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Abstract: Pseudo-random number sequences which using the form of elliptic curves can be generated efficiently in software or
hardware by the same methods that are used for the implementation of elliptic curve (EC) public-key cryptosystems. In this paper, we
proposed a secure image encryption scheme using key sequences generated from Chaos-Driven Elliptic Curve Pseudo-random Number
Generator (C-D ECPRNG). This key sequences derived from random sequences based on EC points operations driven by a chaotic
map. These constructions improve randomness properties ofthe generated sequences since it combines good statisticalproperties of an
ECPRNG and a Chaotic Pseudo-random Number Generator (CPRNG). Entropy analysis of two test images shows that randomnessof
the ciphered images with the proposed key schemes are more random than in case of the ECPRNG without modulation by a chaotic
map. Statistical and differential analysis demonstrate that the proposed schemes have adequate security for the confidentiality of digital
images and the encryption is efficient compared to other competitive algorithms.
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1 Introduction

Cryptography is a practical means for protecting private
and sensitive information. Cryptographic systems are
divided between symmetric-key and public-key
cryptosystems. The security of most known cryptographic
systems depends upon generation of a long unpredictable
key sequences that must be of sufficient size and
randomness. For a sequence to be random, the period of
the sequence must be large and various patterns of a given
length must be uniformly distributed over the sequence.
However, sources of truly random integers are hard to use
in practice. Therefore, it is common to search for
pseudo-random number generators (PRNGs).

Considerable research has been made in the design
and analysis of PRNGs which are using the form of
elliptic curves such as [1]. Since methods presented in
[2], different approaches for extracting pseudo
randomness from such elliptic curves have been proposed
[3,4]. Elliptic curve cryptography (ECC) is a public-key
cryptosystem introduced by Miller [5] and Koblitz [6].
Since then, many researchers tried to employ ECC on
different data types and improve it’s efficiency by

proposing various techniques. In fact, the most attractive
advantage that motivated cryptographers to use ECC was
the suitability of it in the environments where processing
power, storage, bandwidth or power consumption is
constrained [7]. These characteristics of ECC motivated
us to study the potential of using it for image encryption.

Inspired by the near similarity between chaos and
cryptography, various techniques based on chaotic
systems have been proposed to design a random bit
generator called Chaotic Pseudo-random Number
Generator (CPRNG) [8,9,10]. The CPRNG can be used
in many applications requiring random binary sequences
and also in the design of secure cryptosystems. The key
sequence generators discussed in this paper is a variation
of the last two schemes, where, the key sequence
elements are random sequences based on Elliptic Curve
Pseudo-random Number Generator (ECPRNG) with
modulation by a chaotic map. Such a construction
increases randomness of the generated sequence and
makes its period (theoretically) infinite since it combines
positive properties of both ECPRNG and CPRNG.

Images are widely used in various areas such as
science, military, medical, engineering, art, entertainment,
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advertising, education as well as training. With the
increasing use of digital techniques for transmitting and
storing images, the fundamental issue of protecting the
confidentiality, integrity as well as the authenticity of
images has become a major concern. Image encryption is
the process of realigning the plainimage into an
incomprehensible one that is non-recognizable in
appearance, disorderly and unsystematic. In recent years,
various image encryption schemes have been proposed
and widely used by several researchers to overcome
image encryption problems [11,12,13].

In this paper, we propose a secure image encryption
scheme using additive elliptic curve and chaotic
switching mode. The proposed scheme utilizes key
sequences generated from EC points operations driven by
three chaotic maps. The simulation analysis demonstrated
that the proposed scheme has large key space, low
correlation among pixels in cipherimages and can satisfy
the performance requirements for the confidentiality of
digital images. Results of numerical analysis show that
the proposed image encryption scheme outperforms the
competitive image encryption algorithms.

The rest of the paper is organized as follows: In
Section2, we present preliminaries about some related
works. Also the description of ECPRNG, CPRNG and the
Chaos-Driven Elliptic Curve Pseudo-random Number
Generator (C-D ECPRNG) constructions are discussed.
The proposed schemes for image encryption and
decryption are discussed in Section3. In Section4, we
discuss the security and statistical analysis for the
proposed schemes. Comparison of the proposed schemes
with some existing schemes are made in Section5 while
conclusions are given in Section6.

2 Preliminaries

In most cryptosystems, the cryptographic key is a crucial
part. No matter how strong and how well designed the
encryption algorithm might be, if the key is poorly chosen
or the key space is too small, the cryptosystem will be
easily broken. Due to this principle, EC points operations
modulated by chaotic maps are chosen as a key stream
generator because of their properties and easy
implementation. In this paper we assume that the elliptic
curveE is defined over a finite fieldFp of prime orderp
which is represented by the elements of the set
[0,1, ..., p−1].

2.1 Related Works

Several attempts for using ECC in image encryption has
been proposed in literature. In [14], additive and affine
encryption schemes using six schemes of key sequences

obtained from random EC points were designed and
investigated. An EC-based key generation based on
combination of linear feedback shift register (LFSR) and
cyclic EC over a finite prime field have been proposed in
[15]. In [16,17], ECC was used only to encrypt the secret
key that was used to encrypt images. The image
encryption itself was done using permutation and
diffusion [16] or code computing [17]. A new mapping
method was introduced in [18] to convert a pixel’s value
to a point on an affine EC using a map table. A new
scheme for image encryption based on a cyclic EC and
generalized chaotic logistic map have been presented in
[19]. Two ECC-based encryption algorithms: selective
encryption of the quantised discrete cosine transform
(DCT) coefficients and perceptual encryption based on
selective bit-plane encryption have been presented in [20].

2.2 Elliptic Curve Pseudo-Random Number
Generator

LetE be an elliptic curve overFp, p> 3, given by an affine
Weierstrass equation of the form

E : y2 = x3+ax+b (1)

with coefficientsa,b∈ Fp, such that 4a3+27b2 6= 0. We
recall that the setE(Fp) of points of any elliptic curveE
in affine Fp-valued coordinates form an Abelian group
(with a point at infinity denoted byO as the neutral
element).

Points addition and points doubling are the basic EC
operations. Points multiplication on EC requires a scalar
multiplication operationkP, defined for a pointP= (x,y)
on EC and a positive integerk ask times addition ofP to
itself. This scalar multiplication can be done by a series
of doubling and addition operations ofP. Let us start with
P= (x1,y1) whereP 6= −P . To determine 2P= (x3,y3) ,
P is doubled, use the following equation:

x3 =
(

3x2
1+a

2y1

)2
−2x1 and y3 =

(

3x2
1+a

2y1

)

(x1− x3)− y1.

To determine 3P, addition of pointsP and 2P is used,
treating 2P= Q. Here,P has coordinatesP= (x1,y1) and
Q = 2P has coordinatesQ = (x2,y2) , whereP 6= ±Q .
ThenP+Q= (x3,y3) , where

x3 =
(

y2−y1
x2−x1

)2
− x1− x2

and

y3 =
(

y2−y1
x2−x1

)

(x1− x3)− y1.
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Therefore, doubling and addition are applied
depending on a sequence of operations determined fork.
Every point(x3,y3) evaluated by doubling or addition is a
point on the EC [21,22]. Let us now present constructions
of generating sequences of pseudo-random points on
elliptic curves:

2.2.1 Linear Congruential Generator on EC

The Linear Congruential Generator on EC (EC-LCG) for
a given pointG ∈ E(Fp) of high orderℓ is defined as the
following sequence:

Ui = G⊕Ui−1 = [i]G⊕U0 , i = 1,2, ..., (2)

whereU0 ∈ E(Fp) is the ”initial value”. The EC-LCG
generator has been suggested in [23] and then studied in a
number of papers such as [24,25,26].

2.2.2 Power Generator on EC

The Power Generator on EC (EC-PG) for a given point
G ∈ E(Fp) of high orderℓ and an integere≥ 2 provided
that the greatest common divisor (gcd) of (gcd(e, ℓ) = 1)
is defined as the sequence:

Ui = [e]Ui−1 = [ei ]G , i = 1,2, ..., (3)

where U0 ∈ E(Fp) is the ”initial value”. The EC-PG
generator has been introduced and studied in [27,28].

2.2.3 Dual-EC Generator

The Dual-EC generator is appeared in NIST
recommendations [29], make use of two pointsG andQ
on a non-super singular elliptic curveE(Fp) for
generation of random numbers. The algorithm can be
detailed as below:

Ui = ϕ(x(Ui−1∗G)) , i = 1,2, ...

Ri = ϕ(x(Ui ∗Q)) , i = 1,2, ...

whereU0 ∈ E(Fp) is the ”initial value”. The Dual-EC
generator mechanism represents an EC scalar
multiplication operation, followed by the extraction of the
x coordinate for the resulting pointUi and for the random
output Ri followed by truncation to produce the output
sequence.

2.2.4 Other Constructions on EC

We note that after [2], there have been several other
suggestions and approaches to extracting pseudo
randomness from elliptic curves, see also [30,31,32].
However, these methods and results have a slightly
different focus and we do not discuss them in this paper.

2.3 Chaotic Pseudo-Random Number
Generator

Consider the following dynamical system defined as a
pair (S,Φ), whereS is the state space and(Φ : S→ S) is a
measurable map [33]. The idea of construction of
CPRNG is to divide the state spaceS, µ (S) = 1, into two
disjoint parts:S0 corresponds to bit 0,S1 to bit 1 such that
µ (S0) = µ (S1) = 1

/

2. Assume thatµ is a normalized
invariant measure of the system, equivalent to a Lebesgue
measure. To obtain a pseudo-random sequence of bits we
observe the iterations of the system governed by the map
Φ starting from an initial points⊆ S and as a result of
these iterations we obtain the infinite sequence of
generated bits. Moreover, theoretically the period of such
a CPRNG is infinite, since it is iterated over the infinite
state spaceS.

In many practical applications for constructing
CPRNG we assume thatS = [0, 1] is the interval,
S0 = [0 , 0.5] , S1 = (0.5, 1] are two subsets of the
measure equal 0.5 andΦ : [0, 1] → [0, 1] is a chaotic
map with positive Lyapunov exponentλ . Such generators
have good statistical properties under certain conditions
[34]. In this paper, we consider three chaotic dynamical
systems governed by the following maps to generate the
binary sequences:
the Logistic Map [35]:

si+1 = Φ (si) = 4 ·si (1− si) , (4)

the Tent Map [36]:

si+1 = Φ (si) =

{

2si i f si <
1
2

2(1− si) i f si ≥
1
2
, (5)

both for the state spaceS= [0,1] andS0 = [0,0.5], S1 =
(0.5,1], and the Chebyshev Map [37]:

si+1 = Φ (si) = cos
(

4cos−1(si)
)

, (6)

for the state spaceS= [−1,1] andS0 = [−1,0], S1 = (0,1].

2.4 Chaos-Driven Elliptic Curve
Pseudo-Random Number Generator

The C-D ECPRNG is defined for the next two
EC-sequences. Here, we will considerbi as the random
bits generated by the chaotic mapΦ mentioned in2.3

bi =

{

0 if Φ i(s) ∈ S0
1 if Φ i(s) ∈ S1

, i = 1,2, ... (7)
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2.4.1 Additive Elliptic Curve

This method is a modification of the EC-LCG proposed in
2.2.1. This generator takes high order pointG∈ E (Fp) as
the seed point and is defined as the following sequence:

Ui = [i(1+bi)]G⊕U0

=

{

[i]G⊕U0 i f bi = 0
[2i]G⊕U0 i f bi = 1 , i = 1,2, ...

(8)

whereU0 ∈ E(Fp) is the ”initial value”.

2.4.2 Chaotic Switching Mode

This method works as the same method introduced in
2.4.1above. The generator work on two curvesE1(F23)
and E2(F97) with small prime numbers 23 and 97
respectively. After applying the additive sequence in (8),
we take one point fromUE1 and one point fromUE2 in a
staggered manner in order to generate binary sequences
from these two curves. For example, consider that after
applying the additive sequence in (8) the resultantUE1
points is A = (a1, a2, ...) andUE2 points is D = (d1, d2, ...).
We take this series of points (a1 d1 a2 d2 ....) to generate
our sequence. In the case of chaotic switching, we
randomly take points in unpredicted series based on
chaotic map to generate pseudo-random sequence. For
example, ifb1 = 0 we takea1 and if b1 = 1 we taked1 and
so on.

Ui =

{

ai ∈ A if bi = 0
di ∈ D if bi = 1 , i = 1,2, ... (9)

Using EC points sequenceUi result from the previous
equations (8, 9) and by converting thex,y coordinates of
each pointUi(x,y) into binary format we can obtain the
binary sequenceBi by applying the following map

Bi =Ui(x,y) =URHB(x,y). (10)

This map takes the right-half bits (RHB) fromx andy
coordinates which is denoted byURHB(x,y). If the number
of bits is odd, we take the small right-half and we ignore
the infinity points [38].

3 Image Encryption with the Proposed Key
Schemes

The intended schemes for the generation of random
sequences of EC points operations are discussed in
Section 2.4. Its application for encrypting images is
presented here. Ten key schemes for image encryption
using various EC-sequences are designed and comparison
of encrypted images is done using Histogram, Entropy
and Correlation coefficient. The proposed schemes are

applicable to other forms of data like text and video apart
from images.

Both of additive elliptic curve method and chaotic
switching mode for encrypting images are designed
where the key sequences derived from EC points
operations driven by three chaotic maps (Logistic,
Chebyshev and Tent map) as described in Section2.4(1,
2). The same key sequence is used for both encryption
and decryption process. Here, ten schemes for image
encryption using various key sequences are considered
and they are given in Table1.

Table 1: Various key schemes proposed for image encryption
Key Scheme Description

Key-1 A−EC2x2 Additive E(F23)
Key-2 A−EC3x3 Additive E(F97)
Key-3 S−EC2x3 Switching ofE(F23) andE(F97)
Key-4 L−EC2x3 Modulated with Logistic map
Key-5 C−EC2x3 Modulated with Chebyshev map
Key-6 T −EC2x3 Modulated with Tent map
Key-7 A−EC7x7 Additive E(F12107)
Key-8 L−EC7x7 Modulated with Logistic map
Key-9 C−EC7x7 Modulated with Chebyshev map
Key-10 T −EC7x7 Modulated with Tent map

In this paper, we used equation (1) to generate three
elliptic curves by choosing the parameters (a = 2,b = 7)
over two small primes 23 and 97 namedE(F23) and
E(F97) respectively and one large prime 12107 named
E(F12107) to generate EC points. After applying the
intended schemes in Section2.4(1, 2) and then the map in
equation (10), we obtain the binary sequences as
indicated in Table1. Here, the binary digit ofp = 23 is
equal 5 bits and forp = 97 is equal 7 bits, , so we take
two RHB (EC2x2) and threeRHB (EC3x3). Similarly the
binary digit of p = 12107 is equal 14 bits, so we take
sevenRHB (EC7x7) from the x,y coordinates of each
pointUi(x,y) of the resulted EC-sequences and we ignore
the infinity points.

The first column in Table1 represent the generated
keys namedKey− 1, ...,Key− 10 and the second column
represent their related schemes. SchemesA − EC2x2,
A− EC3x3 and A− EC7x7 represent sequence generated
from EC points addition operation without chaotic
modulation as mentioned in Section2.2.1 of E(F23),
E(F97) and E(F12107) respectively. Sequence generated
from chaotic switching mode ofE(F23) and E(F97) is
represented in schemeS− EC2x3. SchemesL − EC2x3,
C − EC2x3, T − EC2x3, L − EC7x7, C − EC7x7 and
T − EC7x7 represent sequences generated from additive
EC method modulated with Logistic, Chebyshev and Tent
maps respectively. In the third column, description of
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each key scheme is given in brief according to it’s
generation method.

4 Security and Statistical Analysis

A good encryption scheme should be robust against all
kinds of possible attacks. The attacks are varying in
nature such as statistical attack, brute-force attack, etc.
Hence, analysis of encryption schemes such as key space
analysis, statistical analysis, correlation analysis andkey
sensitivity analysis ensures right development of the
security system. What follows are the security aspects of
the proposed key schemes using the available techniques
of analysis.

4.1 Key Space Analysis

The key space that is being used for encryption must be
large enough to make the brute-force attack infeasible
[39]. The proposed chaos-driven elliptic curve
pseudo-random key sequence generator has a flexible,
moderately large key space, which comprises of a number
of initial points and control parameters for chaotic maps,
possible ECs and the base point. Hence, this large key
space is sufficient which is immune to all kinds of
brute-force attacks. Results of applying the XOR
operation in encryption of images with the ten proposed
key sequences are shown in Figs.1(a – j) for Lena image
and Figs.2(a – j) for Fingerprint image.

4.2 Statistical Analysis

Statistical analysis on cipherimages is of crucial
importance for any encryption algorithm. Actually, a
perfect cipher should be vigorous against any statistical
attack. Statistical analysis has been performed to show the
resistance of the proposed encryption schemes against the
possible statistical attacks. The following aspects related
to statistical attack are considered in this paper.

4.2.1 Histogram Analysis

To prevent the leakage of information to an adversary, it is
important to ensure that cipherimage does not have any
statistical resemblance to the plainimage. A good image
encryption scheme should always generate a cipherimage
of the uniform histogram for any plainimage. In this
work, the histograms are plotted for two encrypted
images (Lena and Fingerprint). The histogram of Lena
plainimage contains large spikes while the histograms of
it’s cipherimages are almost flat and uniform which
indicates equal probability of occurrence of each pixel as
shown in Figs.3(a – c) for Key-1, Key-2 and Key-3 as

examples. They are significantly different from the
respective histogram of the Lena plainimage and hence
does not provide any clue to employ any statistical attack
on the proposed image encryption schemes. For the
histogram of Fingerprint plainimage, it is clear that it is
almost non-flat and nonuniform which indicates that all
pixels occur with nonequivalent probability and the
histograms of it’s encrypted images using Keay-1, Key-2
and Key-3 in Fig.4 are not very flat. However, histograms
of it’s encrypted images using Key-4 to Key-10 are flat
and uniform which provides security against cipher-text
only attack by statistical analysis.

4.2.2 Entropy analysis

Entropy is defined to express the degree of uncertainties
in the system. It is well known that the entropyH(m) of a
message sourcem can be calculated as:

H(m) =−
255

∑
i=0

P(mi)log2P(mi) (11)

whereP(mi) represents the probability of symbolmi . For
all the considered cipherimages, the number of
occurrence of each gray level is recorded and the
probability of occurrence is computed. Tables2 and 3
indicates the various values of the entropies for the plain
and encrypted images. Except for Key-1, Key-2 and
Key-3 in Table3, it can be noted that the entropy of the
encrypted images are very near to the theoretical value of
8 indicating that all the pixels in the encrypted images
occur with almost equal probability. Therefore, the
information leakage in the proposed cipher schemes is
negligible, and it is secure against the entropy-based
attack.

4.2.3 Randomness Tests

The proposed key sequences generator is based on the
arithmetic operation of ECC and the properties of chaotic
maps. The random sequences are unpredictable and the
period of the sequences is analyzed theoretically. In
addition, sequences produced by this generator have
passed tests from the NIST’s SP 800-22 ”Statistical Test
Suite for Random and Pseudo-random Number
Generators for Cryptographic Applications” as introduced
in [38]. As a result, statistical attacks are difficult to
perform in the proposed key sequences generator.

4.3 Correlation Analysis

It is known that two adjacent pixels in a plainimage are
strongly correlated vertically, horizontally and diagonally.
This is the property of any ordinary image. The maximum
value of correlation coefficient is 1 and the minimum is 0.
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Fig. 1: Lena image encrypted with the ten proposed keys

A robust encrypted image to statistical attack should have
a correlation coefficient value of ˜0. Results of horizontal,
diagonal and vertical directions are obtained as shown in
Tables2 and3 for Lena and Fingerprint plain and cipher
images respectively. These tables demonstrate that there is
negligible correlation between the two adjacent pixels in
the encrypted images, even when the two adjacent pixels
in the plainimage are highly correlated.

4.4 Differential Analysis

In order to avoid the known-plaintext attack, the changes
in the cipherimage should be significant even with a small
change in the plainimage. If one small change in the
plainimage can cause a significant change in the

cipherimage, with respect to diffusion and confusion, then
the differential attack actually loses its efficiency and
becomes practically useless. To quantify this requirement,
two common measures are used: number of pixels change
rate (NPCR) and unified average changing intensity
(UACI) [40]. We have tested the NPCR and UACI with
the proposed key schemes to assess the influence of
changing a single pixel in the plainimages on the
encrypted images. From the results, we have found that
the average values of the percentage of pixels changed in
encrypted image is greater than 99.68% for NPCR and
30.54% for UACI in case of Lena. In the case of
Fingerprint, the percentage of pixels changed in encrypted
image is greater than 99.68% for NPCR and 38.53% for
UACI. This implies that the proposed key schemes is very
sensitive with respect to small changes in the plainimage.
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Fig. 2: Fingerprint image encrypted with the ten proposed keys

Fig. 3: Histogram of Lena image and encrypted images with the ten proposed keys
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Fig. 4: Histogram of Fingerprint image and encrypted images with the ten proposed keys

5 Comparison of The Proposed Schemes with
Existing Schemes

By comparing the entropy and correlation analysis with
other schemes, the proposed schemes shows significant
results as in Tables2 and3. It is shown that the entropy
and correlation coefficient values of Lena image are
performing better for all the proposed keys compared to
the other schemes as shown in Table2. In Table3, due to
the lowest entropy value for the Fingerprint plainimage,
only the proposed Key-4 to Key-10 are performing better
compared to the other schemes mentioned in Table3.

6 Conclusions

In this paper, we have presented a new scheme for image
encryption based on the Chaos-Driven Elliptic Curve

Pseudo-random Number Generators. In the presented
algorithm, we have modulated the random sequences
generated from additive operation of elliptic curve points
and three chaotic maps in order to obtain efficient
keystream sequences for encryption. All the simulation
and experimental analysis show that the proposed
encryption schemes has high sensitivity to secret keys and
almost ideal entropy of the cipherimages. In addition, it
has large key space, which is by far very safe for image
encryption applications, and outperforms the competitive
image encryption algorithms in terms of efficiency
comparing to other encryption schemes.
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Table 2: Comparison of entropy and correlation coefficients of
the proposed schemes and other schemes for Lena image

Scheme Entropy Horizontal Vertical Diagonal
Lena 7.5807 0.93915 0.96890 0.91686
Key-1 7.9963 0.00936 -0.08948 0.00877
Key-2 7.9966 0.00056 -0.03608 0.00144
Key-3 7.9974 0.00069 -0.00450 -0.00295
Key-4 7.9972 -0.00018 -0.01739 0.00001
Key-5 7.9969 0.00108 -0.02107 0.00340
Key-6 7.9974 0.00446 -0.01491 -0.00513
Key-7 7.9969 -0.00174 -0.00407 -0.00341
Key-8 7.9971 0.00018 -0.00876 -0.00109
Key-9 7.9971 -0.00102 0.00382 -0.00280
Key-10 7.9973 0.00581 -0.00730 0.00192
Ref.[16] 7.9990 0.001 0.006 0.091
Ref.[15] 7.9952 0.0072 0.000158 -0.0428
Ref.[18] 7.9981 0.004971 0.003803 0.003519
Ref.[19] 7.9973 0.0010 0.0017 0.0125
Ref.[14] 7.9964 -0.000798 -0.0013 -0.0046
Ref.[41] NA 0.0005938 0.0041 0.0048

Table 3: Comparison of entropy and correlation coefficients of
the proposed schemes and other schemes for Fingerprint image

Scheme Entropy Horizontal Vertical Diagonal
Finger 6.3367 0.91398 0.94519 0.82989
Key-1 7.9279 0.01043 -0.05708 0.01918
Key-2 7.9789 -0.00735 -0.00013 -0.01388
Key-3 7.9881 0.00022 -0.03475 0.00539
Key-4 7.9931 0.00017 -0.02025 0.00349
Key-5 7.9918 0.00026 -0.02444 0.00056
Key-6 7.9928 0.00757 -0.01305 -0.00403
Key-7 7.9970 -0.00358 0.00170 0.00228
Key-8 7.9975 0.00115 -0.00763 0.00519
Key-9 7.9974 0.00608 -0.00116 -0.00344
Key-10 7.9972 0.00062 -0.00383 -0.00114
Ref.[16] 7.9990 0.001 0.006 0.091
Ref.[15] 7.9952 0.0072 0.000158 -0.0428
Ref.[18] 7.9981 0.004971 0.003803 0.003519
Ref.[19] 7.9973 0.0010 0.0017 0.0125
Ref.[14] 7.9964 -0.000798 -0.0013 -0.0046
Ref.[41] NA 0.0005938 0.0041 0.0048
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