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Abstract: Increasingly sophisticated methods and tools are needed for tracking the dynamics and detecting inherent structures in
modern day highly voluminous multi-faceted. Data scientists have long realized that tackling global challenges such as climate
change, terrorism and food security cannot be contained within the frameworks and models of conventional data analysis. For
example, separating noise from meaningful data in even a low-dimensional data with heavy tails and/or overlaps is quitechallenging
and standard non-linear approaches do not always succeed. Tracking the dynamics of multi-faceted data involving complex systems is
tantamount to tracking agent-based complex systems with many interacting agents. Dimensional-reduction methods arecommonly
used to try and capture structures inherent in data but they do not generally lead to optimal solutions mainly because their optimisation
functions and theoretical methods typically rely on special structures. We propose a parameter leveraging method for unsupervised big
data modelling. The method searches for structures in data and creates a series of sub-structures which are subsequently merged or
split. The strategy is to present the algorithm with a set of periodic data as one complex system. It then uses the patternsin the
sub-structures to determine the overall behaviour of the complex system. Applications on solar magnetic activity cycles and seismic
data show that the proposed method out-performs conventional unsupervised methods. We illustrate how the method can beextended
to supervised modelling.

Keywords: Big Data, Clustering, Data Mining, Data Visualisation, k-Means, Optimisation, Seismic Signals, Sunspots, Unsupervised
Modelling.

1 Introduction

Extracting knowledge from data continues to stimulate interdisciplinary research across the world mainly because the
complex nature of global challenges such as climate change,terrorism and food security can no longer be tackled in
isolation. In the big data era, data scientists are embroiled in tracking data dynamics, volume and variety as most
multi-faceted data applications depart from the conventional models of data analysis. For example, separating noise from
meaningful data in even a low-dimensional data with heavy tails and/or overlaps is quite challenging and standard
non-linear approaches do not always succeed in detecting naturally arising structures in such circumstances. Identifying
natural structures becomes even more challenging under thebig data scenario in which data systems become
increasingly complex and attribute relationships less obvious. Applications of mathematical structures in describing
general behaviours of complex systems are well-documented. In such applications the main goal is typically to
investigate how inter-relationships among attributes of partial systems lead to generalisations about aspects of broader
systems [1]. A wide range of unsupervised and supervised modelling methods are used across applications.
Dimensional-reduction methods are commonly used to try andcapture structures inherent in data but they do not
generally lead to optimal solutions mainly because their optimisation functions and theoretical methods typically rely on
special structures. Large volumes of multi-faceted data related to global challenges - climate change, terrorism and food
security - continue to flow in the big data era. Tracking theirdynamics, volume and variety inevitably entails more
sophisticated methods and tools for detecting inherent structures.
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Tracking the dynamics of multi-faceted data involving complex systems is tantamount to tracking agent-based
complex systems with many interacting agents. We propose a parameter leveraging method for unsupervised big data
modelling. The method sequentially searches for structures in data and creates a series of sub-structures which are
subsequently merged or split. We follow [2] who used pattern-oriented modelling framework to design,test and analyse
bottom-up models. The strategy is to present the algorithm with a set of periodic data as one complex system. It then
uses the patterns in the sub-structures to determine the overall behaviour of the complex system. Applications on solar
magnetic activity cycles and seismic data show that the proposed method out-performs conventional unsupervised
methods. The algorithm inherently illustrates how it can beextended to supervised modelling applications. The paper is
organised as follows. An overview of unsupervised modelling is given in Section 2; methods and data description in
Section 3 are followed by data analyses, results and discussions in Section 4 and concluding remarks in Section 5.

2 BACKGROUND OF UNSUPERVISED MODELLING

The main idea of extracting knowledge from data relies on addressing the two main data mining problems - unsupervised
and supervised modelling which, in a conventional statistical jargon, can be described as data clustering and
classification/regression. This section provides focuseson the former. Under unsupervised modelling data points are
allocated to, a priori, unknown groups (clusters) with those in each cluster being as homogeneous as possible while those
between clusters being as heterogeneous as possible. The allocation rule is based on some measure of similarity -
typically, the distance between data points. Unsupervisedmodelling is based on the well-known finite mixtures model [3]
and [4] which constitutes a set of probability distributions eachassociated with membership to one of K defined clusters.
Its mechanics can be illustrated by the category utility [5] which provides a measurement of partition quality as data are
allocated to different clusters (categories). For instance, given clustersCi=1,2,...,K−1,K the category utility is define as

CuK =
∑l P(Cl)∑i ∑ j(P[xi = ξi j|Cl ]

2−P[xi = ξi j|Ci]
2)

K
(1)

where the outer summation is over the clustersCi=1,2,...,K−1,K and the first inner summation is over the data attributes
xi as they assume specific valuesξi1,2,3,... summed overj. The main idea of Equation (1) is that the probability of a
particular attribute assuming a specific value within a given cluster provides a better estimation than just the probability of
an attribute assuming a specific value. Thus, the differencebetween the squared probabilities over all attributes and values
is crucial in determining the usefulness of the clusters. The denominator gives per cluster measure to avoid overfitting[6].
Equation (1) can be extended to continuous variables by assuming a Gaussian model,
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2σ2

σ
√

2π
with the analogy

P[xi = ξi j|Cl ]
2⇔

∫

f (xi)
2dxi =

1
2
√

πσi
.

Variation is estimated within cluster(σil) and over all clusters(σi) as follows
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2
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σi
)
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Typical unsupervised modelling algorithms such as the k-Means [7] and the EM [8], typically manage inherent data
randomness and dependency on starting points via cross validation. This commonly accepted practice still leaves open the
optimality challenge [9], effectively emphasising the need for model assessment such as the one in Equation (1).

3 METHODS AND DATA DESCRIPTION

The proposed strategy is inspired by the Gaussian mixture model approach to density estimation in which data are viewed
as coming from a mixture of probability Gaussian distributions, each representing a different cluster [3]. Given data, the
strategy is to sequentially search for structures, creating a series of sub-structures in the process which are subsequently
merged or split. It follows [2] who used pattern-oriented modelling framework to design,test and analyse bottom-up
models.
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3.1 Data Description

Two time-series datasets with clear periodic patterns shown in Fig. 2 are used. The first is a set of 3160 average monthly
sunspot records for the period from mid-18th century to early 2012 (NOOA, 2012) of which the 5th and 6th had the lowest
activity and 19 and 21 had the highest. The second set consists of 65436 data seismic signals (861x76) obtained from the
Department of Geophysics at the University of Leeds.

The left hand side panel in Fig.1 shows the individual densities of four cycles - two shortest and two longest - with a
superimposed density of all cycles between them. The right hand side panel exhibits four sets of signal readings 1, 25, 50
and 76 with a superimposed overall density estimate curve for all signals. Identifying the essence of sub-structures in
both cases is crucial to understanding numerous phenomena.For instance, sunspots numbers are known to be strongly
correlated with modern measures of solar activity which we know that can interfere with power grids and
communication satellites [10] and [11].

Fig. 1: Densities for selected sunspot cycles (LHS) and selected seismic columns (RHS)

Further, recent studies have closely associated sunspots with space weather [12], [14], and [20]. Similarly,
segmentation of the earth is useful in many ways. Homogeneity/heterogeneity of sub-regions within the same geological
structure may guide searches for natural resources - oil, minerals or water. The framework and mechanics of our
proposed Data-Split-Merge (DSM) algorithm are described below.

3.2 The DSM Algorithm

The algorithm reads data as one complex system, determines its overall behaviour before carrying out parameter
estimation. Its general mechanics can be summarised as follows.
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X← D : Read Data into a Processable Medium

EDA(X) : Initial Exploratory Analysis (Explore Distributional Behaviour)

F(X) : Initial Density Estimation

φ : Initialise Density Variations

SScum : Initialise a Substructure Cumulative Variable

θcum : Initialise a Parameter Cumulating Variable

For i = 1 to Length (X) Do

For j = 1 to Length (xn ∈ X) Do

θj = {θ1,θ2, . . . ,θγ−1,θγ : Initial Parameters

SSj : Determine Initial Substructure

θn = {θn1,θn2, . . . ,θns} : Substructure Parameters

Fj(xn) : Density Estimation

While i≤ j Do

SScum← SS∗i j = ∑
i

∑
j

SS j

θcum← θ ∗i j = {θ1,θ2, . . . ,θϑ≤γ}
|φ |= F(X)−FSScum(xn) : Density Variation

E(θ ∗||θ |) : Conditional Parameter Update

CV(‖φ |) : Assess Estimation Quality via Cross Validation

φ ← |φ |
End While

End For
E(θ ∗|φ) : Conditional Parameter Update

CV(φ) : Assess Estimation Quality via Cross Validation

End For

The algorithm’s novelty derives from its dependency on databehaviour and modularity. The parametersθ can be adapted
to specific datasets. For instance,f (x) = xT β ,θ = β while for the density in Equation (3),{θ = πk,µk,σk}. Thus, for a
general Gaussian model,

p(xn,θn) =
γ

∑
j=1

π j p(xn j|φn j)⇔
γ

∑
j=1

π j

(2π)
d
2

exp−1
2
(xn− µn j)

T
−1

∑
n j
(xn− µn j) (3)

π js are the mixing parameters;p(xn j|θn j) is the pdf corresponding to the distributionFj(xn) andθn denotes the vector
of all unknown parameters associated with the parametric forms adopted for thesej component densities. In the case of
multivariate Gaussian components, theta consists of the elements of the mean vectorsµn j and the covariance matrices
∑n j. The conditional parameter update is a function of the adopted measure of fit quality such as cross validation or one
in the form of Equation (2). Sincexn are effectively random samples, maximisation of the likelihood of resulting density
is generally very awful. Thus, we can treat group membershipas missing data and use an adapted version of the EM
algorithm, say, to estimate the MLEs for the vector of unknowns,π andθ [15]. Continuous data can be clustered around
medoids - a group of data objects having minimal average within-group dissimilarity [16]. The random samplesxn can be
selected using any robust sampling method or a sequential selection method as in [17] to form initial “medoids”. Distances
to all other points can then be computed on the basis of which data points are allocated to clusters. Finally, iteratively,
the clusters can be optimised with the minimal average within-group dissimilarity being measured by the silhouette width
[18] as follows

△i =
δ out

i − δ in
i

max(δ out
i ,δ in

i )
⇔ (4)
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i

whereδ in
i is the average dissimilarity of theith observation with the other data points within the cluster,δ out

i is the minimal
average dissimilarity of theith observation to any other cluster not containing it- i.e.,i′s next best fit cluster.

4 DATA ANALYSES, RESULTS AND DISCUSSIONS

Analyses proceed in accordance with the algorithm above which selects a samplexn ∈ X of sizem - a partial or full cycle
or signal, each time incrementing it by one unit or more. Initial EDA results for selected sample sizes for the two datasets
are given in Fig.2. The top two panels highlight the presenceof natural groupings within cycles and signals. The bottom
two panels are results from a standard cluster-searching algorithm on the same data based on the assumption that 76
different signals and 23 cycles (omitting the incomplete 24th cycle) constitute clusters. The algorithm therefore searched
for clusters above and below these values. Here, the seismicsignals exhibit a very high within group variation for less
than 30 clusters which decreases with an increasing number of clusters. The pattern is repeated for the sunspots except
that now extremely few clusters exhibit extreme rates of internal variation. It is these variations that we need to monitor
and control.

Fig. 2: Visual natural structures in sunspots and seismic data (top panels) and results from a standard cluster-searching
algorithm (bottom panels)

Without loss of generality, we apply our proposed algorithmon continuous data and on the assumption that clustering
is around medoids and that the number of clusters is estimated on the basis of optimum average silhouette width which
as described in Equation (4). The plots in Fig.3 are generated via different data models and in each case the most likely
model and number of clusters are determined by the maximum likelihood estimation and some Bayesian criteria.
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Fig. 3: Sunspots and seismic signal analyses (LHS and RHS respectively) based on an arbitrary choice of data

For the sunspots data, the optimal model according to the Bayesian Information Criterion (BIC) was a Gaussian
ellipsoidal, equal volume and shape (EEV) with 3 components. For the seismic signal, it was a diagonal, varying volume
and shape (VVI) with 9 components. Our adopted rule here follows [19] and chooses the model and number of clusters
with the largest BIC. The choice of optimal clusters in both Fig.2 and Fig.3 is hugely affected by the starting point. The
four panels in Fig.4 exhibit multiple simulations of criterion value densities for numbers of clusters in the first to the
23rd sunspots cycles. Approximation of the average silhouette width is done by breaking the dataset into subsets 5 and
taking averages. The numbers of clusters to be compared by the average silhouette width criterion are shown in the legend.
The criterion varies inversely with the compared number of clusters. Here, the p-value for against the null hypothesis of
similarity between clusters is extremely low. Also as the number of averaged subsets decreases, the criterion plot becomes
spikier.

Fig. 4: Multiple simulations of criterion value densities for numbers of clusters in sunspots data

For the seismic data, averaging over 8 subsets yielded the best results. The four panels in Fig.5 exhibit a more
consistent behaviour with bimodality being sustainable over all comparisons. Like in Fig.5 the criterion varies inversely
with the compared number of clusters. Unlike in the sunspotsexample, the number of averaged subsets does not affect
stability of inherent structures. Averaging over 2 to 20 subsets yielded similar results. In both cases, the density variation
|φ |= F(X)−FSScum(xn) in the algorithm above can be measured using any appropriatecriterion such asCuK in Equation
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(1) or△i in Equation (4). Spiky plots imply swamping as spurious clusters emerge warning against data over-fitting
while unimodality may suggest masking or under-fitting. By cross-validating multiple runs of the algorithm the decision
to merge or split clusters can be made.

5 CONCLUDING REMARKS

The complex nature of global challenges such as climate change, terrorism and food security can no longer be tackled in
isolation and as Big Data becomes an increasingly householdconcept, we are all called upon to engage into
interdisciplinary research initiatives. This paper focused on the knowledge extraction from data. Based on a general
purpose data clustering algorithm, we were able to use silhouette plots and averaging over data subsets to determine the
natural number of clusters within the two datasets. The paper’s finds are readily extendable to classification and/or
regression.

The algorithm’s mechanics derive from its dependency on data behaviour as demonstrated by the different behaviour
of the two datasets (Fig.4 and Fig.5). We sought to identify distinctive data sub-structures, verify model robustness via
data reconstruction using a combination ofφ , the conditional parameter update function and cross-validation to
determine sub-structure. Implementations on sunspots andseismic data revealed more stable structures than those
obtained by conventional methods like PCA ork-Means. For example, neither principal component analysisnor data
clustering tells us how to relate the sunspots variables or data to a particular characteristic and forming a new variable for
future analysis. While plotting two components in a 2-D space may reveal a number of clusters which may guide future
hypotheses, specifying criteria for robustly defining potential clusters in this case is a major challenge and it is whatthis
paper sought to address. Apparently, more tests are necessary to verify the algorithm’s robustness. It is expected thatthe
proposed methods will contribute towards unifying algorithmic theories on adaptive behaviour and model complexity.

Fig. 5: Multiple simulations of criterion value densities for numbers of clusters in seismic data

Acknowledgement

We would like to acknowledge the support from the project 2013/28 of Deanship of Scientific Research, University of
Bahrain, Kingdom of Bahrain.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


210 K. Mwitondi, E. Khorsheed: A parameter leveraging method for...

References

[1] C. Cattani, A. Ciancio, Hybrid Two Scales Mathematical Tools for Active Particles Modelling Complex Systems with Learning
Hiding Dynamics, Mathematical Models and Methods in Applied Sciences,17 (2), 171-187 (2007).

[2] V. Grimm, E. Revilla, U. Berger, F. Jeltsch, W. Mooij, S. Railsback, H-H Thulke, J. Weiner, T. Wiegand, and D. DeAngelis, Pattern-
Oriented Modelling of Agent-Based Complex Systems: Lessons from Ecology; Science,310 (5750), 987-991 (2005).

[3] G. J. McLachlan, and D. Peel, Finite Mixture Models. Wiley, New York, 2000.
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