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Abstract: The steady increase in car ownership has made essential the development of macroscopic models of fine resolution changing
dynamics of vehicles using different theories such as traffic signaling systems in the presence of signaling lights. Thecentral objective
of this study is to provide elements of knowledge needed to characterize the road traffic conditions on through the development of
macroscopic modeling based on a lagrangian discretisationof the GSOM (generic second order model). Our research is to model the
evolution of a line of vehicle packets and a distribution of microscopic variables by a system of differential equationswhile using an
exponential law for the generation of vehicles. It’s a simulation study of the behavior of a queue of vehicle packets moving according to
the GSOM model in lagrangian coordinates. We focused on a representation of real objects: segment, junction and vehicle. We showed
how the distribution of vehicle packets varies according todifferent driving conditions. To assess the ability of our basic lagrangian
GSOM model to correctly reproduce the observations of behavior common traffic, we have developed a traffic control model in the
presence of signaling lights, while implementing an analysis of key results. The advantage of these signaling lights isthat they can
observe the creation of shock waves (deceleration waves) when the lights turn red and rarefaction waves (acceleration waves) when the
lights turn green.

Keywords: macroscopic models, Lagrangian GSOM model, traffic controlmodel, traffic signaling systems, shock waves, rarefaction
waves

1 Introduction

Traffic flow models have been developed to cope the
needs of traffic operations [12], management [27],
planning, control and evaluation in order to find a solution
to congestion problems [2,4]. Most of these applications
require models that are simple, robust, with modest
requirements in terms of data processing, also with a low
computational cost. Macroscopic models answer those
needs in a satisfactorily way[18]. During the last decade,
significant researches in traffic flow modeling were
devoted to higher order macroscopic models, to improve
the description of non-equilibrium flow traffic
characteristics. In the literature, Payne [23], proposed the
first second order traffic flow model. This model has been
criticized in particular in [6], proclaiming for second
order models on the grounds that they do not respect the

anisotropic nature of traffic [29]. In order to avoid such
non-physical solutions, other models have been proposed
such as the model of Del Castillo in [23] and Zhang in
[36]. These models do not treat the satisfactory anisotropy
problem. The main reason is that they have characteristics
speeds greater than traffic flow speed.

Most macroscopic models can be stated as
conservation laws systems with possible sources terms.
LWR model [19,32] is particularly simple: it is expressed
by a single conservation law (with the unknown density).
Nevertheless, it incorporates many important elements of
traffic dynamics (capacity [12], fundamental diagram
[30]). In [6], Daganzo showed that theLWR model
responds to a principle of variation. The main point is that
flow and density derived from a single function
(cumulative flows or the so-called Moskowitz function).
A natural extension of theLWR model consists of the
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GSOM family of models developed by Lebacque & al.
[22]. The GSOM family models generalize the LWR
model and include many other macroscopic models [1,35,
3,23,5,11,34,15].

The first order modelLWR [19,26] Fixed speed
motorway as decreasing function of its density,
constituting thus a traffic state law. Then it evolves in time
and space the latter by a single scalar equation. The
second order traffic models are evolving independently
density and speed variables characterizing their
macroscopic conceptualization and continuous traffic.
After their calling into question in [6], they have been
modified by Zhang in [35], Aw and Rascle in [1] and
Lebacque and his team in [20,22,25]. Dynamics of traffic
flow results from the interaction of two processes. The
first is hydrodynamic in nature, and yields behavioral
characteristics of traffic that can be observed on a regular
basis, namely the acceleration waves (rarefaction) and
deceleration (shock waves), congestion, decreasing speed
with the density, etc. The second process is the result of
the impact of specific driver attributes (behavior,
origin-destination, class vehicle/driver) on the fluidityof
traffic. These two processes can be integrated into a single
macroscopic traffic flow model, ie theGSOM family.
Generally, a typicalGSOM model combines the density
conservation equation (representing kinematic wave of
traffic) with a system of conservation laws for individual
vehicle attributes and behavior of drivers, such as the type
of vehicle, aggressiveness, the destination or the
information flow to and from a vehicle. The particular
structure ofGSOM models, in a way very similar to that of
the LWR model, allows reaffirming theGSOM as a
problem of optimality and thereforeGSOM models satisfy
a variational formulation. GSOM family traffic flow
models combine theLWR model with the dynamics of
specific driver attributes and can be expressed as a system
of conservation laws.

The purpose of this paper focuses onGSOM (Generic
Second Order model) models of traffic flow. They are
generally continuous in time and space, and dynamic,
they are defined by a system of differential equations. In
the literature, Payne [31] was the first to propose a second
order traffic flow model. The dynamic flow results from
the interaction of two processes. The first is of
hydrodynamic type, and yields behavioral characteristics
of traffic that can be observed on a regular basis, namely
the acceleration wave (rarefaction waves) and
deceleration (shock waves), the congestion, the reduction
of the speed density, etc. The second process results from
the impact of the driver specific attributes (behavior,
origin, destination, vehicle/driver class) on the flow of
traffic. These two processes can be integrated into a single
macroscopic model of traffic flow, namely theGSOM

family according to the selected attribute [19,1,36,5,11,
34,15,21,17,33]. In this paper, we will study the
macroscopicGSOM model in Lagrangian coordinates and
a discretization numerical scheme using Godunov scheme
[8,10] to solve the macroscopicGSOM model recast in

lagrangian coordinates. The objective sought is the
numerical resolution in Lagrangian discretization and
modeling the trajectory of vehicle packets. It is pertinent
to build a numerical resolution ofGSOM model in the
main purpose of easily conducted runs. The objective
assesses also the nature of vehicle packets whose
evolution is described by a general class. We also deal
with the dynamics of traffic signals through four actions:
optimize cycle time, optimize the phase diagram, adjust
the gap between intersections and finally optimize the
durations of the various phases. The interesting objective
of the control model developed is to see the effects of
orange and red lights on the dynamics of standard vehicle
packets following the discretizedGSOM model.

2 Characterization of GSOM family

2.1 GSOM model equations

The GSOM model is a model that generalizes theARZ

model [1,35]. It combines the conservation equation with
the fundamental diagram specific to the driver behavior
attribute. It can be expressed as follows:























∂ρ
∂ t

+
∂ρv
∂x

= 0 Conservation of vehicles

∂ρ I
∂ t

+
∂ρ Iv

∂x
=−ρ f (I) Conservation attribute driver I

v= ℑ(ρ , I) Driver dependent fundamental diagram
(1)

The function f (I) is a relaxation function.I is a
Lagrangian driver attribute that characterizes the behavior
of each driver. It is preserved along the trajectories of
vehicles, a result in harmony with the fact that contact
discontinuities waves propagate discontinuities ofI to the
speed of traffic. The fundamental diagram is expressed as
follows:

v= ℑ(ρ , I) and ρv
de f
= ℜ(ρ , I) (2)

ℜ is assumed to be concave with respect toρ , for all
values ofI . Note that the equation ofI can be reformulated
as an advection equation as follows:

İ =
∂ I
∂ t

+ v
∂ I
∂x

= φ (I) and φ (I) = f (I) (3)

In this context, the functionφ (I) can express the
relaxation of I to a reference or an equilibrium value
(specific to the driver), or can express a disturbance
process, in the case of stochastic attribute. The
eigenvectorsW1 andW2 respectively associated with the
eigenvaluesλ1 andλ2 of theGSOM model are:

W (ρ ,v)1 =

(

−∂vI
∂ρ I

)

and W(ρ ,v)2 =

(

1
0

)

(4)
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The functions of demand and supply ofGSOM model are
defined by:

∆ (ρ , I ;x) = Max 0≤r≤ρℜ
(

ρ , I ;x−
)

∀(x, t)

Σ (ρ , I ;x) = Max r≥ρ ℜ
(

ρ , I ;x+
)

∀(x, t)
(5)

2.2 Examples

The GSOM family recovers a wide range of existing
models:

•The LWR model [19,32] itself is a GSOM model with
no specific driver attribute, expressed as follows:

{

∂tρ + ∂x(ρv) = 0 Conservation of vehicles

v= ℑ(ρ ,x) Fundamental diagram
(6)

The fundamental diagram for theLWR model states
that traffic flow is always at an equilibrium state. It is
commonly assumed that the flow is an increasing
function of density between zero and a critical density
and then the flow decreases until the maximal density.
However the fundamental diagram shape is always a
subject of debates [7] and there exists a wide variety
in the literature encompassing concave and triangular
flow functions [9].
•The LWR model with bounded acceleration proposed
in [24,25,28] is also a GSOM model in which the
propagated driver attribute is simply the speed of
vehicles.
•The ARZ model (standing for [1] and [35]) for which
the driver attribute is taken asI = v−Ve(ρ) that is
ℑ(ρ , I) = I +Ve(ρ).
•The GeneralizedARZ model proposed in [7] that can
be also seen as a particular case of the model
described in [34]. These models introduce an
interaction mechanism between two different
fundamental diagrams for distinguish equilibrium and
non-equilibrium states.
•Multi-commodity models of Lebacque & al. [23] or
Herty & al. in [13].
•The Colombo 1-phase model deduced in [22] from
the 2-phase model of Colombo in [5]. In this case, the
driver attributeI is a scalar which is non-trivial in
congested situation. In fluid area, the model follows
the classical LWR model.
•The stochasticGSOM model of Khoshyaran and
Lebacque in [16]. The driver attributeI is a random
variable depending on the vehicle indexN and on the
random eventω such thatI = I (N, t,ω).
The random perturbations do not affect the vehicle
dynamics but affect the driver perception and its
behavior.

3 Numerical Resolution of theGSOM Model
by Lagrangian Discretization Method :
Application of the Godunov Scheme

The basic idea of the Lagrangian discretization of the
GSOM model is the following: first we rewrite theGSOM

model in its Lagrangian form, second, we integrate the
equations for the behavioral attributes and integrate the
results in the kinematic wave equation. The result of this
procedure will be a single conservation law for vehicle
spacing. A very useful feature of theGSOM model is its
simple expression in Lagrangian coordinates.
The first fundamental variable ofGSOM model as
Lagrange is the number of cumulated vehicles

N
de f
=

∫ +∞
x ρ (ξ , t)dξ . This variable is supplemented by a

second variable which is the timeT
de f
= tN can be

interpreted intuitively as an index of the vehicle.
From these definitions we can identify the following two
relationships:

{

∂xN =−ρ
∂tN = q

(7)

A little algebra gives the following expressions for the
change of coordinates:

{

∂x =−ρ∂N

∂t = ∂T +q∂N
⇔

{

∂N =−r∂x

∂T = ∂t + v∂x
with r

de f
= 1

ρ and v= rq

(8)
By rewriting the originalGSOM model, the conservation
equation can be rewritten as follows:

∂tρ + ∂x(ρv) = 0⇔ ∂T r + ∂Nv= 0 with v= ℑ(ρ , I) de f
= V (r, I)

(9)
This result is logical andI is preserved along the
trajectories.
Then, it can be shown that the following transformation is
admissible, in the sense that it represents the shock waves
(shock waves of coordinates(x, t) and (N,T) are
equivalent):

Thus, the system (1) of theGSOM model is equivalent
to the following system of Lagrangian coordinates:











∂T r + ∂Nv= 0

∂T I = 0

v= ϑ (r, I)
de f
= ℑ(1/r, I)

(10)

Discretization is an abstraction that represents the
projection methods and recovery of continuous spaces to
the discrete spaces, and conversely.
Our primary objective in this paper is to solve
numerically the Lagrangian discretization ofGSOM model
and to modelling the trajectory of vehicle packets as
shown in the Fig.1.

We can solve numerically theGSOM model by the
method of particle or Lagrangian discretization method.
The objective of this discretization is to consider the
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Fig. 1: The Lagrangian discretization based on vehicle
packets.

cumulative function, which we denote byN(x, t) and
express the model as follows:

{

ẋ= ℑ(ρ , I)
İ =−S(I)

(11)

In fact, considering thatxn (t) the trajectory of the nth
vehicle(N (x, t) = n) , the discretized system (11) is then
given by:







ẋn (t) = ℑ
(

1
xn−1(t)− xn(t)

, In (t)

)

İn (t) =−S(In (t))

(12)

The model (1) discretized in time can be written as
follows:






xn (t +∆ t) = xn (t)+∆ tℑ
(

xn−1 (t)− xn(t)
∆N

, In (t)

)

In (t +∆ t) =Ψ (In(t) ,∆ t) ; with ∆ t = dt
(13)

With Ψ (I0,τ) is the solution to the momentτ of
dt
dτ = −S(I) and Iτ=0 = I0. Therefore the discretized
GSOM model is:



































xn (t +∆ t) = xn (t)+∆ tvn(t)

vn (t) = ℑ
(

xn−1(t)− xn(t)
∆N

, In (t)

)

In (t +∆ t) = In(t)+∆ tS(In (t))

an (t) =
vn (t +∆ t)− vn(t)

∆ t

(14)

Note thatS(In (t)) = −İn(t), In(t) represents the
invariant associated to the nth vehicle andan (t) is the
acceleration.
We have chosen the 1-phase Colombo model [5] to
represent the speed function. To ensure that vehicles
comply the minimal spacing, the followingCFL stability
condition must be respected:

∆ t ≤
∆N

ρmax(I+)Wmax(I+)
(15)

Note that ρmax is the maximum density for
ℑ(ρ , I)≥ 0 andWmax(I) = ∂ρ ℑ(ρ , I)|ρ=ρmax(I).
I+ is defined by the Godunov scheme as the largest value
taken for the invariantI and this value will depend on
initial conditions, the input and the functionS(In (t) ,∆ t).

4 Application to Traffic Control on the
DescretizedGSOM Model

4.1 Characteristics of signaling light network

Traffic control is a vast area in which several techniques
and signal forms are used to increase the safety of
passengers. Among the most important issues of traffic
control, we find the management of intersections [14].
Around 1920 appeared at the intersections of major cities
a material to orchestrate conflicts between vehicles.
Signaling lights are a set of signals, devices and
regulations to ensure the safety of traffic. It is a means of
giving orders to the driver of a vehicle and aims to avoid
risks inherent in the traffic. Indeed, during the last
decades, major advances have been made in the field of
automatic traffic control. There are many ways to act on
traffic but the most important remains the regulation via
the signaling lights.
They play an important role in the traffic control process
by allowing mainly; to ensure the safety of vehicles and
pedestrians sharing in time using the same space between
the conflicting flows; to ensure to the management system
based on lights plans a significant adaptation to traffic and
a real effectiveness in wide operating ranges, since the
monitoring and maintenance of the system are provided;
and to minimize the time spent in the transport system as
well as the waiting time for files.
There are two intersections control modes for signaling
lights: light plan and adaptive control. The first is older
and less expensive, while the second is more complex and
powerful. The light plan consists to construct and
organize lights phases. These ones are defined by their
duration and by the award of a light color for each mobile
power involved in the considered intersection. The
simplest light plan consist to repeat indefinitely the same
sequence of fixed time phases, always arranged in the
same order, in a way to constitute a fixed cycle; this is the
case chosen for our practical application to manage the
signaling lights.
A signaling light is characterized by its color (green,
yellow or red). Each signalized intersection is associated
with a light plan that defines the sequence of states of all
control lines of the intersection signals.
A signal plan is described by the following variables:

•A directional movement:
It is a set of vehicles that are from the same entry in
an intersection and headed for the same output (direct
movement, turn left, turn right).
•A phase diagram:
A phase is the period during which one or more
compatible movements are allowed in a crossroads.
This is the operating state of the intersection while
some traffic flows are allowed. Note that any phase
change results in the failover of at least one light. The
phase diagram specifies all phases with passing
opportunities for each other. For our application, the
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network operates on a single phase diagram, chosen
on the one hand to prevent the simultaneous passage
of conflicting movements, on the other hand, in
accordance with the importance of the traffic load on
certain movements.
•A release time:
It is a minimum safety period that must be respected
in the transition of two incompatible lights. Between
two phases passes necessarily a safety time: orange
and red full (all branches of the intersection are at the
red light in order to clear the inside of the junction).
For our application, lights plans are programmed with
a minimum number of phases in order to minimize
this loss of time.
•A cycle:
This is the duration of green lights, orange and red. It
is constituted by the phase chaining. Its duration is
equal to the time between two consecutive events
counterparts of the same phase. Cycle time refers to
the time between two successive passages of all the
lights of an intersection by the same phase, in the case
where these phases are not retracted.
•An offset:
This is duration relative to a reference time which is
used for synchronization of the various network
controllers. This is the time that separates the green
beginnings of two adjacent phases. Indeed, if they
belong to two intersections with equal constant
cycles, the offset is constant and is expressed modulo
the cycle. The set of offsets is then the network
coordination plan. Different methods and a multitude
of tools exist to regulate traffic with signaling lights.
The fixed light plan in time; used for our application
in this paper; remains the basis of a light management
system.

4.2 Modeling Approach

4.2.1 Simulation Characteristics

To develop our model, the use of object-oriented
programming is a promising solution. We set our model
on a network. In this section, we show how we have
implemented these concepts to obtain a set of simulation
components, which will be used in a wide variety of
applications.
The GSOM simulation model developed comprises logic
to implement: generating vehicles in the system to be
simulated, the vehicles move through the system,
interactions vehicle model. So our application is mainly
based on simulation as a tool to retrieve results that will
optimize evaluation strategies. But before we have
prepared the ground for determining the characteristics of
the road network: the network topology used for the
simulation. The development is based mainly on the
architecture part.
For discretizedGSOM model, the model description must

be accompanied by an individual injection model vehicles
based on a static distribution law. The generation vehicles
model used in this paper is based on an exponential
distribution function (Poisson Process). With a necessary
and sufficient condition:y ∈ [0 1], and knowing thatλ is
the maximum flow; the generation model based on the
statistical exponential function of individual injection
distribution vehicle is:

φ (y) =−
1
λ

log(1− y) (16)

We give in the following figure the network used in
simulation:

Fig. 2: Description of the network used in simulation.

Traffic control is a broad field in which several
techniques and forms of signaling are used to increase
user safety. In this paper, the applied signal lights control
strategy is discussed. The impact of signal lights on traffic
dynamic is the creation of shock waves (deceleration
waves) when the lights is red and rarefaction waves when
the lights is green (acceleration waves). Kinematic waves
are reflected by the upstream or downstream propagation
of the abrupt variations in acceleration and
correspondingly the speed. Kinematic waves include start
or output capacity restriction waves (downstream
propagation), the formation of queues (upstream
propagation).
The presence of a signaling light is simulated as follows:
we allow the link controlled by a signaling light to allow
passing vehicles only during the actual green cycle. When
the light is red, vehicles cannot cross the end of junction
and join the queue.
Various signaling light control strategies can be
represented, ranging from fixed lights plans to adaptive
strategies on isolated intersection or network.
The methodology applied for our case is to repeat
indefinitely (until the end of the simulation) the same
sequence of fixed time phases, always arranged in the
same order. We mentioned also, because of the
importance in regulation by signaling lights of traffic
acceleration phenomena, at first at signaling lights but
also in output congested areas.
The considered simulation site corresponds to a road
network with two lanes. We studied the evolution of
traffic on a homogeneous network (no lanes changing);
with a length equal to 1500 meters in the presence of a
signaling light spaced with a length equal to 15 meters
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and with a position equal to 900 meters, as is shown in
Figure2.
Simulation data used in the simulation are: network
length = 3000m, time step:∆ t = 0.1s, maximum speed :
vmax = 25ms (90kmh), maximum acceleration :
accmax= 2ms2, maximum deceleration :decmax= −2ms2,
maximum density = 0.2veh/m,∆N = 5, maximum
attribute= 3,6veh/m , minimum attribute= −3,6veh/m,
vehicle length :longveh= 5m, position of signaling lights
: posilight = 1500m, width of the intersection :
widthinters = 15m, duration of green:Tgreen = 35s,
duration of orange:Torange = 5s, duration of red:
Tred = 35s, cycle :T = Tgreen+Torange+Tred = 75s.
To simplify modeling, we examine the traffic behavior of
the network used in Figure2 given above in the presence
of only one signaling light located at the third junction
before the third section.
We suppose that the signaling light operates in phase; it is
the question of repeating indefinitely the same sequence
of fixed time phases. The interesting objective of this
control model is to see the effects of orange and red lights
on the standard dynamics of vehicle packets according to
the discretizedGSOM model.

4.2.2 Implementation and Development

The control of road traffic through signaling lights
requires 4 actions generally: to optimize the cycle time, to
optimize the phase diagram, to adjust the offsets between
intersections and finally to optimize the durations of the
different phases.
The strategy that we implement is interested in optimizing
durations of the different phases for the network. For our
application, and to simplify programming, we will not
consider the phase diagram and offsets; cycle and phases
are assumed to be known and fixed.
Microscopic and macroscopic variables are calculated by
the discretized GSOM model. The standard vehicle
dynamics for our application based on the discretized
GSOM model described in the previous section.
The model that we have chosen to represent the speed
vn (t) is the 1-phase Colombo model.
Thus, during the green light, there are no constraints on
the acceleration, so the individual speeds satisfy our
standard discretizedGSOM model according Lagrangian
discretization:

{

ẍk = an

ẋk = vn
(17)

During the red light, we must be able to stop before the
stop line, which implies a minimal braking. Finally when
it is orange, there are two possibilities: brake enough to
stop or accelerate enough to pass the intersection before
the orange time.
By combining the three points (in front of the vehicle,
from behind, light), we arrives at a field of acceleration
that can be chosen to increase comfort. If this field was

empty (incompatible conditions) it mean that it’s
necessary to apply another policy, and that it is in a
normal situation.
In this context, we will try to change the policy of
acceleration according to simulation time and cycle.
We define two variables shown as follows:

{

Tm = modulo(t,cycle)

Tmm= modulo((t +1) ,cycle)
(18)

Therefore, the timet is expressed modulo the cycle,
and therefore the variablerest that we calculated gives
information on the status of the signaling light (red,
orange or green).
So during the time intervalTm ≤ t ≤ Tm + Tgreen each
vehicle packets checks the standard equations of our
discretized GSOM model. Define another variable:
Ty = Tm + Tgreen when the light changes from green to
orange.
Also we can calculate respectivelyxTy and vTy ; the
position and speed that correspond to the time

Ty < posilight will be

{

xk (Ty) = xTy

ẋk (Ty) = vTy

–If :
xTy + vTy (Torange) ≥ posilight + widthinters + longveh
each vehicle packets will cross the intersection
following the standard dynamic and so it will
accelerate crossing the intersection.

–However, if :
xTy + vTy (Torange) < posilight +widthinters+ longveh it
will be impossible for this vehicle packet to liberate
the intersection during the Orange light Phase if it
continues with the same acceleration and the same
speed. Then, two possibilities arise here:

1.If xTy +vTy (Torange+Tred)≤ posilight : we imposes
on the vehicle packets to follow the changed

dynamics ie:

{

ẍk = 0

ẋk = vn
, that is it must keep its

current speed with an acceleration equal to 0
2.If now xTy + vTy (Torange+Tred) > posilight , the

vehicle packet must decelerate; there are then two
other situations:

a)If xTy +
vTy(Torange+Tred)

2 > posilight ; the vehicle will
follow:



















































ẍk =











































0 if Ty+
2
(

posilight − xTy

)

vTy

≤ t ≤ Tmm

(

−vTy

)2

2
(

posilight − xTy

) if

Ty ≤ t ≤ Ty+
2
(

posilight − xTy

)

vTy

ẋk = vn
(19)
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This deceleration strategy will cause the vehicle
packet to stop at x = posilight at time

t = Ty+
2(posilight−xTy)

vTy

b)If xTy +
vTy(Torange+Tred)

2 ≤ posilight ; the vehicle
packet must follow:



















ẍk =
−2

(

xTy + vTy

(

Torange+Tre f
)

− posilight
)

(Torange+Tred)
2

for Ty ≤ t ≤ Tmm

ẋk = vn
(20)

This strategy will lead the vehicle packet to light
x= posilight at a given timeTmmwith the following
speed:

ẋk (Tmm) =
2
(

posilight − xTy

)

Torange+Tred
− vTy > 0 (21)

We applied these requirements for all vehicles packets
(leader and follower) at each time step. In this context
computationally speaking, we developed two new
methods: in proceedings where we advance our vehicle
packets on the entire network using the discretizedGSOM

model.
So we adopted the same strategy as for the application
without the presence of signaling lights. We used the
exponential distribution for the injection of vehicle
packets and the discretizedGSOM model for advancing
these vehicle packets following the modified approach.
After and at each time step and just after to advance the
vehicle packet, we needs to compare his new position
with the maximum length of the current segment and thus
test the possibility of its inclusion on the section.
As an illustration, we can see that our model is not based
on a division into time slots. On the contrary, vehicle
packets are gradually introduced to the network and their
movement to their destination is followed continuously.
Each vehicle packet has an origin, a destination, a
departure time and a route selection strategy (fixed for all
vehicle packets) at each junction along its route; a
decision will be made on the following link to go. Each
vehicle packets circulating on the modeled network is
found in interaction with other vehicle packets and
vehicles subject to the effective control strategy.
As outputs of the simulation model developed, values are
available at the end of the simulation, such as average
speed, travel time, acceleration and position. We will
analyze the simulation results in the next section.

5 Simulation Results

The purpose of the simulations is to observe the progress
of vehicle packets on the network. We will present in this
section our simulation results. We will conclude that the

behavior of the position and velocity to variations of
acceleration is consistent with the physical phenomena
that we want to reproduce. Indeed, the purpose of
simulations is to observe the progress of vehicle packets
on the network based depending on the state of the
signaling light passing through these vehicle packets. We
was respectively plotted changes of only some outputs
vehicle packets of network outputs in a plane of
simulation time/position, simulation time/speed and
simulation time/acceleration. The results are the
following figures:

Fig. 3: Trajectories of vehicle packets (Without signaling
light).

Fig. 4: Trajectories of vehicle packets in the presence of 1
signaling light.

If we observe the trajectories in Fig.4, it can therefore
be seen that compared to Fig.3, the behavior vehicle
packets model to a signaling light has rounded
trajectories. Note that the area where positions are
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Fig. 5: I dynamics.

Fig. 6: Velocity profile of the first leader.

constant corresponds to the formation of the queue at red
light. The characteristics issued right line of light includes
information on the duration of red light :(Tred = 35s).
The speed is therefore zero in the entire area. The latter is
delimited upstream of light by the shock wave between
the end of the queue and the fluid traffic, unperturbed by
the presence of signaling light.
For the startup area of vehicle packets, this area is
between the trajectory of the first vehicle packet facing
the red light and the shock wave modeling the behavior of
the rear of the queue. Indeed, the queue is formed during
the red phase of signaling light.
The trajectory analysis also shows that the first vehicle
packet of this scenario cross the area slowly (see Fig.6).

Fig. 7: Evolution speeds of the first 10 vehicle packets
(without signaling light).

Fig. 5 shows the attribute dynamics.
So as we can see, the evolution of fundamental variables
of the discretizedGSOM model in the presence of
signaling light; i.e. acceleration (see Fig.10 compared to
Fig. 8) and speed (see Fig.9 compared to Fig.7), is in the
form of an accordion. This form is due to the presence of
stop waves when the signaling light is red, and restarts
waves when the signaling light turns green.
In fact, the figures show that for positions less than
1500m, speeds and acceleration have amplitudes of high
fluctuations. They are moderately influenced by the
phases of the signaling light, with a triangular or
trapezoid profile whose apexes do not reach the bearings
for the speedvmax, for the accelerationaccmax and for the
decelerationdecmax.
However, for sufficiently large time and superior to
positions of light position, we note that microscopic
variables regain their equilibrium again and back to
normal since there is no obstacle beyondX = 1500m.
The curves confirm the significant impact of the durations
of red phases specifically on the progress of vehicle
packets throughout the network.
The simulation test also shows that the discretizedGSOM

model for vehicle packets is coherent and consistent. The
low time calculation of simulations stimulates the idea
that the discretizedGSOM model can be used as a
decision support in real-time traffic control strategy.
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Fig. 8: Evolution accelerations of the first 10 packets of
vehicles (without signaling light).

Control strategy, with the simplifying assumptions
(constant phases) and a simple network to avoid the
influence of exogenous parameters, achieved the objective
assigned to it in the beginning. This strategy improves the
overall fluidity if the network design allows.
The increase and gradual decrease of the speed,
observable in curves, take into account that the capacity
of acceleration or deceleration of vehicle packets is
variable: they depend on the characteristics of braking
system.
The signaling light can be clearly observed creating shock
waves that is to say, a spatio-temporal discontinuity
representing the front of the queue when the lights turn
red and a rarefaction waves representing the back of the
queue when the lights turn green.
Here is a spectacular phenomenon that we have a good
perception for this application. Kinematic waves are
reflected by the propagation to upstream or to
downstream of abrupt variations of acceleration and
correspondingly speed. The kinematic waves include start
waves to light or in capacity restriction release
(downstream propagation in general), the queue
formation and the traffic bubbles propagation moving in
congestion (upstream propagation).
This is the following observation: vehicle packets
grouping (platoons) resulting from startups vehicle

Fig. 9: Evolution speeds of the first 10 vehicle packets in
the presence of 1 signaling light.

packets light tend to disperse in the absence of constraints
(green light and after the position light).

6 Conclusion and next steps

The objective of the paper is to introduce a numerical
solution to the GSOM model using Lagrangian
discretization with the Gudonov scheme. The application
of such a numerical simulation model is in traffic
management. Traffic conditions in a network can be
predicted and analyzed by simulating the trajectory of
vehicle packets and analyzing their behavior along
trajectories.
The discretized GSOM model constitute a tool for
knowledge by providing important concepts such as
supply and local demand for traffic, static or dynamic
equilibrium networks, behavior laws of vehicle and the
representation of traffic flows. In this paper, we presented
theGSOM model. We proposed a numerical discretization
method according to the Lagrangian Godunov scheme.
Finally, we developed an algorithm based on a
deceleration strategy, and a control application in
response to signaling lights based on the discretized
GSOM model. This will allow us to conclude that the
behavior of the position and velocity to variations in
acceleration is consistent with the physical phenomena
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Fig. 10: Evolution accelerations of the first 10 packets of
vehicles byGSOM model in the presence of 1 signaling
lights.

that we want to reproduce.
The next step would be modeling lanes changing and
intersection and theGSOM discretized model. Ultimately,
the objective is to construct a simulation model in real
time, for predictive purposes. The flow model should be
coordinated to an optimization algorithm modeling the
route choice of drivers: this is the step of calibration and
validation of the model on experimentalNGSIM data.
Research on microscopic modeling based on the
Lagrangian discretization ofGSOM model can be used as
part of driver assistance. The concept aims to control
acceleration and deceleration of a vehicle packets
including interactive following situation.
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