimality. Our
optimisation problem was solved using CVX [40] which is a convex programming package
implemented in Matlab.

Figure 3.8: Denoising example. (a) shows the original image, (b) the image with Gaussian noise added to all
RGB channels. (c) is the result using Neat Image at maximum filtering. (d) shows the denoising result using
DenoiseMyImage. (e) is the result obtained using our algorithm. PSNR: (c) 26.69, (d) 26.35, (e) 27.20. (λ = 5)

3.3.1 Denoising Examples

The following illustrates how our approach compares with a leading commercial image
enhancement software, Neat Image, and also a current alternative that uses a modified
form of the state of art non-local means method, DenoiseMyImage. Fig. 3.8(a) shows an
example RGB image which is made severely noisy by adding Gaussian noise of mean
zero and variance 0.01 to all the channels as shown in (b). (c) shows the denoised image
obtained using Neat Image and (d) the result obtained using DenoiseMyImage. Neat Image
was used at maximum setting while DenoiseMyImage was used at an adjusted medium
level to obtain the best results. Neat image still left considerable noise like artifacts in the
image, while DenoiseMyImage gave a less noisy but much smoother output. The result
using our algorithm is shown in (e) where we used DenoiseMyImage to denoise the gray
component. Visually comparing the results shows that our algorithm gives an intermediate
result which is better than using NeatImage, while the colours are much more vibrant and
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Figure 3.9: Real image denoising example. (a) is an image that has been affected by severe chroma noise
resulting in the appearance of ‘blotches’ of colour. (b) shows the denoised image obtained using Neat Image
and (c) is obtained using our algorithm. (d) is the result obtained using DenoiseMyImage. We observe that
all the reconstructions are visually similar, although on close inspection our result gives less colour aberrations.
(λ = 0.5)

appear sharper than when using DenoiseMyImage. This is also further justified by the peak
signal to noise ratios (PSNR) which quantify the results, and shows our algorithm giving
comparable values.

The next examples focus on real world images where the type of noise affecting the
image is unknown. We begin with Fig. 3.9(a) which shows an image that is severely af-
fected by colour noise. This is typical of an image taken in low light conditions with high
ISO settings. (b) shows the image having been denoised using Neat Image. This program
requires a suitable region to be selected for noise estimation, after which luminance and
chrominance noise reduction can be individually adjusted. We required 100% noise reduc-
tion on all components due to the high amount of noise present in the image. (c) shows
our algorithm where the luminance channel was denoised using Neat Image and the filter
matrix F constructed from it for reconstructing the chroma channels. (d) shows the result
of using DenoiseMyImage. We observe that our algorithm gives similar noise reduction
compared to the existing methods, although on close inspection our result gives less colour
aberrations.

Fig. 3.10(a) has been taken from some examples given on the Neat Image website. This
is a crop of a television frame captured with a computer TV card. The image has strong
colour banding visible across all the image caused by the electric interference in the com-
puter circuitry. Similar banding is sometimes observed in digital camera images (caused
by interference too). The banding degradation does not affect the luminance, however all
channels still show grain like noise. (b) shows the best Neat Image result obtainable by
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Figure 3.10: Real image denoising example. (a) shows an example image affected by chroma noise that appears
as bands in the colour channels. (b) is the result obtained using Neat Image which still leaves evident colour
banding. (c) is our result which is able to remove the noise leaving a clean image as the colour banding does
not correlate with the luminance structure. (d) is the best result obtained using DenoiseMyImage. (e) shows the
banding still remaining in the V channel of the image when using Neat Image, while (e) clearly shows that the
banding structure has been removed in our reconstructed V channel. (λ = 0.1)

denoising the chroma and luminance at 100%. However, the banding is still evident in the
result. (c) is the result of our algorithm which clearly removes the noise. (d) is the best
result obtainable using DenoiseMyImage which is still unable to remove the banding noise.

The final example illustrates the flexibility of the model in handling chroma noise taking
a different distribution. Fig. 3.11 shows an image that has been corrupted by impulse noise
and reconstructed. (a) shows the original image, (b) the RGB image with noise having
been added to only the chroma channels and (c) shows our reconstructed image. The results
illustrate again that noise has been successfully removed to a very high standard, and this
is further justified by looking at the chroma channels which have had their impulse noise
removed, and by the high PSNR value. Neat Image and DenoiseMyImage are unable
to satisfactorily denoise the images affected by impulse noise. They either result in the
impulse points still remaining or a ‘washed out’ look at high rates of chroma filtering
e.g. (d). Interestingly, the results here indicate that given an impulse noisy colour image,
concentration of noise removal in the gray image easily allows high levels of noise removal
in the colour channels.
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Figure 3.11: Impulse noise removal example. (a) shows an original colour image and (b) a noisy version that
has had impulse noise added to the chroma channels in the Y UV space. (c) is our reconstructed image which is
virtually identical to the original. (d) shows a typical example when using Neat Image which results in a washed
out look and impulse points still visible. The impulse noise affecting the chroma is illustrated by (e) while the
success of our technique is shown by (f). PSNR: (c) 42.20. (λ = 0.5)

4 Conclusion

In this article we have presented some statistics concerning natural colour images and
their applications in image processing. We have observed the sparse behaviour of the non-
linear filter response distributions on natural colour images, and modeled it using a gen-
eralised Gaussian distribution which generally takes shape parameter α < 1. This has
been empirically justified using diverse datasets of images captured using different modes.
Subsequently, we incorporated knowledge of the image statistics into Bayesian models to
tackle several problems in image processing. Namely, colorizing gray images, compressing
chroma channels and denoising colour images.

In future we will look to methods to solve the optimisation problems much faster, and
at larger scales, as generally the schemes can take several minutes to solve an image of
approximate size 250×250 pixels. We also hope to apply our work to the compression and
denoising of image streams from hyperspectral cameras which generate much higher data
rate than can be accommodated by many applications.
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Table 4.1: Here we show the statistics of the non-linear filter response for the sample images using the first
weighting function (2.2). α is the shape parameter of the GGD fitting and k is the kurtosis of the filter response
with subscript notation representing the U or V component parameters.

Image U filtered response V filtered response
αU kU αV kV

balloons 0.695 11.23 0.624 14.23
indoors 1.11 5.22 0.619 14.45
houses 0.624 14.18 0.633 13.74

sky 0.344 94.00 0.328 114.87
objects 0.54 20.35 0.662 12.43
seaside 0.539 20.44 0.491 26.60
night 0.944 6.52 0.561 18.37
nature 0.745 9.76 0.826 8.11

Table 4.2: Statistics of the non-linear filter response for our sample images using the second weighting function
(2.3).

Image U filtered response V filtered response
αU kU αV kV

balloons 0.685 11.57 0.624 14.19
indoors 1.094 5.31 0.599 15.62
houses 0.61 14.98 0.607 15.14

sky 0.339 99.38 0.321 126.27
objects 0.534 21.02 0.654 12.79
seaside 0.54 20.39 0.489 26.84
night 0.931 6.66 0.556 18.85
nature 0.736 10.00 0.811 8.37
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