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Abstract: In this work, we prove that modular spaces V ρ(λ; p) defined in [26] have the k-nearly uniform convexity(k − NUC
property) when they are endowed with the Luxemburg norm. We also prove that these spaces have the uniform Opial property with the
Luxemburg norm. The above investigated geometric properties will enable us to obtain some fixed point results in modular spaces.
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1. Introduction

In summability theory, de la Vallée-Poussin’s mean
is first used to define the (V, λ)-summability by Leindler
[14]. Malkowsky and Savaş [17] introduced and studied
some sequence spaces which arise from the notion of gen-
eralized de la Vallée-Poussin mean. Also the (V, λ)-summa-
ble sequence spaces have been studied by many authors
including [7] and [23].

There are many papers on the geometrical properties
of some Banach spaces in literature. Some of them are as
follows: In [20] Opial defined the Opial property with his
name mentioned and he proved that ℓp space (1 < p < ∞)
satisfies this property but the spaces Lp[0, 2π] (p ̸= 2,
(1 < p < ∞) do not. Franchetti [9] has shown that any infi-
nite dimensional Banach space has an equivalent norm that sat-
isfies the Opial property. Later on, Prus [21] introduced and in-
vestigated uniform Opial property for Banach spaces. In [11],
the notion of nearly uniform convexity for Banach spaces was
introduced by Huff. Also Huff [11] proved that every nearly uni-
formly convex Banach spaces is reflexive and it has the uni-
formly Kadec-Klee property. Moreover, Kutzarova [13] defined
and studied k-nearly uniformly Banach spaces.

Recently, there are a lot of interest in investigating geometric
properties of several sequence spaces. Some of the recent work
on sequence spaces and their geometrical properties is given in
the sequel: Shue [24] first defined the Cesáro sequence spaces
with a norm. In [6], it is shown that the Cesáro sequence spaces
cesp (1 ≤ p < ∞) have k-nearly uniformly convex and uniform
Opial properties. Şimşek and Karakaya [25] studied the uniform

Opial property and some other geometric properties of general-
ized modular spaces of Cesáro type defined by weighted means.
In addition, some related papers on this topic can be found in [1],
[12], [18], [19] and[22].

Quite recently, Şimşek et al. [26] introduced a new modular
sequence space defined by de la Vallée-Poussin’s mean and in-
vestigated some topological and geometric properties as Kadec-
Klee and Banach-Saks of type p. Moreover, the sequence space
involving de la Vallée-Poussin’s mean is more general than Cesáro
sequence space defined by Shue [24] and investigated by Cui and
Hudzik [5].

In this paper we consider modular sequence spaces Vρ(λ; p)
defined in [26], where ρ is a countably orthogonally additive
modular satisfying the strong ∆2-condition (ρ ∈ ∆s

2 for short)
and we establish that the space Vρ(λ; p) equipped with the Lux-
emburg norm satisfy k − nearly uniformly convex property
and uniform Opial property whence we deduce some fixed
point results in modular spaces.

2. Preliminaries, Background and Notation

For a Banach space X, let (X, || · ||) (for the brevity X =
(X, || · ||) ) be a normed linear space and let B(X) (resp. S(X))
be the closed unit ball (resp. unit sphere) of X . Let ℓ0 denote
the space of all real sequences and N denote the set of all natural
numbers. For any sequence {xn} in X , we denote by conv({xn})
the convex hull of the elements of {xn} (see [2]).

A Banach space X is called uniformly convex (UC) if
for each ε > 0, there is δ > 0 such that for x, y ∈ S(X), the
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inequality ∥x− y∥ > ε implies that∥∥∥∥12(x+ y)

∥∥∥∥ < 1− δ.

Recall that for a number ε > 0 a sequence {xn} in X is said to
be an ε− seperated sequence if

sep ({xn}) = inf{∥xn − xm∥ , n ̸= m} > ε.

A Banach space X is said to have the Kadec−Klee property
(H−property) if every weakly convergent sequence on the unit
sphere is convergent in norm.

A Banach space X is said to have the uniform Kadec −
Klee property (UKK) if for every ε > 0 there exists δ >
0 such that if x is the weak limit of a normalized ε-separated
sequence, then ∥x∥ < 1− δ (see; Huff [11]). We have that every
(UKK) Banach space have the Kadec-Klee property.

A Banach space X is said to be the nearly uniformly
convex (NUC) if for every ε > 0 there exists δ > 0 such
that for every sequence {xn} ⊂ B(X) with sep ({xn}) > ε,
we have

conv({xn}) ∩ (1− δ)B(X) ̸= ∅.

Let k ≥ 2 be an integer. A Banach space X is said to be k −
nearly uniformly convex (k −NUC) if for any ε > 0 there
exists δ > 0 such that for every sequence {xn} ⊂ B(X) with
sep ({xn}) > ε, there are n1, n2, ..., nk ∈ N such that∥∥∥∥xn1 + xn2 + ...+ xnk

k

∥∥∥∥ < 1− δ.

A Banach space X is (NUC) whenever it is (k − NUC) for
some integer k ≥ 2. Clearly, (k − NUC) Banach spaces are
(NUC) but the opposite implication does not hold in general
(see [13]).

A point x ∈ S(X) is called an extreme point if for any
y, z ∈ B(X) the equality 2x = y + z implies y = z.

A Banach space X is said to be rotund (abbreviated as (R))
if every point of S(X) is an extreme point.

A Banach space X is said to be fully k − rotund (write
kR) (see [8]) if for every sequence {xn} ⊂ B(X), the condition

∥xn1 + xn2 + ...+ xnk∥ → k as n1, n2, ..., nk → ∞

implies that {xn} is convergent.
It is well known that (UC) implies (kR) and (kR) implies

((k + 1)R), and (kR) spaces are reflexive and rotund, and it is
easy to see that (k −NUC) implies (kR).

A Banach space X ⊂ ℓ0 is said to be a Köthe sequence space
if there is a sequence x = (x(i))∞i=1 ∈ X with all x(i) ̸= 0 with
for every x ∈ ℓ0 and y ∈ X with |x(i)| ≤ |y(i)| for all i ∈ N,
there holds x ∈ X and ∥x∥ ≤ ∥y∥ .

An element x ∈ X is said to be absolutely continuous if

lim
n→∞

∥0, 0, 0, ..., 0, x(n+ 1), x(n+ 2), ...∥ = 0.

The set of all absolutely continuous elements in X is denoted
by Xa and it is a subspace of X . We say that X is absolutely
continuous if Xa = X .

A Banach space X is said to have the Opial property (see
[20]) if for any weakly null sequence (xn) and every x ̸= 0 in X
there holds

lim inf
n→∞

∥xn∥ < lim inf
n→∞

∥xn + x∥ .

A Banach space X is said to have the uniform Opial property
(see [21]) if for each ε > 0 there exists τ > 0 such that for any
weakly null sequence (xn) in S(X) and x ∈ X with ∥x∥ ≥ ε
there holds

1 + τ ≤ lim inf
n→∞

∥xn + x∥ .

Let β be the ball measure of noncompactness in X i.e.

β(A) = inf {ε > 0 : A can be covered by

a finite family of balls of diameter ≤ ε}
for any bounded set A ⊂ X .

A Banach space X is said to have property (L)
if limε→1− ∆(ε) = 1, where (see [10])

∆(ε) = inf {1− inf (∥x∥ : x ∈ A)} ,

where the first infimum is taken over all closed sets A in the unit
ball B(X) of X with β(A) ≥ ε.

The function ∆ is called the modulus of noncompact con-
vexity (see [10]). It has been proved in [21] that property (L) is
useful to study the fixed point property and that a Banach space
X has property (L) if and only if it is reflexive and has the uni-
form Opial property.

Throughout the paper, the sequence p = (pk) is a bounded
sequence of positive real numbers with

lim inf
k→∞

pk > 1. (1)

Besides, we will need the following inequalities in the sequel;

|ak + bk|pk ≤ K (|ak|pk + |bk|pk ) (2)

where K = max{1, 2H−1} with H = supk pk.
We start with a brief collection of basic concepts and facts of

the theory of modular spaces.
Let X be an arbitrary real vector space.
(a) A functional ρ : X → [0,∞] is called modular if for

arbitrary x, y in X ,
(i) ρ(x) = 0 if and only if x = 0,
(ii) ρ(αx) = ρ(x) for every scalar α with |α| = 1,
(iii) ρ(αx + βy) ≤ ρ(x) + ρ(y) if α + β = 1 and

α ≥ 0, β ≥ 0,
(b) if (iii) is replaced by

(iii)′ ρ(αx+ βy) ≤ αρ(x) + βρ(y) if α+ β = 1 and
α ≥ 0, β ≥ 0, we say that ρ is a convex modular.

(c) A modular ρ defines a corresponding modular space, i.e
the vector space Xρ given by

Xρ =
{
x ∈ X : ρ(λx) → 0 as λ → 0+

}
.

In general, the modular ρ is not subadditive and therefore does
not behave as a norm or a distance. But one can associate to a
modular an F−norm. Recall that a functional ∥·∥ : X → [0,∞]
defines an F -norm if and only if

1) ∥x∥ = 0 ⇔ x = 0,
2) ∥αx∥ = ∥x∥ whenever |α| = 1,
3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥
4) ∥αnxn − αx∥ → 0 if αn → α and ∥xn − x∥ → 0.

An F-norm defines a distance on X by

d(x, y) = ∥x− y∥ .
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The linear metric space (X, d) is called an F-space if it is a com-
plete metric space.

The modular space Xρ can be equipped with the F-norm de-
fined by

∥x∥ = inf
{
α > 0 : ρ

(x
α

)
≤ α

}
.

When ρ is convex the formula

∥x∥ = inf
{
α > 0 : ρ

(x
α

)
≤ 1
}

defines a norm in Xρ which is frequently called Luxemburg norm
and signed by ∥x∥ .

A modular m is said to satisfy the ∆2-condition (ρ ∈ ∆2 for
short) if for any ε > 0 there exist constants K ≥ 2 and a > 0
such that

ρ(2x) ≤ Kρ(x) + ε

for all x ∈ Xρ with ρ(x) ≤ a.
If ρ satisfies the ∆2-condition for any a > 0 with K ≥ 2

dependent on a, we say that ρ satisfies the strong ∆2-condition
(ρ ∈ ∆s

2 for short).
Now we begin the consideration of a new sequence space.
Let Λ = (λk) be a nondecreasing sequence of positive real

numbers tending to infinity and let λ1 = 1 and λk+1 ≤ λk + 1.
The generalized de la Vallée-Poussin means of a sequence

x = {xk} are defined as follows:

tk(x) =
1

λk

∑
j∈Ik

xk where Ik = [k−λk+1, k] for k = 1, 2, ... .

We write

[V, λ]0 =

x ∈ ℓ0 : lim
k→∞

1

λk

∑
j∈Ik

|xj | = 0

 ,

[V, λ] =
{
x ∈ ℓ0 : x− le ∈ [V, λ]0, for some l ∈ C

}
and

[V, λ]∞ =

x ∈ ℓ0 : sup
k

1

λk

∑
j∈Ik

|xj | < ∞


for the sequence spaces that are strongly summable to zero, strongly
summable and strongly bounded by the de la Vallée-Poussin method,
resp.(see [14]). In the special case where λk = k for k = 1, 2, ...
the spaces [V, λ]0, [V, λ] and [V, λ]∞ reduce to the spaces w0, w
and w∞ introduced by Maddox [16].

In [26], it is defined a generalized modular sequence space
Vρ(λ; p) by

Vρ(λ; p) :=
{
x ∈ ℓ0 : ρ(τx) < ∞, for some τ > 0

}
,

where

ρ(x) =

∞∑
k=1

 1

λk

∑
j∈Ik

|xj |

pk

.

If we take pk = p for all k ∈ N , we obtain the space Vρ(λ)
studied by Şimşek [27].

Note that the Luxemburg norm on the sequence space Vρ(λ; p)
is defined as follows:

||x|| = inf
{
τ > 0 : ρ(

x

τ
) ≤ 1

}
, for all x ∈ Vρ(λ; p)

or equivalently

||x|| = inf

τ > 0 : ρ(
x

τ
) =

∞∑
k=1

 1

λk

∑
j∈Ik

|xj

τ
|

pk

≤ 1

 .

The details of the modular sequence spaces mentioned above can
be found in [26].

3. Modular Space Vρ(λ; p) with k-NUC
property

The uniform Opial condition and the k-NUC property are
geometric properties which are strongly connected with the exis-
tence of fixed points for some kinds of space.

In this section we consider the Banach space Vρ(λ; p) en-
dowed with the Luxemburg norm and we prove that it satisfies
the k-NUC property.

For this, we need some the following results which are im-
portant for our consideration:

Lemma 1. If ρ ∈ ∆s
2, then for any x ∈ Xρ, ∥x∥ = 1 if and only

if ρ(x) = 1.

Proof. (See [4], Cor. 2.2)

Lemma 2. If ρ ∈ ∆s
2, then for any sequence (xn) in Xρ, ∥xn∥ →

0 if and only if ρ(xn) → 0.

Proof. (See [4], Lemma 2.3)

Lemma 3. If ρ ∈ ∆s
2, then for any ε ∈ (0, 1), there exists δ ∈

(0, 1) such that ρ(x) ≤ 1− ε implies ∥x∥ ≤ 1− δ.

Proof. Suppose that the lemma does not hold. Then there exist
ε > 0 and xn ∈ Xρ such that ρ(xn) < 1− ε and 1

2
≤ ∥xn∥ →

1. Let an = 1
∥xn∥−1

. Then an → 0 as n → ∞. Let L =

sup {ρ(2xn);n ∈ N}. Since ρ ∈ ∆s
2, there exists K ≥ 2 such

that
ρ(2u) ≤ Kρ(u) + 1 (3)

for every u ∈ Xρ with ρ(u) < 1.
By using (3), we have ρ(2xn) ≤ Kρ(xn) + 1 < K + 1 for

all n ∈ N. Hence, 0 < L < ∞. By Lemma 1, we have

1 = ρ(
xn

∥xn∥
) = ρ (2anxn + (1− an)xn)

≤ anρ(2xn) + (1− an)ρ(xn)

≤ anL+ (1− ε) → 1− ε,

which is a contradiction. The proof is complete.

Before proving the main result of this section, firstly we need
the following lemma proved by Cui and Hudzik in [4].

Lemma 4. If ρ ∈ ∆s
2, then for any L > 0 and ε > 0 there exists

δ > 0 such that
|ρ(x+ y)− ρ(x)| < ε

whenever x, y ∈ Vρ(λ; p) with ρ(x) ≤ L and ρ(y) ≤ δ.

Theorem 1. The Banach space Vρ(λ; p) is k − NUC for any
integer k ≥ 2.
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Proof. Let ε > 0 and (xn) ⊂ B(Vρ(λ; p)) with sep ({xn}) > ε.
Let xm

n = (0, 0, ..., xn(m), xn(m + 1), ...) for each m ∈ N.
Since for each i ∈ N, {xnk(i)}

∞
i=1 is bounded, therefore us-

ing the diagonal method one can find a subsequence {xnk} of
{xn} such that the sequence {xnk(i)} converges for each i ∈ N.
Therefore, there exists an increasing sequence of positive integer
(km) such that sep({xm

nk
}k>km) ≥ ε. Hence there is a sequence

of positive integers (nm)∞m=1 with n1 < n2 < n3 < ... such
that

||xm
nm

|| ≥ ε

2
(4)

for all m ∈ N. Then by Lemma 2, we may assume that there
exists µ > 0 such that

ρ (xm
nm

) ≥ µ

for all m ∈ N.
Let β > 0 be such that 1 < β < lim inf

n→∞
pn. For fixed integer

k ≥ 2, let ε1 = kβ−1−1
2kβ(k−1)

(µ
2
).

Write ρ(x) =
∞∑

n=1

(
1
λn

∑
i∈In

|x(i)|

)pn

. By using the Lemma

4, then there exists δ > 0 such that

|ρ(x+ y)− ρ(x)| < ε1 (5)

whenever ρ(x) ≤ 1 and ρ(y) ≤ δ.
There exists m1 ∈ N such that ρ(xm1

1 ) ≤ δ. Next there
exists m2 > m1 such that ρ(xm2

2 ) ≤ δ. In such a way, there
exists m2 < m3 < ... < mk−1 such that ρ(xmj

j ) ≤ δ and
β ≤ pj for all j ≥ mk−1. Define mk = mk−1+1. By condition
(4), there exists nk ∈ N such thatρ(xmk

nk ) ≥ µ. Put ni = i for
1 ≤ i ≤ k − 1. Then in virtue of (4), (5) and convexity of the
functions fi(u) = |u|pi , we have

ρ(
xn1+xn2+...+xnk

k
) =

m1∑
n=1

(
1
λn

∑
i∈In

∣∣∣xn1 (i)+xn2 (i)+...+xnk
(i)

k

∣∣∣)pn

+
∞∑

n=m1+1

(
1
λn

∑
i∈In

∣∣∣xn1 (i)+...+xnk
(i)

k

∣∣∣)pn

≤
m1∑
n=1

1
k

k∑
j=1

(
1
λn

∑
i∈In

∣∣xnj (i)
∣∣)pn

+
∞∑

n=m1+1

(
1
λn

∑
i∈In

∣∣∣xn2 (i)+...+xnk
(i)

k

∣∣∣)pn

+ ε1

≤
m1∑
n=1

1
k

k∑
j=1

(
1
λn

∑
i∈In

∣∣xnj (i)
∣∣)pn

+
m2∑

n=m1+1

1
k

k∑
j=2

(
1
λn

∑
i∈In

∣∣xnj (i)
∣∣)pn

+
∞∑

n=m2+1

(
1
λn

∑
i∈In

∣∣∣xn3 (i)+...+xnk
(i)

k

∣∣∣)pn

+ 2ε1

≤
m1∑
n=1

1
k

k∑
j=1

(
1
λn

∑
i∈In

∣∣xnj (i)
∣∣)pn

+
m2∑

n=m1+1

1
k

k∑
j=2

(
1
λn

∑
i∈In

∣∣xnj (i)
∣∣)pn

+
m3∑

n=m2+1

1
k

k∑
j=3

(
1
λn

∑
i∈In

∣∣xnj (i)
∣∣)pn

+...+

mk∑
n=mk−1

1

k

k∑
j=k−1

(
1

λn

∑
i∈In

∣∣xnj (i)
∣∣)pn

+
∞∑

n=mk+1

(
1

λn

∑
i∈In

∣∣xnj (i)
∣∣)pn

+ (k − 1)ε1

≤
ρ (xn1) + ...+ ρ

(
xnk−1

)
k

+
1

k

mk−1∑
n=1

(
1

λn

∑
i∈In

|xnk(i)|

)p
k

+
∞∑

n=mk−1+1

(
1

λn

∑
i∈In

∣∣∣∣xnk(i)

k

∣∣∣∣
)p

k

+ (k − 1)ε1

≤ k − 1

k
+

1

k

mk−1∑
n=1

(
1

λn

∑
i∈In

|xnk(i)|

)p
k

+
1

kβ

∞∑
n=mk−1+1

(
1

λn

∑
i∈In

|xnk(i)|

)p
k

+ (k − 1)ε1

≤ 1 + (k − 1)ε1

−
(
kβ−1 − 1

kβ

) ∞∑
n=mk−1+1

(
1

λn

∑
i∈In

|xnk(i)|

)pn

≤ 1 + (k − 1)
kβ−1 − 1

2kβ(k − 1)
µ.−

(
kβ−1 − 1

kβ

)
µ

≤ 1−
(
kβ−1 − 1

kβ

)(µ
2

)
.

By Lemma 3, there exist η > 0 such that∥∥∥xn1+xn2+...+xnk
k

∥∥∥ < 1− η. Therefore Vρ(λ; p) is

(k −NUC) for any integer k ≥ 2.

From Theorem 1, we get that Vρ(λ; p) is (k −NUC). Clearly
(k −NUC) Banach spaces are (NUC), and (NUC) implies

property (H) and reflexivity, (see, Huff [11]). Also, in [11],
Huff proved that X is (NUC) if and only if X is reflexive and

(UKK). On the other hand, it is well known that

(UC) ⇒ (kR) ⇒ (k + 1)R

and (kR) spaces are reflexive and rotund, and it is easy to see
that

(k −NUC) ⇒ (kR).

By the facts presented in the introduction and the results just
proved above, we get the following corollaries:

Corollary 1. Let lim inf
k→∞

pk > 1. The space Vρ(λ; p) is (NUC)

and then it is reflexive.

Corollary 2. The space Vρ(λ; p) is (UKK).

Corollary 3. The space Vρ(λ; p) is (kR).

Corollary 4. The space Vρ(λ; p) is rotund.
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4. Modular Space Vρ(λ; p) with uniform
Opial Property

In this section, we will show that the modular space Vρ(λ; p)
has the uniform Opial property. The Opial property is important
because Banach spaces with this property have the weak fixed

point property (see [21]).

Theorem 2. Assume that ρ ∈ ∆s
2, ρ is countably orthogonally

additive and the modular sequence space Vρ(λ; p) is a Banach
space. Then Vρ(λ; p) has the uniform Opial property.

Proof. Let ε > 0 be given. There is ε > 0 such that (see 2)
ρ(x) ≥ ε whenever ∥x∥ ≥ ε. Since ρ ∈ ∆s

2, by Lemma 4, there
is δ ∈ (0, ε

4
) such that

|ρ(x+ y)− ρ(x)| < ε

8

whenever ρ(x) ≤ 1 and ρ(y) ≤ δ. We can write

ρi0(x) =
i0∑

n=1

(
1
λn

∑
i∈In

|x(i)|

)pn

and

ρN−i0(x) =
∞∑

n=i0+1

(
1
λn

∑
i∈In

|x(i)|

)pn

.

By the countable orthogonal additivity of ρ, there is i0 ∈ N such
that

ρN−i0

(
∞∑

i=i0+1

x(i)ei

)
≤ ε

8
.

Let (xn) be a weakly null sequence in S(X). It is obvious that
xn → 0 coordinatewise. Hence, there is n0 ∈ N such that

ρi0

(
i0∑
i=1

xn(i)ei

)
≤ ε

8
(∀n ≥ n0).

Therefore

ρ(xn + x) = ρi0

(
i0∑
i=1

(xn(i) + x(i)) ei

)

+ρN−i0

(
∞∑

i=i0+1

(xn(i) + x(i)) ei

)

≥ ρi0

(
i0∑
i=1

x(i)ei

)
− ε

8

+ρN−i0

(
∞∑

i=i0+1

xn(i)ei

)
− ε

8

≥ 3

4
ε− ε

8
+ ρ(xn)−

ε

8

≥ 1− ε

4
+

2

4
ε

= 1 +
ε

4

for n ≥ n0. By Lemma 3, there is ε1 > 0 that depends only on ε
and such that ∥xn + x∥ > 1+ ε1 whenever n ≥ n0. This means
that Vρ(λ; p) has the uniform Opial property.
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Necip ŞİMŞEK is received the
Ph. D. degree in Mathematical

Analysis from Yüzüncü
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