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Abstract: In this paper, we propose a new modified recursion schemeh®m@approximate solution of higher-order, multipoint,
nonlinear boundary value problems with higher-order Rdipe boundary conditions by the Adomian decompositionhmet Our
new approach utilizes all of the boundary conditions tow@edn equivalent nonlinear Fredholm-\Volterra integral aggun before
establishing the new modified recursion scheme for the isoluWe solve several complex numerical examples obtaiaingpidly
convergent sequence of analytic functions as the soluliioall cases investigated, we achieved an approximatelprextial rate of
convergence, thus confirming that only a few terms of the Adardecomposition series can provide an accurate engieerodel
for parametric simulations.

Keywords: Adomian decomposition method, Adomian polynomials, baupd/alue problem, Robin boundary condition, nonlinear
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1 Introduction equations, partial differential equations, integral
equations, integro-differential equations, etd0420].
Boundary value problems (BVPs) for nonlinear ordinary The ADM is a powerful technique, which provides
differential equations are extensively applied in scienceefficient algorithms for analytic approximate solutions
and engineering. For example, the temperatureand numeric simulations for real-world applications in the
distribution  of  convective  straight fins with applied sciences and engineering.
temperature-dependent thermal conductivity is modeled In the ADM, the solutionu(x) is represented by the
by a second-order nonlinear BVR][ The diffusion of  Adomian decomposition series and the nonlineayityx)
oxygen in a spherical cell with Michaelis—Menten is represented by the series of the Adomian polynomials
kinetics is modeled by a second-order nonlinear BP [ that are tailored to the particular nonlinear function as
The magneto hydrodynamics Jeffery—-Hamel flow . .
problem leads to a third-order nonlinear BVB].[The _ -
Euler-Bernoulli beam is described by a fourth-order “(X)—n;)“”(’o and NU(X)_nZOA"(X)’ @
nonlinear BVP, e.g. the beam-type nanoscale
electromechanical system actuatel.[In all of these respectively, where the Adomian polynomials are
applications, Robin and Robin-type boundary conditionsdependent upon the solution components fropix)
can often be involved 5-9]. through un(x), inclusively, i.e. An(x) = An(uo(X), ...,
The Adomian decomposition method (ADM) is a un(X)). Adomian and Rach2[l] published the definitional
well-known systematic method for practical solution of formula for the Adomian polynomials in 1983 for the
linear or nonlinear and deterministic or stochastic simple nonlinearity Nu(x) = F(x,u(x)) and the
operator equations, including ordinary differential differential multivariable nonlinearity
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Nu = F(xuX),u(x),uPY(x)), or one-variable
nonlinearity and differential multivariable nonlinearit
respectively, wher€ is assumed to be analytic, as

10" hd
An(X) = = 37F (% S AMun(x)) , 2
() n' oA ( n; n( o
10" i  n
Anl) = o P06 3 A" (6, 5 AN
i AP Yy ®)
n=0 A=0

whereé; < &, and

u® (x) 4 f (x, u®

ar.1u® (&) + ar U™ (&1) + a1 3u® (&) = Ba,
a2.1U? (&) + a2 UV (&) + a25u (&) = Bo,
a31U@ (&) + azuY (&3) + az3u® (&) = Bs,

whereé; < & < &3 andé&; < &3. We emphasize that our
formulation permits the number of distinct boundary
points to be less than or equal to the order of the

where A is a grouping parameter of convenience, anddifferential equation.

similarly for more complex nonlinearities. We observe

Then we consider the general case:

that only the dependent variables, such as the solution

u(x) and its derivatives, are parameterized while the

independent variables suchyaare not parameterized.
The Adomian polynomials are in the form

n
Ao = F(x,Up), andAq = ¥ CKFM(x,up), n>1, (4)
&1

ulP (x) + f (x, u®(x),...,uPD (x)) =0,
p . .
Eiaj,iu(p") (&) =Bj, i=12....p, p>2,
i=
whereé; < ... <& <--- < &pandéy < &p.

etc. Several convenient algorithms to readily generate the

Adomian polynomials have been developed by Adomian

and Rach 21, 22], Rach PR3, 24], Wazwaz [L6, 25|,
Abdelwahid p€], and several others2f-30]. Recently,

Duan B1-34] has developed several new algorithms and

2 Derivation of the equivalent integral
equations and decomposition of the solutions

subroutines for fast generation of the one-variable and the&ase 1: the second-order differential equation

multi-variable Adomian polynomials.
For fast computer generation,
recommend Duan’s new Corollary 3 algorithr83[ to

generate the coefficient€X and hence the Adomian

polynomials quickly and to high orders as

C _un, forn>1 and (5)
Ck=23"" K(i+1)ujCt j» for2<k<n.

It does not involve the differentiation operator, but only
requires the analytic operations of addition and
is eminently convenient for
symbolic implementation by MATHEMATICA, MAPLE

or MATLAB as well as for debugging. Furthermore, it has
been timed to be one of the fastest subroutines on recor

multiplication, which

using a commercially available laptop comput&3][
We note that the solution componentgx) may be

determined by one of several advantageous recursion

We begin by considering the second-order nonlinear

we especially differential equation

U209+ 1 (xu® (9,u? () =0, (6)
subject to the classic Robin boundary conditions

ap1u® (&) + arou® (&) = By, (7

a2 .U (&) + a2 (&) = Bo, (8)

where we have assumed that< &, i.e. there are two
distinct boundary points. We assume that E@safd @)
are two linearly independent equations in four unknowns.
Also the nonlinear functiori is assumed to be analytic in
8" of its arguments.

We rewrite Eq. 6) in Adomian’s operator-theoretic
form as
L2u(x) +Nu(x) =0, 9)

schemes, which differ from one another by the choice ofwhere

the initial solution componeniy(x), beginning with the
classic Adomian recursion schen85{38].

In next section, we first consider the second-order and
third-order BVPs with Robin and Robin-type boundary

conditions, respectively, as
u@ (x) + f (x, u®@ (x),u® (x)) =0,

ar U (&) +a1u@ (&) = By,
a2 1UY (&) + a2u (&) = B,

d2
= 5l Nu(x) f(x,u

Applying the inverse operator

X X
= / / v(x) dxdx
&1/é

to both sides of Eq.9) yields

(0,u® ().

L %L%u(x) = —L°N(x),
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where - where
LI Lu(x) =u(x) — ®(x),
011 012 u® (&) _ (B
@ (x) = (El)‘FU (€1)41, A1 =x%x—¢1. (121 22 u© (El) B2/’
Thus ) .
u(x) = @ (x) LIZNu(x) (10) From our assumption that the boundary conditiof)s (

or, upon substitution, we obtain

© (&) +uW (&) Ay — LT 2Nu(x),

which is the equivalent nonlinear Volterra integral
equation for the solutioru(x) with two undetermined
constants of integration, u® (&) and u® (&).
Calculating the first-order derivative yields

u(x) = (11)

X

u® (x) =u (&)~ L INu(x), whereL ()= / (-)dx.

&

Next, we evaluate the formulas for the solution and its first-

order derivative ak = &, as
u(&2) = u® (&) +ul (&) Az1 — LT3Nu(x),
M (&) = u® (&) — L Nu(x),

where
/ / ) dxdx,
&1

(-)dx.

(12)
(13)

Ny =E&—¢&, L

L) = /6 E

Substituting Egs. 12) and (3 into the remaining
boundary conditiong) yields

(021 + 02202 1) UM (&1) + ap2u® (&)
= B2+ az1L; 3NU(X) + 2211 SNu(x).
By denoting

(o1 =021+ 022421,

- 14
B2 = B2+ a1l 3NU(X) + a2 2L 3Nu(X), (14)

we obtain two linearly independent equations solely in

terms of the two unknowns© (&) and u (&) in a
similar pattern as the boundary conditio@sénd @) as

V(&) +au® (&) = By, (15)
V(&) + a2 (&1) = Bo. (16)
Or equivalently

V(&) B

(—g-;;-g;—;—) (Eiw (&)) N (’m')'

Introducing the partitioned matrix system coefficient
and the partitioned vector inp@t we have

ay, 1LI

02 1LI

o=,

and @) are linearly independent, it follows that deb +# O,
thusu= «~1p, where

o1 adiw _ 1 022 —012
defo) ~ @11022-012021 \ —0p1 011
_ (011012
021 022 )’

and where the inverse matrix elements are computed
by an appropriate algorithm, such as by the Laplace
expansion, Gauss-Jordan elimination, Gauss-Seidel
iteration, and LU or Cholesky decomposition where
applicable, or by a native routine implemented within an
available computer algebra system such as
MATHEMATICA, MAPLE or MATLAB.

For our 2<2 matrix, we readily obtain

Y (&) ) <§1

<u< )

u® (&) B2
ul) (&) = a11B1 + a1, 232,
u© (&) = a21B1 + 022B2,

which therefore determmes the values of the constants of

mtegratlonu (El) andu(© (El) by formula.
Substituting Eq.17) into Eq. 1), we have

011012

-(3

Q21 022

(17)

u(x) = {52,131 + 52,2&2} + {51,131 + El,ZBZ}Al

—L;°Nu(x).
Insertingﬁz in Eq. (14) leads to
U(x) = 02,181 + 02202+ (a1,1B1 + a1.202) A1

+002,202.1L5 3NU(X) + 2202 2L 5NU(X) — L1 °Nu(x)
+ (51720211L£%NU (X)+ 51720272LI§NU (X)) Aq.

Upon appropriate algebraic manipulations, we deduce that

u(x) = (azaP1 + a22B2) + (a1.1B1 + a1.2B2) A1
+ (0224 01241) (Uz,ﬂ-i%NU (x)+ 0272LI§NU (X))
—Ly*Nu(x),
(18)
which is the equivalent nonlinear Fredholm-\olterra

integral equation for the solution without any
undetermined constants of integration.
Decomposing the solution and nonlinearity as
u(x) = Zoun(X), Nu(x) = EDA"(X) (19)
n= n=|
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where Ay (X) = An(Up(X),...,un(X)) are the Adomian and the maximal error remainder parameters
polynomials, and substituting the decomposition series

i i MER,= max_ |ER,(X
(19) into Eq. (L8) yields Rn ;M 52| Rn(X) |,
S Un(X) = (a21B1 + 022B2) + (a1.1B1+ a12062) A1 for n > 0. We remark that the logarithmic plot of the
=0 © MER, versus the index provides a reliable measure of
—L1? S An(X) + (22 + a1.241) (02,1L1% S An(X) the rate of convergence, e.g., a nearly linear relation with
n=0 " n=0 a negative slope demonstrates an approximate exponential
+ap L2 g An(x)) . rate of convergence.
""n=0

Case 2: thethird-order differential equation

For simple nonlinearities such asu = u? u®,uu, Consider the third-order nonlinear differential
e.g., positive integer powers, polynomials and productequat|on

nonlinearities, etc., we can use the classic Adomian

recursion scheme as u® (x) + f (x, u© (x),u® (x),u® (x)) -0, (24)

Uo (X) = (a2,1B1 + 022B2) + (a1,1B1+ a1.2B2) Dy,

Unt1(X) = =Ly ?An(X) (20)  subject to the set of three Robin-type boundary conditions
+(a22+ 01.281) (az‘lLI%A” (%) + 22k 3An (X)) ’ ap1u® (&) + agou® (&) + a1 3u® (&) = 1, (25)

n> 0, to calculate the solution components. We note that a,;u® (&) + azu® (&) 4+ a23u® (&) = B, (26)
each such approximate solution
PP a31u? (&) + azou (&3) + azau® (&3) = B3, (27)

- U (X) (21) where & < & < & and & < &. We assume that
o WZO m Egs. @5—(27) are three linearly independent equations in
nine unknowns.
satisfies all of the boundary conditions, i.e. when using  Using Adomian’s operator-theoretic form, we have
Adomian’s choice for the initial solution component 3
Ug(X). L*u(x) = —Nu(x), (28)
For more complicated nonlinearities such as
Nu = €' sin(u),v/1+Uu?, e.g., exponential, sinusoidal,
radical, negative-power, and even decimal-power a3
nonlinearities, etc., we instead use one of the L =3 Nu(x) = f (X, u©@ (x),u® (x),ul? (X)).
parameterized recursion schemes, e.g.,

where

Applying the inverse operator

Uo (X) =c,

up (X) = —c(1—q) + (2,181 + 02202) s X XX

+ (5272 + 5172A1) (Gz;Li%Ao (X) + UZ,ZLIEAO (X)) 2 L; V(X) = /51 /51 /61 v (X) dxdxdx
+(a11B1+ A12B2) A1 — L7 %A0 (), . .

Uns1 (X) = —c(1— q)q"— LIZAn (x) to both sides of Eq.28) yields

+ (022 + 01241) (02,1L£%An (X)+ 0225 5An (X)) ; L33u(x) = —L®Nu(x),

wheren > 1, c andq are two predetermined constants and where
0 < g < 1. For example, by the mean value theorem of '—I3|-3U(X) =u(x)—®(x),
integral calculus we can takeas the average value of the
original solution componenty in the classic Adomian and
recursion scheme over the domain, i.e.

1

&L _ _ —_
=% & /E1 (021B1+ 02282+ (A1 B1+ O1.2B2) Ay )dx
52 38

= a21B1+ Q222+ (01,181 + a1,232)

2
@ (9 = u® (&) +u® (&) &1 +u® (&) L

Thus we have

(23) u(x) = @ (x)— L{3Nu(x), (29)
For a problem without an a priori exact closed-form

analytic solution, the error analysis can be considered by "’

calculating the sequence of error remainder functions

or, upon substitution, we obtain

u(x) = u® (&) +u® (&) 41 +u® (51) L;3Nu(x),
ERy () = 67 (9 + f (x " (0. 4" (). (30)
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which is the equivalent nonlinear \olterra integral The matrix form is
equation for the solutionu( ) With three undetermined

constants of integration® (1), uM (&) andu® (&y). 011 012013 UZ; (&1) B
From Eq. 80), we calculate the first- and second-order 021 Q22023 u (&) | = | B |

derivatives as 031 G321 0133 ) (&1) B3
u®d (x) = u® (&) +u® (&) A — L1 Nu(x), (31)  Introducing the partitioned matrix system coefficient
U@ (x) = u? (&) - Ly INu(x), 32) and the partitioned vector inpBt we have
where au=p,

X X X where

X) :/ / v(x) dxdx, Ly v(x) :/ v (x) dx.
&1/é &1 u® B1

0(11 012 ai3 (; (é1) >
Next, we evaluate the formulas for the solution and its * = a21 0'22 az3 u= U<0> (&) |, B=1{B|.
first- and second-order derivativesat &;, for j = 2, 3, Ga1 O3z 033 (1) Bs

as
22 If det(«) # O, thenu = a1, where we define
i1
u(gj) = u® (&) +u (&1)4j1+u? (&) 7 L adiw) 11 012 G1a
—L3NU(Y), (33) Y T Geta)  \redl

031 032 033
W (&) = ub (&) +u? (El)Ajl—Lleu( ) (34) herethei el _ o g
N 1 where the inverse matrix elemeimis; are rather compute
@ (&) = u® (&) — Ly Nu(x), (35 by an appropriate algorithm.
For our 3x 3 matrix, we readily obtain

whereA;; = & — &, and

§j u® (&) a1 Q12 013 B
L]_J Al /El Al dXdXdX (36) BE;) (El) — QZ,l qzvz (1273 @2 ’

) (&) 031 A3 033 Bs
dXdX 37
/51 /51 ( ) or - o o
L) = / (-)dx. (38) 2 (&) = a11P1 + O12Bo+ G13Ps, (43)
: o b (El) = a27131 + 672’2324— 521333’ (44)
Substituting Egs. 3335 into the boundary  u® (&)= a31B1 + Ga2Be+ G3abs, (45)

conditions @6) and €7), for j = 2, 3, yields which therefore determmes the vaIues of the constants of

integrationu® (&;), u (&) andu(® (&;) by formula.

2
2 (&) | aj1+aj28)1+ aLg% Substituting Egs.43—(45) into Eqg. 30), we have
D (&) (aj2+0aj38j1) +u@ (&) ajz = u(x) = az1f1 + 5372_324; 53,3_&3 B
B+ 1Ly INU(X) + a1 2L NU(X) + arj 3L °Nu (x) . +(az21B1 + 22B2+ 023B3)A1 (46)

_ Y I
+(a11B1 + 01282+ Q13Bs) 75 — L 3Nu(x),

whereﬁz andﬁg are given in Eq.39). Upon appropriate
algebraic manipulations, we deduce that

By denoting

a]l_ajl+aj ZAJ 1+013 2| ) 012—012+GJ3AJ 1,
Bi = Bj + aj.1L1 INU(X) + @j 2L3 2NU (x) + @j 3Ly *Nu (), (X)_ (a31B1+ a3 2B2+ Q33[33)
_ . . B9 H(021Bt+ 0222+ a2 3p) A%
we obtain three linearly mdependent equations solely in 4 (@aBr+ G 2B+ Gy, 333) Af L13Nu( X)
terms of the three unknowns®© (&), u® (&) and 22
(2 (&) in a similar pattern as the boundary conditions T O3+ 02201 + 0127 )

(25 (26 and €7 as (02115 3NU(X) + az2L 1 3NU(X) + azaL 3NU (X))
— _ _ 2
ap,1u@ (&) + arou® (&) + a13u® (&) = 1, (40) + (0!373 + 02341 + 0!173%1) X
b21u? (&1) + B2 2u™ (&1) + a23u® (&) = Bo.  (41) (a3vlLIéNu (X) + a3 2L3 5NU(X) + a3 L5 3NU (x)) ,
G3.1U? (&) + Gz ou™ (&) + azau® (&) = Bs. (42) (47)
(@© 2016 NSP
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which is the equivalent nonlinear Fredholm-\Volterra where
integral equation for the solutiom(x) without any

X X

undetermined constants of integration. L, P Mv(x) = / / v(x) dx---dx .

Next the decomposition series of the solution and the 31 31 NG

. . . S N—_—— (p—k)—fold
nonlinearity and the recursion scheme are similarly (p—K)—fold
obtained as in the last case. Here we omit the details to
avoid self-evident repetitions. Next we calculate the derivativesi™ (&), for

k=0,1,...,p—1andj=2,3,..., p,as

Case 3: the general pth-order differential equation for
p>2 ’ Pt

v—k
N i1
Consider thepth-order nonlinear differential equation ut (&) = VZkU(V) (¢2) (v—k)!

—(p—k
- Ll,j(p )NU(X)7

ulP (x) + f (x,u(x) ,..uPD) (x)) =0, (48) wherethe operatmij(p_k) is defined as

subject to the set g Robin-type boundary conditions ~(p—K)
Ly v(x :/ / / (x) dx dx.
d (p-i) : | NG (p—k— 1) fold
i;a“u P& =B, i=12,....p, (49) (p—k— 1) fold
where &y < - < & < - < & and & < &. Eq. @49) I_:orthe substitutiqk::(p—i),then we havey —k:=
denotes linearly independent equations i unknowns. v+i-pandp—k:=i and .
Using Adomian’s operator-theoretic notation, we write (o) Aj"i"‘p i
Eq. 48) as u ulv —Lgj Nu(x),
LPu(x) = —Nu(x), (50) Z (vri=pt =
i_1,...,p,1_2,...,p. (55)

where LP = & Nu(x) = f(x,u(x),...,u(p‘1> (x)). o o B
. . Substituting the last equation into the boundary condstion
Applying the p-fold integral operator (49) at&;, for j =2,..., p, we have

v = [ vt p
'51 4 p- fold I;a“ Z u m_Ll,jNu(x) =Bi,
1_2,...,p. (56)
Using the following summation formula

p— fold

to both sides of Eq.50), we have

L, PLPu(x) = —L; PNu(x),

ppt i 2
where i;\/:zpficw - igilzlqp_l - gu;qp_l

L PLPu(X) = u(x) — @ (%), 51 -l P 1P
1 (X) =u(x) — @(x) (51) =Cpot ¥ ZCWP—'_CPO‘LZZC"P ’
" A_f (52) I=1v=

VZO v we obtainpIinearlyindependent equat|ons solely in terms

So we obtain of the p unknownsu© (&), u® (&), ..., uP-Y (&) as
p
p—1 AV forj=1, Y ayuP (&) =B, (57)
w0 =y UV @ L, (59) 2, G = f
V=0 forj=2,...,p,
which is the equivalent nonlinear \olterra integral 1
equation for the solutioru() with p undetermined o & iU (&) Y 4 pu® (&) = B (58)
1 )
constants of integration(%) (&y), ..., uP=Y (&). ,; M P :
Calculating thekth-order der|vat|ves ofi(x), for 0 < h

k<p-—1,yields where .

dk Pt Ay d Bi =B+ i aj Ly YNu(x), ;i = ia- A (59)
®(x) = v) o A p = Pi Jvh YU = INAEEEVE
W09 = g 3 U (&) T - kiU P & =)

p-1 Av-k ) Or equivalently, we have the matrix form

= Y u¥ (&) - PTNu),  (54)

(v—Kk)! ou =B, (60)

V=

(@© 2016 NSP
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where and substitute them into E¢62) to obtain
apg 012 O13 - A1p-1:01p 2 P Pl -p o
Ry SRRty SaEEED 57T b Un (X) = iy Opyj+]—L X
92,1 92,2 g2’3 g2,p71:02,p ngo n( ) z BJ z p=Vv.]vi 1 ngoAn( )
— | 031032 033 -+ U3 p-1:03p p /p-1 p o
X = ) ) 8 ) 45, A7 —k
A - " +2 (Z Qp-v,] vl> (kzlaj,kLl,jnzoAn(X))

Op1 Opp Op3 - Opp 1.0 . . " .
pl¥p2 ¥p3 pp-1:pp For simple nonlinearites such as the quadratic

nonlinearity, product nonlinearity, etc., we can use the

—1

u(P_2> (&) B classic Adomian recursion scheme as

up )(gl) B2 .
-3

u= U(p )(El) 5 B = B3 . UO( ) 'zl{BJ z ap Vi or },

: : i=

"0 " p p- 1 Ay p K
) (&) Bp Unt1(X) = 122 2 Ap-v.j 7 kzlaj,kLl,jA"(X)

If det(«) # 0, thenu = o 1B, where the inverse L pA,m X), n>0,
matrix o = (a;j) is computed by an appropriate (64)

algorithm or native routine implemented within an to calculate the solution components. We note that each
available computer algebra system such asapproximate solution
MATHEMATICA, MAPLE or MATLAB.

We calculate fov =0,1,...,p—1, z Um(x), n=1,2,. (65)
f— P — ~
V) (&1) = dp-v,1B1+ Zzapfw iBi; (61)  satisfies all of the boundary conditions.
= For  complicated nonlinearities such as

which therefore determmes the values of the constants o'f\Iu e, sin(u), v1+ U etc., we instead use one of the
integration uP-D (&), uP-2 (&), 0)(&) by parameterized recursion schemes e.g.,

formula. Substituting these values into Eﬁ3)(, we have Up(X) =c,
p pfl — AV _
w0 =—c-a+ 5 (85 G ) - LA
i= v=

p /p-1_ Ay P K
UPR PR 2, iAo () ),
Inserting theﬁj ,forj=2,...,p, fromEq. 69) into the last Uns2 (X) = —c(1—q)g+L— LIpAn+1 (X)

p—1

ux)=">% {ap v, 1B1+ Zzap v, JB,}—._LlPNu( X),

Vf

previous equation leads to p /p-1 p
+3 ( Y Opvj w) (2 aj,kLl,Ij(AnH(X))a n>0,
p-1( P j=2 k=1 ’
ux) =% {apv,lﬁl+ D OpvjX (66)
v=0 1=2 wherec andq are two predetermined constants and 0

P . AV g < 1. For example, we can takeas the average value of
Bi+ Y aj kL Nu(x) ﬁ —L; PNu(x). the initial solution component in the classic Adomian
k=1 : recursion scheme over the domain, i.e.
Upon appropriate algebraic manipulations, we deduce that / 8 p-1_ AY
N Qe
[y le i z p—V.]

p—1 Z BJ VZ P=V. T, L1 (V—I—l) (67)

V
k =1
+ Zz < Z PVt ) (Z kg jNU(x )> (62) For the error analysis for a problem without an a priori

- ) exact closed-form analytic solution, we can consider the
which is the equivalent nonlinear Fredholm-Volterra sequence of error remainder functions
integral equation for the solution without any

p p-1 AV L-PN o !
u(x) = JZ:L(BJZGP Vi >_ 1 u(x) B p{ p-1 (Ep &)Y }

undetermined constants of integration. ERy(X) = @P (x) + (x, ad%x),...,@P Y (x)) , (68)
Next we decompose the solution and the nonlinearity
as . . and the sequence of maximal error remainder parameters
400 = Zn 0, NUCO= 3 M g VER = DRt IEROL 9
An(X) =An(Up(X),...,un(X)), ==
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3 Numeric examples

Example 1. Consider the third-order linear differential
equation

u”(x) +u”(x) — U (x) —u(x) =0, (70)

subject to the set of three Robin-type boundary conditions

u’(0)—u' (0)—u(0) =1,
u”(0) —u(0) = -1,
u (1) +u(l) = 10.

The exact solution is

X _1-20e—10¢%\  1-20e
2 4

4¢? e
The equivalent Fredholm-Volterra integral equation is

u*(x) e

(71)

U0 = F -2+ B8+ (24%) (L3Nu+ L3Ny
—L3Nu,

whereNu = u”(x) — U'(x) — u(x) and

L3 :/Ol/ox/ox(-)dxdxdx, L12() :/Ol/ox(-)dxdx.

The recursion scheme is

Up(x) = 3 — 2x+21—§’<2,
U109 = (B+%) (L 3A0+ L 3A0) — LA,

where n > 0 and

An = Up(X) = Up(X) = n(X), N> 0.

n(X)
6.8

6.6}
6.4}
6.2}
6.0}
5.8}

5.6

0.0 0.2 04 06 0.8
Fig. 1: Curves of the exact solutiou*(x) (solid line), and the
approximate solutiongp(x) (dash line), g3(x) (dot line) and

@ (x) (dot-dash line).

In Fig. 1, we plot the curves of the exact solution
u*(x) and the approximate solutiong(x), ¢(x) and
@m(X), wheregs(x), @(X) and the exact solution overlap.

—0.005

—-0.01C

-0.015
-o.ozc—\/

Fig. 2: Curves of the error functionEz(x) (solid line), E3(x)
(dash line) E4(x) (dot line) andEs(x) (dot-dash line).

2 4 6 8
n

Fig. 3: The logarithmic plots of the maximal error parameters
MEp, n = 2 through 10.

We consider the error function

En(X) = h(X) —u"(x)
and the maximal error parameters

In Fig. 2, we plot the curves of the error functiofs(x)
forn=2,3,4 and 5. In Fig3, we display the logarithmic
plots of the maximal error parametdvie,,, n = 2 through

10, where the points are distributed almost on a straight
line thus indicating an approximate exponential rate of
convergence.

Example 2. Consider the third-order nonlinear differential
equation

u”(x) —2—u"(x) +xsinh(u(x)) =0, (72)
subject to the set of three Robin-type boundary conditions

u”(0) —u' (0)+u(0) = -2,
u” (0.5) + 2u' (0.5) + 2u(0.5) = 2,
u’(1)—3u (1) +u(l)=-1

For this BVP, we calculate that

1 -11 1 [28 —4-20
x=9/4 3 2|, at==|-21101 ,
—3/2-21 POlo 1421
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and the equivalent nonlinear Fredholm-Volterra integral )
equation as o8l //,
u(x) =14+ 5x— 222 | 3Nu 0.6l //”’/
+A (144 10c— 2x2) (LidNu+ 2L 3Nu+ 2L 3Nu) =
’ 0.4} -
+ (214 x—10@) (L3Nu - 3L 3Nu+ L3Nu) vl
0.2} //
whereNu = —2—u"(x) 4+ xsinh(u(x)). We decompose the ///
solution and the nonlinearity as 02 0a 06 08 10"
e e Fig. 4: Curves ofgy(x) (solid line), g3(x) (dash line)gu(x) (dot
uR) = Zou”(x)’ Nu(x) = ZDBH(X)’ line) andgs(x) (dot-dash line).
n=! n=|
where
/! A ERa®)

Bo = —2 — up(X) + XAg, Bn = —up(X) + XAn, Lob
and theA,, are the Adomian polynomials for the analytic 08¢
function sini{u(x)), i.e. 06f
Ay = sinh(up), z:
A = uzcosh(up), B S b Nt S T,

1 5 . - 0.2 0.4 > 0.8 1.0
A = Eulsmh(uo) + uzcosh(ug), —0.2¢ \

-0.4t
. 1,

Ag = Uzuy SinN(uo) + Uy cosh(up) + uzcosh(uo), Fig. 5: Curves ofERy(x) (solid line), ERs(x) (dash line) ERy(x)

ey (dot line) andERs(x) (dot-dash line).

and design the parameterized recursion scheme
accordingly as

1.00CF*
Uo (X) _ C, 0.50C}
U (X) = —c(1—q)+3 7+ %X— 49)(2 Ly 3BO o.10ct
+A(14+ 10— 2@) (L*lBo+2L Bo+2L*3BO) g oo
+39(21+x—10¢) (Ll 3Bo—3L;3Bo+ Ly 380) 000t
Unt1(X) = —c(1—a)q" 3Bn .
1 2 2 0.001t. . . . o
+A (144 10x— 20) (L1 3Bn-+ 2L B0+ 2L; 3Bn) 2 i 6 s 0
+4(21+x-108) (Ly 38— 3L B+ Ly 3Bn) . > L n

Fig. 6: Logarithmic plots o MER, for n = 2 through 10.
where we take = [3 (3 + S1x— 22x%) dx = 181

in Table 1. The logarithmic plots of these values are

Table 1: The maximal error remainder paramet®Rn in gisplayed in Figs, where the last 7 points are distributed

Exanle 2 . . . . . almost on a straight line thus indicating an approximate
MER,  1.06115 0.135321  0.073565  0.0383467  0.0174748 exponential rate of convergence.
n v 8 9 10 Example 3. The squeezing flow and heat transfer

MER, 0.00825477 0.00397323 0.00191811 0.000930779

between two parallel disks with velocity slip and

temperature jump39 lead to the following nonlinear
We take q = 0.1 to compute the solution BVP indimensionless form

approximants. The solution approximantgs(x),

n=2,3,4,5, are plotted in Fig4, where the last three ) (n)—Snf"”(n)—(35+M?)f"(n)+2Sf(n)f"(n) =0,

curves overlap. In Fig5, we plot the error remainder (73)
functions ER,(x) for n = 2,3,4,5. The maximal error f( ) =0, —Bf"(0)+ (o) =0,
remainder parameteMER,, n = 2 through 10, are listed f(1) = 1/2 Bf"(1)+f'(1)=0.
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wheren is a similarity variable,f(n) characterizes the
axial velocity,Sis the squeeze numbd¥, is the Hartman
number, angB is the dimensionless slip parameter.

For this fourth-order nonlinear BVP, 8 &, = & <
f3=8=1014=023=034=0s3=1020=—P,
G4,é=ﬁ, ai,j =0forotheii, j, B1=B>=Ps=0,=1/2,
an

Nf(n)=-Snt"(n)— (3s+M?)f"(n)+2Sf(n)f"(n).

We calculate that

0 0 01
N 0 -B 10
- 1 1 )
6 2 11
B+5B+110
1428 3+B -1-2B3+p
wioz| 3B hp 3ep
Pl 2Bhrs BB f
D 0 0 O
where 8
D=—+="C4+pB2
12 3+B

The equivalent nonlinear Fredholm-\olterra integral
equation is

2
L (B2 2o 1+GZB,]3) —LNf(n)
2
Bi126%y | 12Bp2 1+625,73) Li3Nf(n)
2 _ —

-
We decompose the solution and the nonlinearity as

f(n)
_|_

Ol

[

+5

() =§Ofn<n>, N (n) :niAnm

and design the recursion scheme

2
fo(n)= % B+22ﬁ n+ 1+42E’72_ 1+62E’73) )
2
frra(n) =& (B2 n+22En2- 1+62’3r73) L13A
2
+5 g%n"‘— &n—1) (BLifAn+LiiA)
_LI An, n 2 Oa
where
Ao = —Snf'(n) — (3S+M?)f (n) +2Sfo(n) Ty’ (n),
An = —Snf'(n) — (3S+M?)f(n)
+2Sy 1o fk(n) (), n> 1.

én()
0.5

0.4

0.3

0.2

0.1

n

0.2 0.4 0.6 0.8 1.0

Fig. 7: Curves ofg(n) (solid line),@s(n) (dash line) andy(n)
(dot line) forS=M =1 and3 = 0.1.

ERy(1)
0.3}

0.2f

0.1f

-0.1F

-0.2}

-0.3

Fig. 8: Curves ofER»(n) (solid line), ER3(n) (dash line) and
ER4(n) (dot line) forS=M =1 andf3 =0.1.

Table 2: The maximal error remainder parametdER, in

Example 3.
n 2 3 4
MER, 0.298549 0.0188325 0.00124835
n 5 6 7

MER, 0.0000845968 B5126x 10° 4.10099x 10~/

0.1
0.01

@& 0.001

MEI

10
10°

10

lo

Fig. 9: Logarithmic plots oMER,, for n = 2 through 7.

From the recursion scheme, we obtain the solutionERy(n) for n = 2,3,4. The maximal error remainder

components and solution approximants.

We takeS=M =1 and 3 = 0.1 to compute the
solution approximants. The solution approximagi&?),
n= 2,34, are plotted in Fig7, where the three curves
overlap. In Fig.8, we plot the error remainder functions

parameterdlER,, n = 2 through 7, are listed in Tab@
The logarithmic plots of these values are displayed in
Fig. 9, where the points are distributed almost on a
straight line thus indicating an approximate exponential
rate of convergence.
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