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Abstract: In this paper, a general inverse exponential form of the underlying distribution and a general conjugate prior are used to
discuss the maximum likelihood and Bayesian estimation based on unified hybrid censored sample. A general procedure forderiving
two-sample Bayesian prediction is developed using unified hybrid censoring scheme. Special cases of the inverse Weibull model such
as the inverse exponential and the inverse Rayleigh distributions are then used as illustrative examples. Finally, numerical examples are
presented for illustrating all the inferential proceduresdeveloped here.
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1 Introduction

In life-testing experiments, the experimenter may stop theexperiment before all the units on the test be have failed dueto
some considerations such as time and cost. In such cases, theobtained data is called censored data. The most two common
forms of censoring are Type-I and Type-II censoring schemes. Type-I hybrid censoring scheme is introduced by Epstein
in [1] as a mixture of Type-I and Type-II censoring schemes. Type-II hybrid censoring scheme (Type-II HCS) is proposed
by Childs et al. in [2] to fix the disadvantages inherent in Type-I hybrid censoring scheme. Chandrasekar et al. in [3]
introduced generalized Type-I hybrid and generalized Type-II HCS as mixtures of Type-I hybrid and Type-II HCS. For
more details about HCS, one may refer to [4].

Recently, Balakrishnan et al. in [5] proposed the unified HCS to fix the disadvantages inherent inthe generalized Type-
I hybrid and generalized Type-II HCS, suggested by Chandrasekar et al. in [3]. This censoring scheme can be described as
follows. Consider a life-testing experiment in whichn identical units are placed on a life-test. Fix integersk, r ∈ {0, ...,n}
andT1,T2 ∈ (0,∞) such thatk < r andT1 < T2. If the kth failure occurs before timeT1, the experiment is terminated at
min{max(Xr:n,T1) ,T2}. If the kth failure occurs betweenT1 andT2, the experiment is terminated at min(Xr:n,T2) and if
thekth failure occurs after timeT2, the experiment is terminated atXk:n. Under this censoring scheme, we can guarantee
that the experiment would be completed at most in timeT2 with at leastk failure and if not, we can guarantee exactlyk
failures. The described unified HCS and inferential methodsbased on such a scheme have been discussed earlier in the
literature; see, for example; [4], [6], [7], [8], and [9].

We consider here the inverse exponential form for the underlying distribution, suggested by Mohie El-Din et al. in
[10], that is described as follows; Motivated by the fact that the survival function (SF) F̄(x|θ ) = 1−F(x|θ ) corresponding
to any cumulative distribution function (CDF) F(x|θ ) can be written in the form

F̄(x|θ ) = 1−exp[−ψ(x;θ )], (1)

whereψ(x;θ ) =− lnF(x|θ ). Of course, some conditions need to be imposed so thatF̄(x|θ ) is a validSF. These conditions
are:ψ(x;θ ) is continuous, monotone decreasing and differentiable function, withψ(x;θ )→ 0 asx→ ∞ andψ(x;θ )→ ∞
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asx→ 0+. The probability density function (PDF) corresponding to (1) is given by

f (x|θ ) =−ψ ′(x;θ )exp[−ψ(x;θ )], (2)

where ψ ′(x;θ ) is the first derivative ofψ(x;θ ) with respect tox. With an appropriate choice ofψ(x;θ ), several
distributions that are used in reliability studies can be obtained as special cases such as inverse exponential, inverse
Weibull and inverse Rayleigh distributions. Inverse exponential distribution has been considered by Killer and Kamath in
[11], Duran and Lewis in [12], and Abdel-Aty et al. in [13].

The rest of this paper is organized as follows. In Section 2, the maximum likelihood (ML) and Bayesian estimators of
the unknown parameters under squared error loss function are developed. The problem of predicting the order statistics
from a future sample is then discussed in Section 3. The inverse Weibull, the inverse exponential, and the inverse Rayleigh
distributions are presented in Section 4 as special cases from the general inverse exponential form (1). Finally, in Section 5,
some computational results for the inverse exponential distribution are presented for illustrating all the inferential methods
developed here.

2 The ML and Bayesian Estimations

In this section, we use the general inverse exponential formfor the underline distribution in (1) to develop general
procedure for deriving the ML and Bayesian estimators of theunknown parameters based on an observed unified HCS.

Let X1:n < X2:n < ... < Xn:n be the order statistics from a random sample of sizen from an absolutely continuous CDF
F(x) ≡ F(x|θ ) with PDF f (x) ≡ f (x|θ ), where the parameterθ ∈ Θ may be a real vector. LetD j denote the number
of Xi:n’s that are at mostTj , j = 1,2. Then,D j is a discrete random variable has the binomial distributionB(n,F(Tj)),
j = 1,2, with support{0,1, ...,n}. Therefore, under the unified HCS described above, we have one of the following six
types of observations:

1.Case I: 0< Xk:n < Xr:n < T1 < T2 the experiment terminate atT1 and we will observeX1:n < ... < Xk:n < ... < Xr:n <
... < XD1:n.

2.Case II: 0< Xk:n < T1 < Xr:n < T2 the experiment terminate atXr:n and we will observeX1:n < ... < Xk:n < ... <
XD1:n < ... < Xr:n.

3.Case III: 0<Xk:n < T1 < T2 <Xr:n the experiment terminate atT2 and we will observeX1:n < ... <Xk:n < ... <XD1:n <
... < XD2:n.

4.Case IV: 0< T1 < Xk:n < Xr:n < T2 the experiment terminate atXr:n and we will observeX1:n < ... < XD1:n < ... <
Xk:n < ... < Xr:n.

5.Case V: 0< T1 < Xk:n < T2 < Xr:n the experiment terminate atT2 and we will observeX1:n < ... < XD1:n < ... < Xk:n <
... < XD2:n.

6.Case VI: 0< T1 < T2 < Xk:n < Xr:n the experiment terminate atXk:n and we will observeX1:n < ... < XD1:n < ... <
XD2:n < ... < Xk:n.

Thus, the joint density function of the unified hybrid censored sampleX = (X1:n,X2:n, ...,XD∗:n) is as follows:

fX(x) =
n!

(n−D∗)!

D∗

∏
j=1

f (x j ){1−F(T∗)}n−D∗

= n!
n−D∗

∑
i=0

Ci [F(T∗)]n−D∗−i
D∗

∏
j=1

f (x j), (3)

whereCi =
(−1)n−D∗−i

(n−D∗−i)!i! ,

(D∗,T∗) =





(D1,T1), if 0 < Xk:n < Xr:n < T1 < T2, Case I,
(r,Xr:n), if 0 < Xk:n < T1 < Xr:n < T2,

if 0 < T1 < Xk:n < Xr:n < T2,
Case II,
Case IV,

(D2,T2), if 0 < Xk:n < T1 < T2 < Xr:n,
if 0 < T1 < Xk:n < T2 < Xr:n

Case III,
Case V,

(k,Xk:n), if 0 < T1 < T2 < Xk:n < Xr:n, Case VI,

(4)

andx = (x1,x2, ...,xD∗) is a vector of realizations.
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Upon using (1) and (2) in (3), we obtain the likelihood function ofθ based on unified HCS as

L(θ ;x) = n!

(
D∗

∏
j=1

(
−ψ ′(x j ;θ )

)
)

n−D∗

∑
i=0

Ci exp

{
−

[
D∗

∑
j=1

ψ(x j ;θ )+ (n−D∗− i)ψ(T∗;θ )

]}
, (5)

the log-likelihood function ofθ is given by

logL(θ ;x) = logn! +
D∗

∑
j=1

log
(
−ψ ′(x j ;θ )

)

+ log

{
n−D∗

∑
i=0

Ci exp

{
−

[
D∗

∑
j=1

ψ(x j ;θ )+ (n−D∗− i)ψ(T∗;θ )

]}}
. (6)

Thus, we can calculate the ML estimate ofθ by solving the equation

d logL(θ |x)
dθ

= 0.

This equation is appropriate for a single valueθ , but for a vectorθ of course, the partial derivatives produce a system of
equations that are solved simultaneously.

For the Bayesian approach, the unknown parameter is regarded as a realization of a random variable, which has some
prior distribution. We consider here a general conjugate prior, suggested by AL-Hussaini in [14], that is given by

π(θ ;δ )∝ A(θ ;δ )exp[−B(θ ;δ )], (7)

whereθ ∈Θ is the vector of parameters of the distribution in (1) andδ is the vector of prior parameters. The prior family
in (7) includes several priors used in the literature as special cases.

Upon combining (3) and (7), the posterior density function ofθ , given unified HCS, is obtained as

π∗(θ |x) = L(θ ;x)π(θ ;δ )/
∫

θ∈Θ

L(θ ;x)π(θ ;δ )dθ

= I−1
n−D∗

∑
i=0

Ciη j(θ ;x)exp[−ζi(θ ;x)], (8)

where

η j(θ ;x) =

(
D∗

∏
j=1

(
−ψ ′(x j ;θ )

)
)
[A(θ ;δ )] ,

ζi(θ ;x) = (n−D∗− i)ψ(T∗;θ )+B(θ ;δ )+
D∗

∑
j=1

ψ(x j ;θ ),

and

I =
n−D∗

∑
i=0

Ci

∫

θ∈Θ

η j(θ ;x)exp[−ζi(θ ;x)].

The Bayesian estimator ofθ under the squared error loss function is the mean of the posterior density function, given by

θ̂ = I−1
n−D∗

∑
i=0

Ci

∫

θ∈Θ

θη j(θ ;x)exp[−ζi(θ ;x)]dθ . (9)

3 Two-Sample Bayesian Prediction

Let Y1:m ≤Y2:m ≤ . . .≤Ym:m be the order statistics from a future random sample of sizem from the same population. We
develop here a general procedure for deriving the point and interval predictions forYs:m, 1≤ s≤ m, based on the observed
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unified HCS. It is well known that the marginal density function of thesth order statistic from a sample of sizem from a
continuous distribution withCDF F(x) andPDF f(x) is given, see; [15], by

fYs:m(ys|θ ) =
m!

(s−1)!(m− s)!
[F(ys)]

s−1[1−F(ys)]
m−s f (ys), ys > 0

=
m!

(s−1)!

m−s

∑
w=0

Cw[F(ys)]
m−w−1 f (ys), (10)

whereCw = (−1)m−s−w

w!(m−s−w)! .
Upon substituting (1) and (2) in (10), the marginal density function ofYs:m becomes

fYs:m(ys|θ ) =
m!

(s−1)!

m−s

∑
w=0

Cw
(
−ψ ′(ys,θ )

)
exp[−(m−w)ψ(ys,θ )], ys > 0. (11)

Upon combining (8) and (11), the Bayesian predictive density function ofYs:m, given unified HCS, is obtained as

f ∗Ys:m
(ys|x) =

∫

θ∈Θ

fYs:m(ys|θ )π∗(θ |x)dθ

=
m!I−1

(s−1)!

n−D∗

∑
i=0

Ci

∫

θ∈Θ

η j(θ ;x)exp[−ζi(θ ;x)]

×
m−s

∑
w=0

Cw
(
−ψ ′(ys,θ )

)
exp[−(m−w)ψ(ys,θ )]dθ . (12)

From (12), we simply obtain the cumulative distribution functionF∗
Ys:m

(t|x), for t ≥ 0, as

F∗
Ys:m

(t|x) =

t∫

0

f ∗Ys:m
(ys|x)dys

=
m!I−1

(s−1)!

n−D∗

∑
i=0

Ci

∫

θ∈Θ

η j(θ ;x)exp[−ζi(θ ;x)]

×
m−s

∑
w=0

Cw

(m−w)
exp[−(m−w)ψ(t,θ )]dθ . (13)

The Bayesian point predictor ofYs:m, 1≤ s≤ m, under the squared error loss function is the mean of the predictive density,
given by

Ŷs:m =

∞∫

0

ys f ∗Ys:m
(ys|x)dys, (14)

where f ∗Ys:m
(ys|x) is given as in (12).

The Bayesian predictive bounds of 100(1−γ)% two-sided equi-tailed (ET) interval forYs:m, 1≤ s≤m, can be obtained
by solving the following two equations:

F∗
Ys:m

(UET|x) =
γ
2

and F∗
Ys:m

(LET|x) = 1−
γ
2
, (15)

whereF∗
Ys:m

(t|x) is given as in (13), andLET andUET denote the lower and upper bounds, respectively. For the highest
posterior density (HPD) method, the following two equations need to be solved:

F∗
Ys:m

(UHPD|x)−F∗
Ys:m

(LHPD|x) = 1− γ,

and
f ∗Ys:m

(UHPD|x)− f ∗Ys:m
(LHPD|x) = 0,

where f ∗Ys:m
(ys|x) is as in (12), andLHPD andUHPD denote the HPD lower and upper bounds, respectively.
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4 Illustrative Examples

Several distributions that are used in reliability studiescan be obtained as special cases from the general inverse
exponential form given in (1). In this section, we apply the general procedure derived inthe preceding sections for the
the inverse Weibull (IW) distribution, inverse Rayleigh and inverse exponential distributions as illustrative examples.

4.1 The Inverse Weibull Distribution(α,β )

In this section we study ML estimates and Bayesian estimatesfor unknown parameters based on unified hybrid from the
inverse Weibull distribution. Also we study two sample Bayesian prediction intervals for order statistics (OS) based on
the inverse Weibull distribution which is one of the most important distributions in the inverse exponential-type class of
distributions. For example the inverse Weibull (IW) distribution has been used to distribution the degradation of
mechanical components ([16]) such as the dynamic components (pistons, crankshaft,etc.) of diesel engines. Properties of
IW distribution have been obtained by, for example; [17], [18], and [19].

The distribution function of the inverse Weibull distribution is given by

F(x|θ ) = exp[−(αx)−β ], x> 0, (16)

whereθ = (α,β ) ,α > 0, andβ > 0 so we have

ψ(x;θ ) =
α−β

xβ and ψ ′(x;θ ) =−
β α−β

xβ+1
. (17)

Suppose thatα is an unknown andβ is known.Therefore, the likelihood function ofα andβ based on unified HCS, is
given by

L(α,β ;x) = n!

(
D∗

∏
j=1

1

xβ+1
j

)
β D∗

n−D∗

∑
i=0

Ciα−β D∗
exp

{
−α−β

[
D∗

∑
j=1

1

xβ
j

+
n−D∗− i

T∗β

]}
. (18)

Thus, the log-likelihood function ofα andβ is given by

logL(α,β ;x) = logn! +
D∗

∑
j=1

log

(
1

xβ+1
j

)
+D∗ log(β )

+ log

{
n−D∗

∑
i=0

Ciα−β D∗
exp

{
−α−β

[
D∗

∑
j=1

1

xβ
j

+
n−D∗− i

T∗β

]}}
, (19)

and so the ML estimator̂αMLof α is readily obtained by solving the following equation

n−D∗

∑
i=0

{
Ciβ

(
α−β −D∗

)
α−β D∗−1exp

[
−α−β

(
D∗

∑
j=1

1

xβ
j

+
n−D∗− i

T∗β

)]}
= 0. (20)

For the case whenα is an unknown andβ is known, we use the prior density function which was suggested by Calabria
and Pulcini in [18] (whenβ is known) as

π(λ ;δ ) = α−cβ−1exp[−dα−β ], (21)

whereα > 0,δ = (c,d) andc,d > 0.
HenceA(θ ;δ ) = α−cβ−1 and B(θ ;δ ) = dα−β , from (8) the posterior density function is then given by,

π∗(θ |x) = I−1
n−D∗

∑
i=0

Ci α−β (D∗+c)−1exp

[
−α−β

(
D∗

∑
j=1

1

xβ
j

+
n−D∗− i

T∗β +d

)]
, (22)

where

I = Γ (D∗+ c)
n−D∗

∑
i=0

Ci

(
D∗

∑
j=1

1

xβ
j

+
n−D∗− i

T∗β +d

)−(D∗+c)

.
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Hence, the Bayesian estimator ofα under the squared error loss function is obtained as

α̂B =
Γ (D∗+ c+1)

I

n−D∗

∑
i=0

Ci

(
D∗

∑
j=1

1

xβ
j

+
n−D∗− i

T∗β +d

)−(D∗+c+1)

. (23)

From (12), the Bayesian predictive density function ofYs:m, given unified HCS, is obtained as

f ∗Ys:m
(ys|x) =

m!
I(s−1)!

n−D∗

∑
i=0

m−s

∑
w=0

CiCw

∫

θ∈Θ

β
yβ+1

s

α−β (D∗+c+1)−1

×exp[−α−β

(
D∗

∑
j=1

1

xβ
j

+
n−D∗− i

T∗β +
m−w

yβ
s

+d

)
dα

=
m!Γ (D∗+ c+1)

I(s−1)!

n−D∗

∑
i=0

m−s

∑
w=0

CiCwβ
yβ+1

s

(
D∗

∑
j=1

1

xβ
j

+
n−D∗− i

T∗β +
m−w

yβ
s

+d

)−(D∗+c+1)

. (24)

Using (13), (17), and (22) then the predictive cumulative distribution function ofYs:m is given by

F∗
Ys:m

(t|x) =
m!Γ (D∗+ c+1)

I(s−1)!

n−D∗

∑
i=0

m−s

∑
w=0

t∫

0

CiCwβ
yβ+1

s

(
D∗

∑
j=1

1

xβ
j

+
n−D∗− i

T∗β +
m−w

yβ
s

+d

)−(D∗+c+1)

dys

=
m!Γ (D∗+ c)

I(s−1)!

n−D∗

∑
i=0

m−s

∑
w=0

CiCw

(m−w)

(
D∗

∑
j=1

1

xβ
j

+
n−D∗− i

T∗β +
m−w

tβ +d

)−(D∗+c)

. (25)

4.1.1 The inverse exponential distribution.

We can obtain the inverse exponential distribution as special case of the inverse Weibull distribution by settingβ = 1.
Hence the distribution function of the inverse exponentialdistribution is given by

F(x|θ ) = exp[−
1

αx
], x> 0, (26)

whereα > 0, and we have

ψ(x;θ ) =
1

αx
and ψ ′(x;θ ) =−

1
αx2 . (27)

and so the ML estimator̂αMLof α is readily obtained by solving the following equation

n−D∗

∑
i=0

{
Ci
(
α−1−D∗

)
α−D∗−1exp

[
−α−1

(
D∗

∑
j=1

1
x j

+
(n−D∗− i)

T∗

)]}
= 0. (28)

Also, the Bayesian estimator ofα under the squared error loss function is obtained as

α̂B =
Γ (D∗+ c+1)

I

n−D∗

∑
i=0

Ci

(
D∗

∑
j=1

1
x j

+
n−D∗− i

T∗
+d

)−(D∗+c+1)

. (29)
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Puttingβ = 1 in (24), then the predictive density function ofYs:m is given by

f ∗Ys:m
(ys|x) =

m!Γ (D∗+ c+1)
I(s−1)!

n−D∗

∑
i=0

m−s

∑
w=0

CiCw

y2
s

(
D∗

∑
j=1

1
x j

+
n−D∗− i

T∗
+

m−w
ys

+d

)−(D∗+c+1)

, (30)

and puttingβ = 1 in (25), then the predictive cumulative distribution function ofYs:m is given by

F∗
Ys:m

(t|x) =
m!Γ (D∗+ c)

I(s−1)!

n−D∗

∑
i=0

m−s

∑
w=0

CiCw

(m−w)

(
D∗

∑
j=1

1
x j

+
n−D∗− i

T∗
+

m−w
t

+d

)−(D∗+c)

, (31)

where

I = Γ (D∗+ c)
n−D∗

∑
i=0

Ci

(
D∗

∑
j=1

1
x j

+
n−D∗− i

T∗
+d

)−(D∗+c)

. (32)

4.1.2 The inverse Rayleigh distribution.

We can obtain the inverse Rayleigh distribution as special case of the inverse Weibull distribution by settingβ = 2. Hence
the distribution function of the inverse exponential distribution is given by

F(x|θ ) = exp

[
−

1

(αx)2

]
, x> 0, (33)

whereα > 0, and we have

ψ(x;θ ) =
1

(αx)2 and ψ ′(x;θ ) =−
2

α2x3 , (34)

and so the ML estimator̂αMLof α is readily obtained by solving the following equation

n−D∗

∑
i=0

{
Ci
(
α−2−D∗

)
α−2D∗−1exp

[
−α−2

(
D∗

∑
j=1

1

x2
j

+
(n−D∗− i)

T∗2

)]}
= 0. (35)

Also, the Bayesian estimator ofα under the squared error loss function is obtained as

α̂B =
Γ (D∗+ c+1)

I

n−D∗

∑
i=0

Ci

(
D∗

∑
j=1

1

x2
j

+
n−D∗− i

T∗2 +d

)−(D∗+c+1)

. (36)

Puttingβ = 2 in (24), then the predictive denstiy function ofYs:m is given by

f ∗Ys:m
(ys|x) =

m!Γ (D∗+ c+1)
I(s−1)!

n−D∗

∑
i=0

m−s

∑
w=0

CiCw

y3
s

(
D∗

∑
j=1

1

x2
j

+
n−D∗− i

T∗2 +
m−w

y2
s

+d

)−(D∗+c+1)

, (37)

and puttingβ = 2 in (25), then the predictive cumulative distribution function ofYs:m is given by

F∗
Ys:m

(t|x) =
m!Γ (D∗+ c)

I(s−1)!

n−D∗

∑
i=0

m−s

∑
w=0

CiCw

(m−w)

(
D∗

∑
j=1

1

x2
j

+
n−D∗− i

T∗2 +
m−w

t2 +d

)−(D∗+c)

, (38)

where

I = Γ (D∗+ c)
n−D∗

∑
i=0


Ci

(
D∗

∑
j=1

1

x2
j

+
n−D∗− i

T∗2 +d

)−(D∗+c)

 . (39)
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Table 1: The ML and Bayesian estimates ofα.
α̂B

Scheme α̂ML IP NIP
1 0.099 0.083 0.080
2 0.079 0.075 0.063
3 0.073 0.066 0.057
4 0.067 0.059 0.051

5 Numerical example for the inverse exponential distribution

In order to illustrate all the inferential results established for the inverse exponential distribution, we generatedorder
statistics from a sample of sizen = 20 from the inverse exponential distribution withα = 0.1. The generated order
statistics as follows: 0.026, 0.045, 0.061, 0.064, 0.090, 0.105, 0.107, 0.108, 0.113, 0.118, 0.127, 0.274, 0.319, 0.327,
0.348, 0.388, 0.449, 0.584, 1.765, and 27.861. We will applythe following four unified HCS:

1.Scheme 1: Supposek = 4, r = 6, T1 = 0.110 andT2 = 0.200, thenx4:20< x6:20< T1 and the experiment would have
terminated atT1 = 0.110. Therefore, we would have the following data: 0.026, 0.045, 0.061, 0.064, 0.090, 0.105,
0.107, and 0.108;

2.Scheme 2: Supposek= 6, r = 10,T1 = 0.110 andT2 = 0.200, thenx6:20< T1 < x10:20< T2 and the experiment would
have terminated atx10:20= 0.118. Therefore, we would have the following data: 0.026, 0.045, 0.061, 0.064, 0.090,
0.105, 0.107, 0.108, 0.113, and 0.118;

3.Scheme 3: Supposek= 9, r = 13,T1 = 0.110 andT2 = 0.200, thenT1 < x9:20< T2 < x13:20and the experiment would
have terminated atT2 = 0.200. Therefore, we would have the following data: 0.026, 0.045, 0.061, 0.064, 0.090, 0.105,
0.107, 0.108, 0.113, 0.118, and 0.127;

4.Scheme 4: Supposek = 13, r = 16, T1 = 0.110 andT2 = 0.200, thenT1 < T2 < x13:20< x16:20 and the experiment
would have terminated atx13:20= 0.319. Therefore, we would have the following data: 0.026, 0.045, 0.061, 0.064,
0.090, 0.105, 0.107, 0.108, 0.113, 0.118, 0.127, 0.274, and0.319.

Based on the above four unified HCS, we used the results presented in Subsection 4.2 to calculate the ML and Bayesian
estimates of the unknown parameterα. Also, we calculate the point predictor and 95% ET and HPD prediction intervals
for the future order statisticsYs:10, where 1≤ s≤ 10, from a future unobserved sample with sizem= 10. All obtained
results for the Bayesian estimation and prediction, presented in Tables 1,2, are computed based on two different choices
of the hyperparameters(c,d), namely,

1. (0.1,10): informative prior(IP).
2. (0,0): noninformative prior(NIP).

6 Conclusions and discussion

In this paper, based on the general inverse exponential form(1) for the underline distribution, a general procedure for
calculating the ML and Bayesian estimators of the unknown parameters has been discussed when the observed sample
is unified hybrid censored sample. Both Bayesian point and interval predictions of the future order statistics from an
unobserved future sample have been developed. We can apply this general procedure for several important distributions
that are used in reliability studies such as inverse Weibull, inverse Rayleigh, and inverse exponential distributions. We
applied in this paper the general procedures for the inverseexponential distribution as illustrative example.
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From the results in Table 2, we notice that, the point predictor of mean is between the upper and lower bounds of
the prediction intervals. Also, a comparison of the resultsfor the informative priors with the corresponding ones for non-
informative priors reveals that the former produce more precise results. Moreover, the HPD prediction intervals seem to
be more precise than the ET prediction intervals.
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Table 2: Bayesian point predictor and 95% ET and HPD prediction intervalsYs:ℓ:N, for s= 1, ..., ℓ, from the exponential distribution.
IP NIP

Scheme s Ŷs:N ET interval HPD interval Ŷs:N ET interval HPD interval
1 1 0.463 (0.011,2.754) (0.007,2.121) 0.509 (0.011,3.009) (0.005,2.293)

2 0.847 (0.131,4.529) (0.009,3.630) 0.986 (0.135,4.998) (0.008,3.957)
3 1.321 (0.359,6.747) (0.109,5.526) 1.537 (0.367,7.488) (0.104,6.049)
4 1.788 (0.656,9.006) (0.291,7.479) 2.085 (0.669,10.037)(0.278,8.212)
5 2.271 (1.009,11.385) (0.529,9.542) 2.654 (1.024,12.727) (0.508,10.500)
6 3.021 (1.489,15.017) (0.851,12.638) 3.533 (1.509,16.816) (0.819,13.926)
7 3.835 (2.057,19.006) (1.245,16.057) 4.492 (2.080,21.316) (1.198,17.716)
8 4.751 (2.723,23.516) (1.716,19.931) 5.571 (2.749,26.412) (1.651,22.015)
9 6.563 (3.739,32.142) (2.378,27.169) 7.678 (3.773,36.071) (2.291,29.998)
10 8.956 (5.089,43.544) (3.259,36.773) 10.464 (5.133,48.854) (3.142,40.597)

2 1 0.491 (0.012,2.828) (0.008,2.194) 0.535 (0.012,3.056) (0.007,2.352)
2 0.914 (0.141,4.620) (0.011,3.734) 1.015 (0.145,5.030) (0.010,4.028)
3 1.409 (0.386,6.855) (0.124,5.667) 1.565 (0.396,7.496) (0.120,6.133)
4 1.894 (0.707,9.124) (0.327,7.654) 2.109 (0.725,10.009)(0.320,8.303)
5 2.392 (1.089,11.507) (0.594,9.748) 2.670 (1.113,12.656) (0.582,10.594)
6 3.171 (1.611,15.161) (0.955,12.899) 3.543 (1.643,16.696) (0.936,14.033)
7 4.014 (2.227,19.165) (1.395,16.374) 4.491 (2.269,21.133) (1.368,17.832)
8 4.959 (2.951,23.689) (1.922,20.308) 5.556 (3.003,26.152) (1.885,22.136)
9 6.851 (4.055,32.398) (2.661,27.690) 7.662 (4.124,35.742) (2.613,30.174)
10 9.348 (5.519,43.900) (3.645,37.482) 10.445 (5.611,48.419) (3.581,40.839)

3 1 1.305 (0.030,6.088) (0.009,4.748) 1.470 (0.034,6.843) (0.011,5.305)
2 2.079 (0.316,9.889) (0.030,8.044) 2.208 (0.344,11.182)(0.030,9.031)
3 3.076 (0.863,14.623) (0.293,12.178) 3.280 (0.934,16.594) (0.302,13.708)
4 4.046 (1.583,19.414) (0.761,16.419) 4.329 (1.708,22.090) (0.790,18.517)
5 5.038 (2.440,24.440) (1.375,20.881) 5.409 (2.626,27.866) (1.431,23.585)
6 6.599 (3.611,32.167) (2.204,27.606) 7.097 (3.881,36.716) (2.295,31.209)
7 8.282 (4.997,40.620) (3.218,35.014) 8.923 (5.364,46.416) (3.352,39.618)
8 10.166 (6.625,50.165) (4.431,43.395) 10.972 (7.105,57.377) (4.616,49.139)
9 13.976 (9.106,68.644) (6.129,59.181) 15.068 (9.760,78.464) (6.390,66.997)
10 18.998 (12.398,93.030) (8.392,80.115) 20.474 (13.284,106.317) (8.751,90.687)

4 1 0.910 (0.022,4.417) (0.012,3.471) 0.990 (0.024,4.776) (0.015,3.739)
2 1.515 (0.239,7.118) (0.024,5.843) 1.623 (0.253,7.728) (0.024,6.315)
3 2.247 (0.658,10.475) (0.236,8.817) 2.411 (0.694,11.400) (0.242,9.544)
4 2.952 (1.212,13.856) (0.612,11.856) 3.174 (1.275,15.108) (0.628,12.851)
5 3.668 (1.873,17.393) (1.105,15.046) 3.952 (1.969,18.992) (1.135,16.327)
6 4.804 (2.779,22.857) (1.769,19.867) 5.181 (2.917,24.978) (1.818,21.572)
7 6.023 (3.853,28.819) (2.582,25.167) 6.502 (4.041,31.518) (2.654,27.345)
8 7.384 (5.116,35.542) (3.556,31.158) 7.980 (5.362,38.898) (3.655,33.872)
9 10.179 (7.038,48.680) (4.913,42.509) 10.990 (7.372,53.250) (5.053,46.203)
10 13.860 (9.586,65.996) (6.725,57.555) 14.956 (10.039,72.179) (6.917,62.551)
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