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Abstract: In this paper by utilizing the information on the populationmean of auxiliary variable, we proposed a new improved class
of estimators for the population variance of the study variable. The large sample properties of proposed estimator havebeen studied
up to the first order of approximation that is the mathematical expressions for the bias and mean square error (MSE) of the proposed
class of estimators have been obtained up to the first order ofapproximation. The optimum values of the characterizing scalars, which
minimize the MSE of proposed estimator, have been obtained.For these optimum values of characterizing scalars, the minimum MSE
of proposed estimator has been obtained. Further a numerical study is also carried out. It has been shown that the proposed estimator
is more efficient than sample variance, traditional ratio estimator due to Isaki [3], Singh et al. [6] exponential ratio estimator, estimator
based on Kadilar and Cingi [4] ratio estimator, Upadhyaya and Singh [8] estimator and Asghar et al. [1] estimator for the population
variance under optimum conditions.
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1 Introduction

It is well established through various practices that variance is the most suitable measure of dispersion. It is also well
known that the most appropriate estimator for the estimation of population variance is the corresponding statistic that is
sample variance. Although it is an unbiased estimator of population variance but has large variance and our aim is to find
the estimator with minimum variance or even biased but with minimum mean squared error. The use of auxiliary
information fulfills this aim of minimizing the mean squarederror. This information is obtained through auxiliary
variable. The auxiliary variable is highly (positively or negatively) correlated with the main variable under study. When it
is positively correlated with the study variable and the line of regression ofy on x passes through origin, ratio type
estimators are used for the estimation of population parameters. When it is negatively correlated with main variable,
product type estimators are used otherwise regression typeestimators are used. It may be used at both the stages of
designing and estimation. We have used it at estimation stage only. It is well known that when it is used at the estimation
stage, the ratio, product and regression methods of estimation are extensively used in many situations. Till now various
ratio type, product type, difference and regression type estimators have been proposed by various authors in the
literature. In the present paper, we have proposed a new improved class of estimators for the estimation of the population
variance utilizing information on population mean of auxiliary variable. Our main purpose of this paper is to develop
new estimators for improved and efficient estimation of the population variance.
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2 Review of Estimators in Literature

Let the finite populationU consists ofN distinct and identifiable unitsU1,U2, .......,UN and a sample ofn units is drawn
from this population using the simple random sampling without replacement (SRSWOR) technique. LetY andX be the
study and the auxiliary variables, respectively, with the assumption that these variables are highly (positively or negatively)
correlated to each other.

Isaki [3] used the auxiliary information on population variance of auxiliary variable and proposed the ratio type
estimator for population variance of the study variable as,

t1 = s2
y

(

S2
x

s2
x

)

(1)

where s2
y = 1
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The mean square error (MSE) of the estimator in (1), up to the first order of approximation, is given by

MSE(t1) = γ S4
y [(λ40−1)+ (λ04−1)−2(λ22−1)] (2)

whereλrs =
µrs

µr/2
20 µs/2

02
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n and f = n
N

The traditional product type estimator for the population variance may be defined as,

t2 = s2
y

(

s2
x

S2
x

)

(3)

The MSE of the estimator of above estimator, up to the first order of approximation, is given by

MSE(t2) = γ S4
y [(λ40−1)+ (λ04−1)+2(λ22−1)] (4)

Singh et al. [6] proposed the exponential ratio estimator for the population variance as,

t3 = s2
y exp

[

S2
x − s2

x

S2
x + s2

x

]

(5)

The MSE of the estimator in (5), up to the first order of approximation, is

MSE(t3) = γ S4
y

[

(λ40−1)+
(λ04−1)

4
− (λ22−1)

]

(6)

The exponential product type estimator for the population variance may be defined as,

t4 = s2
y exp

[

s2
x − S2

x

s2
x + S2

x

]

(7)

The MSE of the estimator in (7), up to the first order of approximation, is

MSE(t4) = γ S4
y

[

(λ40−1)+
(λ04−1)

4
+(λ22−1)

]

(8)

Adapting Kadilar and Cingi [4] ratio estimator for the population mean, the ratio type estimator for the population variance
can be defined as,

t5 = s2
y

[

(S2
x)

2

(s2
x)

2

]

(9)

The MSE of the above estimator, up to the first order of approximation, is

MSE(t5) = γ S4
y [(λ40−1)+4(λ04−1)−4(λ22−1)] (10)
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The product type estimator for the population variance based on the estimator in (9) can be defined as,

t6 = s2
y

[

(s2
x)

2

(S2
x)

2

]

(11)

The MSE of the above estimator, up to the first order of approximation, is

MSE(t6) = γ S4
y [(λ40−1)+4(λ04−1)+4(λ22−1)] (12)

Upadhyaya and Singh [8] proposed a modified ratio estimator of population varianceusing the population mean of the
auxiliary variable as,

t7 = s2
y

[

X̄
x̄

]

(13)

The bias and the mean squared error of above estimator up to the first order of approximation respectively are,

B(t7) = γ S2
y [C

2
x −λ21Cx] (14)

MSE(t7) = γ S4
y
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02

(15)

The product type estimator of population variance based on Upadhyaya and Singh [8] estimator may be given by,

t8 = s2
y

[

x̄
X̄

]

(16)

The bias and the mean squared error of above estimator up to the first order of approximation respectively are,

B(t8) = γ S2
y [C

2
x +λ21Cx] (17)

MSE(t8) = γ S4
y

[

(λ40−1)+C2
x +2λ21Cx

]

(18)

Asghar et al. [1] proposed an improved ratio and product type estimators of population variance using population mean
of auxiliary variable respectively as,
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y exp
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(19)

t10 = s2
y exp
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(20)

The bias and mean squared error of above estimators up to the first order of approximation respectively are,
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]

(24)

Various authors in the literature have proposed different estimators by utilizing auxiliary information in the form of
different parameters of auxiliary variable for estimatingthe population variance of the main variable under study.
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3 Proposed Class of Estimators

Motivated by Solanki et al. [7] and Upadhyaya and Singh [8] and adapting Solanki et al. [7] estimator of population mean
for the estimation of population variance using populationmean of auxiliary variable, we propose the estimator of the
population variance as

t(α ,δ ) = s2
y

[

2−

(

x̄
X̄

)α
exp

(

δ (x̄− X̄)

x̄+ X̄

)]

(25)

where(α,δ ) are suitably chosen scalars which minimizes the mean squared error oft(α ,δ ).
For δ = 0, the proposed class of estimators reduces to the class of estimators as

t(α ,0) = s2
y

[

2−

(
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)α]

(26)

While for α = 0, the proposed estimatort(α ,δ ), reduces to a new class of estimators as

t(0,δ ) = s2
y

[

2− exp
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(27)

In order to study the large sample properties of the proposedclass of estimatorst(α ,δ ) , we define
s2

y = S2
y (1+ ε0) andx̄= X̄(1+ε1) such thatE(εi) = 0 for (i = 0,1) andE(ε2
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Expressing (25) in terms ofεi’s we have
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We assume that|ε1|< 1, so that(1+ ε1)
α and
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may be expanded. Now expanding the right-hand side of (28),

we have,
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Retaining the terms up to the first order of approximation, wehave
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Taking expectation both sides of (30), we get the bias oft(α ,δ ) as
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Squaring both sides of (30) and retaining the terms up to the first order of approximation, we have

[

t(α ,δ )− S2
y

]2
= S4

y

[

ε2
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(2α + δ )2

4
ε2
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Taking expectation both sides of (32), we get the mean squareerror oft(α ,δ ), up to the first order of approximation, as

MSE
[
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Thus the minimum MSE oft(α ,δ ) is,

MSEmin
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(λ40−1)−λ 2
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]

(35)

Now, for different values ofα andδ , we can form different estimators. Forδ = 0 andα = 0, the proposed estimator
t(α ,δ ) reduces to estimators (26) and (27) respectively. The MSE of(26) and (27), up to the first order of approximation
respectively are,

MSE
[
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For α = 1 andδ = 1, the proposed estimator,t(α ,δ ) reduces to a new estimatort(1,1) as

t(1,1) = s2
y

[
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)

exp

(
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The MSE of above estimator, up to the first order of approximation, is
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[
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9
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It would be worth notable to say that naturally, many more ratio and product estimators can be developed by putting
various values ofα andδ .

4 Efficiency Comparison

The most suitable estimator for population variance is the sample variancet0 = s2
y and its variance is given by

V (t0) = γ S4
y(λ40−1) (40)

From (40) and (35), we have
V (t0)−MSEmin

[

t(α ,δ )
]

= γ S4
y [λ21]> 0 (41)

From (2) and (35), we have
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]
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From (4) and (35), we have
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(λ04−1)+λ 2
21+2(λ22−1)> 0 (43)

From (6) and (35), we have

MSE(t3)−MSEmin
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From (8) and (35), we have
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From (10) and (35), we have
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From (12) and (35), we have
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From (15) and (35), we have
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y [Cx −λ21]

2 > 0 i f (48)

From (18) and (35), we have
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From (22) and (35), we have

MSE(t9)−MSEmin
[

t(α ,δ )
]

= γ S4
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2
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From (24) and (35), we have
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[
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= γ S4
y

[

Cx

2
+λ21

]2

> 0 (51)

5 Numerical Examples

To examine the performance of the proposed estimator along with the other estimators of population variance, the
empirical study has been carried out using two real populations.

Population I: Murthy [5]
Y : Number of workers,X : Output
N = 25,n= 25,Ȳ =33.8465,X̄ =283.875,ρyx = 0.9136,Cy =0.352,Cx =0.746,λ04= 3.65,λ40=2.2667,λ22=2.3377,
λ21 = 1.0475,

Population II: Gujarati [2]
Y : Top Speed (miles per hour),X :Average (miles per gallon)
N = 81, n = 21, Ȳ = 2137.068,X̄ = 112.4568,ρyx = −0.6911,Cy = 0.1248,Cx = 0.48, λ04 = 6.82, λ40 = 3.59,λ22 =
2.110,λ21 = 1.4137,
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Table 1: Percent relative efficiency of different estimators with respect to proposed estimatort(α ,δ )
Estimator Population-I Population-II

t0 747.58 437.91
t1 732.59 1046.58
t2 3890.52 1797.28
t3 496.63 496.24
t4 1928.06 871.59
t5 3845.55 3623.29
t6 10161.41 5124.69
t7 153.64 247.39
t8 1998.41 706.33
t9 368.50 332.91
t10 1290.88 562.38

t(α ,δ ) 100 100

6 Conclusion

In this paper we have proposed a class of estimators of population variance using auxiliary information on single variable.
This estimator was proposed through the motivation of Solanki et al. [7] and Upadhyaya and Singh [8]. We have studied its
large sample properties that bias and mean squared error up to the first order of approximation. Further we have compared
this with the other estimators of population variance theoretically. From the theoretical discussions in section-4 and the
empirical study given in Table-1, it is inferred that the proposed estimatort(α ,δ ), for estimating the population variance
of the study variable under the optimum condition performs better than the sample variance estimatort0 = s2

y , traditional
ratio type estimatort1 and other estimators of population variance given in Table-1.
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