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Abstract: The entropy functions are useful tools to measure the uncertainty in a random variable. Dynamic Cumulative Residual
Entropy (DCRE) introduced by Asadi and Zohrevand [1] as a useful dynamic measure of Cumulative Residual Entropy. They studied
some properties and applications of these measures. In thispaper, Dynamic Cumulative Residual Entropy is proposed based on order
statistics and under conditions is showed a characterization result that Dynamic Cumulative Residual Entropy of orderstatistics can
determine the distribution function uniquely. Then some properties for DCRE of order statistics is presented.
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1 Introduction

The concept of Shannon entropy as a basic measure of uncertainty for a random variable was introduced by Shannon [2].
SupposeX be a continuous random variable having probability densityfunction f and cumulative distribution functionF .
Therefore, Shannon entropyH( f ) of X is defined as follows:

H( f ) =−E[log f (x)] =−

∫ +∞

−∞
f (x)log f (x)dx, (1.1)

Study of duration is a subject of interest in many fields of science such as reliability, survival analysis, economics and
business. In reliability theory and survival analysis, theadditional life time given that the component has survived up to
time t is called the residual life function of the component. IfX be the life of a component, thenXt = (X − t | X > t) is
called the residual life function.
If a component is known to have survived to aget then Shannon entropy is no longer useful to measure the uncertainty of
remaining lifetime of the component. Therefore, Ebrahimi [3] defined the entropy for residual lifetimeXt = (X − t | X > t)
as a dynamic form of uncertainty called the residual entropyat timet and defined as

H(X ; t) =−

∫ +∞

t

f (x)

F(t)
log

f (x)

F(t)
dx, (1.2)

ThatF(t) = P(X > t) = 1−F(t) is the survival (reliability) function ofX .
Rao et al. [4] defined Cumulative Residual Entropy(CRE) as an alternative measure of uncertainty to Shannon entropy

in that the probability density function is replaced by survival function and obtained some properties and applications
of that in reliability engineering and computer vision. Also they showed CRE overcomes some problems with Shannon
entropy. Such as CRE possesses more general mathematical properties than Shannon entropy and easily is computed from
sample data. The measure is more consistent since it is basedon distribution function than the density function which isa
derivative of the distribution function. For more details see [4] and [5]. CRE for a non-negative univariate random variable
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is by:

ξ (X) =−

∫ +∞

0
F(x) logF(x)dx, (1.3)

Analogous to the residual entropy, Asadi and Zohrevand [1] defined a dynamic form of CRE, that is CRE ofXt . This
function is called Dynamic Cumulative Residual Entropy(DCRE) and defined as

ξ (X ; t) =−
∫ +∞

t

F(x)

F(t)
log

F(x)

F(t)
dx, (1.4)

It’s clear thatξ (X ;0) = ξ (X).
SupposeX1,X2, ...,Xn be a random sample, the order statistics of the sample is defined by the arrangementX1,X2, ...,Xn

from the minimum to the maximum byX(1),X(2), ...,X(n). Order statistics are widely used in reliability theory and survival
analysis to study(n− k+ 1) out of n system which works if and only if at least(n− k+ 1) out of n components are
working. Series and parallel systems are particular cases of these system corresponding tok = 1 andk = n, respectively.
For more details see [9] , [10].

Baratpour et al. [6], [7] presented some properties of the entropy of order statistics and record values and established
some characterization results. Also, Baratpour [8] have derived characterizations result based on Cumulative residual
entropy of first order statistics. Park and Kim [11] defined the cumulative residual entropy of firstr order statistics.

The purpose of this paper is determination distribution function using Dynamic Cumulative Residual Entropy of the
ith order statistic. The paper is organized as follows: In section 2, Dynamic Cumulative Residual Entropy is defined
based on order statistics. Section 3 includes Characterization property based onith order statistics. Some properties of
CRE and DCRE forith order statistics is presented in section 4. In section 5, DCRE of type I censored data is given.
Following a brief conclusion in the end of paper is given.

2 Dynamic Cumulative Residual Entropy of Order Statistics

SupposeX1,X2, ...,Xn be a random sample with distribution functionF , the order statistics of the sample is defined by the
arrangementX1,X2, ...,Xn from the minimum to the maximum byX(1),X(2), ...,X(n). The cumulative distribution function
of theith(i = 1,2, ...,n) order statistics is given by

Fi(x) =
n

∑
k=i

(

n
k

)

[F(x)]i[1−F(x)](n−i) (2.1)

First order statisticsX(1) and last order statisticsX(n) are very important special case of order statistics in practice. In
many statistical applications the interest is centered on estimating the maximum or the minimum. (See [12]).

Then cumulative distribution function ofX(1) andX(n) are respectively as

FX(1)
(x) = 1− (1−F(x))n

, (2.2)

FX(n)
(x) = (F(x)n

, (2.3)

Park and Kim [11] defined the Cumulative Residual Entropy of theith order statistics as

ξ (F(i)) =−
∫ ∞

0
F (i)(x) logF (i)(x)dx, (2.4)

Then Dynamic Cumulative Residual Entropy of theith order statistics is defined as follows:

ξ (F(i); t) =−

∫ ∞

t

F(i)(x)

F (i)(t)
log

F (i)(x)

F (i)(t)
dx, (2.5)

It’s clear thatξ (F(i);0) = ξ (F(i)).
If i = 1, we have
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ξ (F(1); t) =−
∫ ∞

t

F (1)(x)

F (1)(t)
log

F (1)(x)

F (1)(t)
dx, (2.6)

Using relation (2.2) and changing variableF(X) =U in relation (2.5), we can rewrite by

ξ (F(1); t) =−
n

(F(t))n

∫ F(t)

0

un logu
f (F−1(1− u)

du+
n logF(t)

(F(t))n

∫ F(t)

0

un

f (F−1(1− u)
du, (2.7)

In the following example, DCRE of the first order statistics is calculated for an exponentially distributed random
variable .

Example2.1 If X is distributed with parameter of(θ ) and survival function ofF(t) = 1− e−θx, then easily using
relation ((2.7) we can obtainξ (F(1); t) = 1

nθ .

3 Characterization property based on DCRE of ith order statistics

Gupta, et al. [13] have studied characterizations based on dynamic Shannon entropy of order statistics. In this section
characterization property on the Dynamic Cumulative Residual Entropy of theith order statistics is studied by using the
sufficient condition for the uniqueness of the solution of initial value problem

y
′
= f (x,y),y(x0) = y0,

That f is a function of two variables whose domain is a regionS ⊂ R2, (x0,y0) is a point inS andy is the unknown
function. By the solution of the initial value problem on an interval I ⊂ R, we mean a functionφ(x) satisfies the
conditions:φ is differentiable onI, the growth ofφ lies in S, φ(x0) = y0 andφ ′

(x) = f (x,φ(x)) for all x ∈ I.

The following theorem and lemma are used in proving of theorem 3.2. see [14].
Theorem 3.1 Suppose thatf be a continuous function defined in a domainS ⊂ R2 is said to satisfy Lipschitz condition

with respect to y on the domain S, that is

| f (x,y1)− f (x,y2) |≤ k | y1− y2 |,k > 0

For every pair of points(x,y1) and (x,y2) in D. Theny = φ(x) satisfy the initial value problemy
′
= f (x,y) and

φ(x0) = y0 is unique.

Lemma 3.1 Let f be a continuous function in a convex regionS ⊂ R2. Suppose∂ f
∂y exists and it’s continuous in S.

Then f satisfies Lipschitz condition inS.

Now in the following theorem characterization property on DCRE ofith order statistics is presented.
Theorem 3.2 Suppose thatX be a non-negative continuous random variable with cumulative distribution function of

F and withξ (F(i); t)< ∞, t ≥ 0. Thenξ (F(i); t) uniquely determinesF .

Proof: let F1,F2 are two functions such that

ξ (F1(i); t) = ξ (F2(i); t), t ≥ 0, i ≤ n

Differentiating both sides of the relation (2.5) with respect tot and relationship between hazard rate function and mean
residual lifetime function for theith order statistics given by

rFi(t) =
m

′

Fi
(t)+1

mFi(t)
, (3.1)

we have

m
′

Fi
(t) =

mFi(t)− ξ (F(i); t)+mFi(t)
dξ (F(i);t)

dt

ξ (F(i); t)−mFi(t)
(3.2)
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Suppose

ξ (F1(i); t) = ξ (F2(i); t) = h(t), t ≥ 0, i ≤ n

thatF1 andF2 are to distribution functions. Then fort ≥ 0 from relation (3.2) we conclude that
m

′

F1(i)
(t) = ψ(t,mF1(i)

(t)),m
′

F2(i)
(t) = ψ(t,mF2(i)

(t))

where

ψ(t,y) =
y− h(t)+ yh

′
(t)

h(t)− y

By applying theorem 3.1 and lemma 3.1 we obtain
mF1(i)

(t) = mF2(i)
(t) , t ≥ 0, i ≤ n

Which using relation (3.1) givesrF1(i)
(t) = rF2(i)

(t) , t ≥ 0, i ≤ n Hence the proof is complete.

4 Some Properties on CRE and DCRE for ith Order Statistics

Mean residual lifetime play important role in reliability and survival analysis. The following property shows the relation
betweenξF(i)(t) andmF(i)(t).

Proposition 1 SupposeξF(i)
< ∞ denotes the CRE of theith order statistics, then

ξF(i)
= E[mF(i)(X)].

Proof: Refer to [1], theorem 2.1.

Proposition 2 Let ξF(i)
< ∞ denotes the DCRE ofith order statistics, then

ξ (F(i); t) = E[mF(i)(X)|X(i) ≥ t]

Proof: the proof of the theorem follows the same steps as used to prove P 1.

In the following proposition the upper bound is derived for the DCRE of theith order statistics.

Proposition 3 The upper bound for the DCRE ofith order statistics is as follows

ξ (F(i); t)≤
ξ (F(i)
F(i)(t)

Proof: we can writeξ (F(i); t) as follows

ξ (F(i); t) =−
1

F(i)(t)

∫ ∞

t
F (i)(x) logF(i)(x)dx+

logF(i)(t)

F (i)(t)

∫ ∞

t
F (i)(x)dx, t ≥ 0

Since logF (i)(t)≤ 0, we have

ξ (F(i); t)≤−
1

F(i)(t)

∫ ∞

t
F (i)(x) logF (i)(x)dx ≤−

1

F(i)(t)

∫ ∞

0
F (i)(x) logF(i)(x)dx,

hence

ξ (F(i); t)≤
ξ (F(i)
F(i)(t)

if t → 0 thenξ (F(i); t) = ξ (F(i)).
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5 DCRE of type I Censored Data

If we have the Type I right censored variable,min(X ,C) thatC is the censoring point assumed to be a constant, the survival
function ofmin(X ,C) is

F̄C (x) =

{

F̄C (x) ,x <C
0,x ≥C

Then the DCRE of the Type I censored variable can be defined as follows:

ξC(F ; t) =−

∫ C

t

F(x)

F(t)
log

F(x)

F(t)
dx,

Example 5.1 Let X ∼ Exp(θ ) with survival function ofF(x) = e−θx, henceξC(F ; t) can be written as

ξC(F ; t) = e−θ(t−C)[t −C−
1
θ
]+

1
θ

6 Conclusion

The entropy functions are efficient measures of uncertaintyin a random variable that are applied in a lot of fields such as
reliability, finance, economics, insurance, medicine, andetc. Cumulative Residual Entropy is an alternative measureof
uncertainty to Shannon entropy in that probability densityfunction is replaced by survival function. The Dynamic form
of Cumulative Residual Entropy measures the residual lifetime of the component has survived up to time t. The entropy
measures based on order statistics have been studied widelyand are crucial to measure uncertainty in statistical
modeling. In this paper, Dynamic Cumulative Residual Entropy proposed based on order statistics and under conditions
showed a characterization result that Dynamic Cumulative Residual Entropy of order statistics can determine the
distribution function uniquely. The theoretical outcomesin this paper can be interest both from theoretical as well as
practical point of view.
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