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Abstract: This paper deals with the cost analysis of a two identical units parallel system in which no unit is kept as standby. A single
repair facility is available in the system to replace the failed one by the new ordered one, if it is not repaired up to a given prefixed
time T. The failure, maximum repair, delivery and replacement time distributions of a unit are taken to be negative exponential while as
repair time distribution is arbitrary. Using regenerationpoint technique several characteristics of the system effectiveness are obtained
to carry out the profit analysis. At last some particular cases are also discussed.
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1 Introduction

Various authors including , Goel and Gupta [1], Gopalan et al [2], Kumar et al [3] ,Murari and Goel [4], Nakagawa et al
[5] , Papageorgiou and Kokolakis [7] and Singh et al [8] have studied two unit parallel / standby systems under different
sets of assumptions using the theory of Semi - Markov process, Regenerative process and Markov Renewal Process. In
all the models of two unit standby redundant systems considered so far, it has been assumed that whenever operating unit
fails standby unit operates immediately. Practice revealsthat to keep an unit in standby, increases the inventory costof
the system. So, if there is no place for inventory, and if failed unit is not repaired up to a prefixed maximum time T then
it would be beneficial to replace the failed unit by new ordered one. Recently Nakagawa and Osaki [5] have analyzed an
one unit system under the assumption that as soon as an operating unit fails before a prefixed time T, an order is placed
immediately for a new unit to replace the failed one. Okumoto, Kazu [6] has obtained the availability of a two component
repairable system using bivariate exponential failure andrepair time distribution with the assumption that wheneverboth
components fail simultaneously, an order for two new units is placed to replace the failed ones. If the new units arrive
before the completion of the repair, the failed components are rejected and replaced by the new ones; otherwise, the order
is cancelled. Qingtai et al [9] has studied a class of multi-unit cold standby systems subject to Poisson shocks. However
very few attempts have been made in this direction. The purpose of the present paper is to study a two unit parallel system
in which an order is placed to replace the failed unit if it is not repaired up to a fixed time T. A single repair facility
is continuously available in the system which serves the dual role of repair and replacement of a failed unit by the new
ordered one. Using regenerative point technique followingmeasures of system effectiveness are obtained:
(i) Mean time to system failure (MTSF).
(ii) Point wise availability of the system in (0, t] and in steady state.
(iii) Busy period of the repair facility in repair in (0, t].
(iv) Busy period of the repair facility in replacement of thefailed unit with new order one in in (0, t].
(v)Expected number of orders for the new unit in (0, t].
(vi) Expected profit earned by the system in (0, t] and in steady state.
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2 System Description

1)The system comprises of two identical parallel units. Each unit has two modes- normal (N) and total failure (F).
2) Whenever repair time of the failed unit exceeds the given maximum time, then that unit is rejected and an order is
placed for a new unit to replace the failed one.
3) There is a single repair facility which serves the dual role of repair and replacement of the failed unit.
4) Priority is given to replacement over the repair of the failed unit.
5) During the ordering time of a unit, if a unit fails and it is not repaired up to maximum repairing time, then this failed
unit waits for ordered unit until the replacement of the firstfailed unit is not completed.
6) Failure, delivery, replacement and maximum repair time distributions are negative exponential whereas repair time
distribution is arbitrary.
7) After repair, unit acts like a new one.

3 Notations and Stats of the systems

NO :unit is in operating mode.
Fr/Fwr/FR :unit is in failure mode and under repair/waiting for repair/ continues in repair.
FwO : unit in F mode and waiting for ordered new unit.
R: unit is in failure mode and under replacement.
UO : a new unit is in under order. Considering these symbols the system may be in any one of the following states:
S0 : (NO,NO) ,S1 : (NO,Fr) ,S2 : (Fwr,FR) ,S3 : (NO,UO) ,S4 : (Fr,UO) ,
S5 : (NO,R) ,S6 : (Fwr,R) ,S7 : (FwO,UO) ,S8 : (FwO,R)

4 Other Symbols

α: constant failure rate of a normal unit.
g1(t): pdf of repair rate of a failed unit.
γ: maximum repair time of failed unit.
β : constant delivery rate of an ordered unit.
δ : constant replacement rate of a failed unit.
∗,∼: Laplace transform/Laplace Stieltjes transform.
[s]: Laplace Stieltjes convolution.
c©: Laplace convolution

qi j(t),Qi j(t): pdf and cdf from state i to j.
g1(·),G(·): pdf and cdf of repair time of a failed unit.
E: set of regenerative statesSi{i = 0−8}

Possible transition among different states, along with thetransition rates, are shown in figure.

5 Transition Probabilities and Sojourn Times

Simple probabilistic considerations yield the following expressions for distribution function times:

Q01(t) = [1− e−2αt], Q10(t) =

t
∫

0

g1(t)e
−(α+γ)tdt, Q(2)

11 (t) =

t
∫

0

g1(t)e
−γt [1− e−2αt]dt,

Q13(t) =

t
∫

0

γe−(α+γ)tḠ1(t)dt, Q(2)
14 (t) = γ

t
∫

0

e−(γ)t [1− e−αt]Ḡ1(t)dt, Q34(t) = α
t

∫

0

e−(α+β )tdt,
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Q35(t) = β
t

∫

0

e−(α+β )tdt, Q43(t) =

t
∫

0

g1(t)e
−(γ+β )tdt, Q46(t) = β

t
∫

0

e−(γ+β )tḠ1(t)dt,

Q47(t) = γ
t

∫

0

e−(γ+β )tḠ1(t)dt, Q50(t) = δ
t

∫

0

e−(α+δ )t(t)dt, Q56(t) = α
t

∫

0

e−(α+δ )tdt,

Q78(t) = [1− e−β t],Q61(t) = [1− e−δ t] = Q83(t) (1−14)

The non-zero elementspi j obtained by lettingt → ∞ in (1-14) are

p01 = p61 = p78 = p83 = 1, p10 = g∗1(γ +α), p(2)11 = g∗1(γ) − g∗1(γ +2α),

p13 = γ[1 − g∗1(γ +α)]/(γ +α), p(2)14 = [1 − G∗
1(α + γ)], p34 = α/(α +β )

p35 = β/(α +β ), p43 = g∗1(γ +β )/(α +β ), p46 = β [1−G∗
1(α +β )]/(α +β ),

p47 = γ[1− g∗1(γ +β )]/(γ +β ), p50 = δ/(α + δ ), p56 = α/(α + δ ) [15-26]

The mean sojourn timesµi in statesSi are
µ0 = 1/2α,µ1 = [1 − G∗

1(γ +α)],µ3 = 1/(α +β ),µ4 = [1 − G∗
1(γ +α)]/(γ +α)

µ5 = 1/(α + δ ),µ6 = µ8 = 1/δ ,µ7 = 1/β [27-33]

6 Time to System failure

To obtained the distribution functionπi(t) of the limit to system failure with starting stateSi ∈ E(i = 0,1,3,5) , we regard
the down statesS2,S4,S6,S7 andS8 as absorbing. Using arguments as for the regenerative process we obtain the following
recursive relations forπi(t):
π0(t) = Q01(t)[s]π1(t)
π1(t) = Q10(t)[s]π0(t)+Q12(t)+Q13(t)[s]π3(t)
π3(t) = Q34(t)+Q35[s]π5(t)
π5(t) = Q50(t)[s]π0(t)+Q56(t) [34-37]
Taking Laplace-Stieljes transform of [34-37] and solving for π̃0(s) , we have
π̃0(s) = N1(s)/D1(s) [38]
where
N1(s) = Q̃01(s)[Q̃12(s)+ Q̃13(s){Q̃34(s)+ Q̃35(s)Q̃56(s)}]
D1(s) = 1− Q̃01(s)[Q̃10(s)+ Q̃13(s)Q̃13(s)Q̃50(s)
(Where we have omitted the arguments for brevity)
Hence, Starting with stateS0, MTSF is

E(t) =−
d
ds

π̃0(s)|s=0 = D′
1(0)−N′

1(0)/D1(0)

= [µ0+ µ1+ p13(µ3+ µ5p35)]/[1− p10− p13p35] [39]

7 Availability analysis

Let Ai(t) be the probability that the system initially in stateSi ∈ E is up at epocht. The recursive relations for point wise
availability Ai(t) are
A0(t) = e−2αt + q01(t) c©A1(t)

A1(t) = e−(γ+α)tḠ1(t)+ q10(t) c©A0(t)+ q(2)11 (t) c©A1(t)+ q13(t) c©A3(t)

+ q(2)14 (t) c©A4(t)
A3(t) = e−(α+β )t + q34(t) c©A4(t)+ q35(t) c©A5(t)
A4(t) = q43(t) c©A3(t)+ q46(t) c©A6(t)+ q47(t) c©A7(t)
A5(t) = e−(α+δ )t + q50(t) c©A0(t)+ q56(t) c©A6(t)
A6(t) = q61(t) c©A1(t)
A7(t) = q78(t) c©A8(t)
A8(t) = q83(t) c©A3(t) [40-47]
where
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M0(t) = e−2αt ,M1(t) = e−(γ+α)t ,M3(t) = e−(α+β )t ,M5(t) = e−(α+δ )t [48-51]
Taking Laplace transforms of [40]-[47] and solving forA∗

0(s) we have
A∗

0(s) = N2(s)/D2(s) [52]
where

N2(s) = q∗01(s)[q
∗
13(s)+ q∗(2)14 (s){q∗43(s)+ q∗47(s)q

∗
83(s)}][M

∗
3 +M∗

5q∗45(s)]

− [q∗43(s)+ q∗47(s)q
∗
78(s)q

∗
83(s)]{M∗

0[q
∗
34(s){1− q∗(2)11 (s)}+ q∗(2)14 (s)q∗35(s)q

∗
56(s)q

∗
61(s)]

+M∗
1q∗01(s)q

∗
34(s)}+M∗

0[1− q∗(2)11 (s)− q∗61(s){q∗(2)14 (s)q∗46(s)+ q∗13(s)[q
∗
34(s)q

∗
46(s)

+ q∗35(s)q
∗
56(s)]}]+M∗

1q∗01(s)

D2(s) = 1− q∗(2)11 (s)− q∗61(s)[q
∗
13(s){q∗34(s)q

∗
46(s)+ q∗35(s)q

∗
56(s)}]− [q∗43(s)+ q∗47(s)q

∗
78(s)q

∗
83(s)]

[q∗34(s){1− q∗(2)11 (s)}+ q∗(2)14 (s)q∗35(s)q
∗
56(s)q

∗
61(s)− q∗01(s){q∗10(s)q

∗
34(s)− q∗(2)14 (s)q∗35(s)q

∗
56(s)}

+ q∗01(s)[q
∗
10(s)+ q∗13(s)q

∗
35(s)q

∗
50(s)]

Hence, starting from stateS0, the steady state availability of the system is

A0(∞) = lim
s→0

sA∗
0(s) =

N2(0)
D′

2(0)
[53]

where;

N2(0) = µ0[p35(1− p(2)11 )− p(2)14 p46(1− p35p56)+ p34p46(p10+ p(2)14 )− p35p56(p13+ p(2)14 )]

+ [p13+ p(2)14 (1− p46)](µ3+ µ5p35)+ µ4[1− p34(1− p46)]

D′
2(0) = (p13p34+ p(2)14 )[µ4+ µ6(p46+ p47)+ µ7p47]+ [1− p34(1− p46)](µ1+ µ0p10)

+ [p13+ p(2)14 (1− p46)][µ3+ p35(µ5+ µ0p50+ µ6p56)]

The expected uptime of the system in(0, t] is

µup(t) =
t
∫

0
A0(u)du [54]

So that
µ∗

up(s) = A∗
0(s)/s

The expected down time in(0, t] is
µd(t) = t − µup(t)
So that
µ∗

d (s) = µ∗
up(s)/s2

8 Busy Period Analysis

8.1 Expected busy period of the repairman in repair in(0, t)

Let Wi(t) denote the probability that the system initially under repair in stateSi ∈ E remains in the same state at least
time t or passes to non-regenerative state and then continues to remain there under repair without visiting to any
regenerative state including itself. By Probabilistic consideration, we have
W1(t) = e−αtḠ1(t),W4(t) = e−(α+β )tḠ1(t) [55-56]
Recursive relationsBi(t) , the probability that the system starting from stateSi is busy at timet, are
B0(t) = q01(t) c©B1(t)

B1(t) =W1(t)+ q10(t) c©B0(t)+ q(2)11 (t) c©B1(t)+ q13(t) c©B3(t)+ q(2)14 (t) c©B4(t)
B3(t) = q34(t) c©B4(t)+ q35(t) c©B5(t)
B4(t) =W4(t)+ q43(t) c©B3(t)+ q46(t) c©B6(t)+ q47(t) c©B7(t)
B5(t) = q50(t) c©B0(t)+ q56(t) c©B6(t)
B6(t) = q61(t) c©B1(t)
B7(t) = q78(t) c©B8(t)
B8(t) = q83(t) c©B8(t) [57-64]
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Taking Laplace transforms of [57-64] and computing the relevant elements of the inverse matrix, we have

B∗
0(s) = N3(s)/D2(s) [65]

where;
N3(s) = q∗01(s)[W1{1− q∗34(s)[q

∗
43(s)+ q∗47(s)q

∗
78(s)q

∗
83(s)]}+W4{q∗(2)14 (s)+ q∗13(s)q

∗
34(s)}]

In the long run, the fraction of time for which the system under repair is given by
B0(∞) = lim

0→∞
B0(t) = lim

s→0
sB∗

0(s) = N3(0)/D′
2(0) [66]

The expected busy period of the repairman in repair in(0, t] is

µb(t) =
t
∫

0
B0(u)du [67]

so that
µ∗

b (s) = B∗
0(s)/s

8.2 Expected busy period of the repairman in replacement in(0, t)

Let Wi(t) denote the probability that the repairman busy with replacement of the unit initially in regenerative stateSi and
remains busy in replacement at epoch t without transiting toany other regenerative state. By probabilistic arguments,we
have
W5(t) = e−(α+δ ),W6(t) = e−δ =W8(t)
We defineRi(t), the probability that at timet the server is busy with replacement of the operative unit by the newly
delivered unit given that the system starting from regenerative stateSi at t = 0. By probabilistic arguments, we have the
following recursive relations forRi(t)
R0(t) = q01(t) c©R1(t)

R1(t) = q10(t) c©R0(t)+ q(2)11 (t) c©R1(t)+ q13(t) c©R3(t)+ q(2)14 (t) c©R4(t)
R4(t) = q43(t) c©R3(t)+ q46(t) c©R6(t)+ q47(t) c©R7(t)
R5(t) =W5(t)+ q50(t) c©R0(t)+ q56(t) c©R6(t)
R6(t) =W6+ q61(t) c©R1(t)
R7(t) = q78(t) c©R8(t)
R8(t) =W8(t)+ q83(t) c©R3(t) [68-74]
Taking Laplace transforms of [68-74] and computing the relevant elements of the inverse matrix, the Laplace transform
of R0(t) is seen to be
R∗

0(s) = N4(s)/D2(s) [75]
where
N4(s) = q∗01(s)q

∗
35(s)[q

∗
13(s) + q∗(2)14 (s){+q∗43(s) + q∗47(s)q

∗
78(s)q

∗
83(s)}][W5 + W6q∗56(s)] + q∗01(s)[q

∗(2)
14 (s) + q∗14(s) +

q∗13(s)][W6(s)q∗46(s)+W8(s)q∗47(s)q
∗
78(s)]

The expected busy period of the repairman in repair in(0, t] is

µR(t) =
t
∫

0
R0(u)du [76]

so that
µ∗

R(s) = R∗
0(s)/s

8.3 (c) Expected number of orders for the new unit in (0, t)

Let Vi(t) be the expected number of orders for the new unit in(0, t] given that the system entered regenerative stateSi(t)
at t = 0.By probabilistic arguments, we have
V0(t) = q01(t) c©V1(t)

V1(t) = q10(t) c©V0(t)+ q(2)11 (t) c©V1(t)+ q13(t) c©(1+V3(t))+ q(2)14 (t) c©V4(t)
V3(t) = q34(t) c©V4(t)+ q35(t) c©V5(t)
V4(t) = q43(t) c©(1+V3(t))+ q46(t) c©V6(t)+ q47(t) c©(1+V7(t))
V5(t) = q50(t) c©V0(t)+ q56(t) c©V6(t)
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V6(t) = q61(t) c©V1(t)
V7(t) = q78(t) c©V8(t)
V8(t) = q83(t) c©(1+V3)(t) [77-84]
we have
Ṽ5(s) = N5(s)/D3(s) [85]
where

N5(s) = Q̃01(s){Q̃13(s)[1− Q̃34(s)− Q̃46(s)− Q̃34(s)Q̃47(s)Q̃78(s)Q̃83(s)+ Q̃47(s)Q̃78(s)Q̃83(s)]

+Q̃(2)
14 (s)[1− Q̃46(s)+ Q̃47(s)Q̃78(s)Q̃83(s)]}

D3(s) = {[1− Q̃(2)
11 (s)][1− Q̃34(s)Q̃43(s)− Q̃34(s)Q̃47(s)Q̃78(s)Q̃83(s)]− Q̃13(s)Q̃34(s)Q̃46(s)Q̃61(s)

−Q̃13(s)Q̃35(s)Q̃56(s)Q̃61(s)+ Q̃14(s)Q̃46(s)+ Q̃(2)
14 (s)Q̃35(s)[Q̃43(s)Q̃56(s)

+Q̃47(s)Q̃56(s)Q̃78(s)Q̃83(s)]}− Q̃01(s){Q̃10(s)[1− Q̃34(s)Q̃43(s)+ Q̃34(s)Q̃47(s)Q̃78(s)Q̃83(s)]}

+Q̃01(s){Q̃13(s)Q̃35(s)Q̃50(s)+ Q̃(2)
14 (s)Q̃35(s)[Q̃43(s)+ Q̃47(s)Q̃78(s)Q̃83(s)]}

Not typed- In steady state, number of orders for the new unit per unit of time is given by

V0(∞) = lim
t→∞

[

V0(t)
t

]

= lim
s→0

sṼ (s) =
N5(0)

D
′

3(0)
[86]

Where;
N5(0) = p01{p13[1− p34− p46− p34p47p78p83+ p47p78p83]+ p(2)14 [1− p46+ p47p78p83]}

D
′

3(0) = µ01[p01+ p10+ p47+ p78p83− p13p35p50− p(2)14 p35(p43+ p47p78p83)]

+µ10[p01− p10p34p43+ p01p34p47p78p83]+ µ (2)
11 [1− p34p43+ p34p47p78p83]

+µ13[p34p46p61+ p35p56p61− p01p35p50]− µ14[p46+ p35p56+ p35p47p56p78p83]

−µ (2)
14 p01p35[p43+ p47p78p83]− µ34[p

(2)
11 p43+ p13p46p61− p01p10(p43− p47p78p83]

+µ35[p13p56p61− p14p56(p43+ p47p78p83) − p01(p13p50+ p(2)14 p43]− µ43[p
(2)
11 p34

+p14p35p56+ p01(p(2)14 p35+ p10p34)]+ µ46[p13p34p61− p14]+ µ47[p
(2)
11 p34p78p83

−p14p35p56p78p83+ p01(p10p34p78p83− p(2)14 p35p78p83)]− µ50[p01p13p35]
+µ56[p13p35p61− p14p35p47p78p83− p14p35p43]+ µ61[p13p34p46+ p13p35p56]

+µ78[(p(2)11 p34− p14p35p56)p47p83+ p01p47p83(p10p34− p(2)14 p35)]

+µ83[p
(2)
11 p34p47− p14p35p56p78+ p01p47(p10p34− p(2)14 p35p78)]

Particular Case
Case1.When repair time distribution is taken to be negative exponential i.e. g1(t) = r1e−r1t then the expression for
E(T ),A0(∞),B0(∞),R0(∞) and V0(∞) become

E(T ) =
L1

D2
; A0(∞) =

L2

D3
; B0(∞) =

L3

D3
; R0(∞) =

L4

D3
; V0(∞) =

L5

D3
[87−91]

Where
L1 = (α +β )(α + δ )(α + γ + r1)+2α[(α +β )(α + δ )γ(α +β + δ )]
L2 = β δ (γ + r1)(γ +α +β + r1)[β (α + δ )(γ +2α + r1)+ γα(2α +2δ +β )]
L3 = 2αβ δ (α + δ )(α + γ +β + r1)[β (α + γ + r1)+ γα]
L4 = 2γαβ (α +β )(α + δ )(γ + r1)(γ +α +β + r1)
L5 = 2γαβ δ (α + δ )(γ +α +β + r1)[β (α + γ + r1)+ γα]
D2 = 2α[(α + γ + r1)(α +β )(α + δ )−{r1(α + δ )(α +β )+ γδβ ]
D3 = (α + δ )(α +β + γ + r1)[β 2δ{2α(α + γ + r1)+ r1(γ + r1)}+2γα2{β (γ + δ )+ γδ}]

+γβ (γ + r1)(γ +α +β + r1)[2α(α + δ )(β + δ )β δ 2]

Case2.If we assume that whenever an operating unit fail, it is rejected and an order is placed immediately for a new unit
to replace the failed unit i.e. G1(t)=0 andα = ∞, then we have

E(T ) = [(α +β )(3α + δ )+2αδ ]/2α2(α +β + δ )
A0(∞) = β δ [(α + δ )(2α + δ )+αβ ]/D4
R0(∞) = 2αβ (α +β )(α + δ )/D4
V0(∞) = 2αβ δ (α +β )(α + δ )/D4

D4(∞) = 2α(α +β )(α + δ )(β + δ )+β 2δ 2

[92−96]
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Profit Analysis
We are now in position to obtain the profit function of the system considering mean up time of the system and expected

busy period of the server in repair and replacement. The expected total profit function incurred in (0,t) is
G(t)=expected total revenue in (0,t]-expected total service cost in (0,t]

=C1µup(t)−C2µb(t)−C3µR(t)−C4V0(t) [97]

The expected total profit per unit time in steady state is

G = lim
G(t)

t
= lim s2G∗(s)[98]

Where C1 is the revenue per unit up time, C2, C3 are the costs per unit time in repair, replacement of failed unit by the
new ordered unit and C4is the cost per order for a new unit to replace the old one.

9 Conclusion

This paper analyzes the mean time to system failure, system availability and expected profit earned by the system. Also
two particular cases are discussed- (i) When repair time distribution is taken to be negative exponential and (ii) whenever
an operating unit fail, it is rejected and an order is placed immediately for a new unit to replace the failed unit.

Fig. 1: State Transition Diagram
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