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Abstract: Adaptive progressive censoring schemes have been shovenuseful in striking a balance between statistical estonati
efficiency and the time spent on a life-testing experimeanthis paper, the problem of predicting the future orderistias and future
upper record values based on observed adaptive progrdsgieell censored samples from exponentiated Weibull (EWfridution

is addressed. Using the Bayesian approach and the two-sacigme, the predictive and survival functions are dervetithen the
interval predictions of the future samples are obtained-Fample Bayesian predictive survival function can notlit@ioed in closed-
form and so Gibbs sampling procedure is used to draw MarkairQfionte Carlo (MCMC) samples, which are then used to comput
the approximate predictive survival function. The papspanhcludes an illustration of our method in examples aboeaking stress
of carbon fibres.

Keywords: Exponentiated Weibull distribution; Two-sample prediatischeme; Adaptive Type-Il Progressive Censoring Scheme;
Markov chain Monte Carlo; Gibbs sampling; Posterior pradécdensity.

1 Introduction observation of the first failure tim&; n. At this time,Ry

) ) units are withdrawn from the experiment. Then, the
Before a new product is launched to the market, life teSt%xperiment continues with the reduced sample size
are often required to assess its reliability. During then_Rl_l_ After observing the next failure at tim€:mn
testing, censoring is usually adopted to obtain the lifetim g, ynjts from the still operating units are withdrawn. We
information ~ within a reasonable timeframe. The h.oceed with this censoring steps until te- th failure
traditional ~ censoring schemes (type-l and type-llis gpserved. Then, the experiment ends. The observed
censoring) do not allow for units to be removed from the ¢5jjre timesX; ., Xmmn are called progressively
test at points other than the terminal point of the fype || censored order statistics of siaeobserved from
experiment. This allowance will be important when a sample of sizen with censoring scheméRy, ..., Ry). A

compromise between reduced time of experimentation.ycial assumption in the design of the progressively
and the observations of at least some extreme lifetimeg.ansored experiment is that the censoring scheme

are sought. Moreover, it is important when some of the R1,...,Rm) is known in advance, which means that the
surviving units in the experiment that are removed ear”erintegersRl, ...,Rm are prefixed. However, although this
can be used for some other tests. To allow for moreassymption is normally assumed in the literature, it may
flexibility in removing surviving units from the test, more ot pe satisfied in real-life experiments since the
general censoring approaches are called for. Theyperimenter may change the censoring numbers during
progressive Type-ll right censoring scheme is anihe experiment (for some reasons). Therefore, it is
appealing one and has attracted much attention in thgesjrable to have a model that takes into account such an
literature. For extensive reviews of literatures on adaption process. Such a model is the adaptive
progre§sive censoring, sed] [and the monograph by progressive censoring proposed by Ng et &l, vho
Balakrishnan and Aggarwala2]} The design of the jnyoduce a (prefixed) threshold paramefer- 0 as a

progressively Type-ll censored experiment can becqnirol parameter in their life-time experiment.
described as follows: Starting allunits at the same time,

the first progressive censoring step takes place at the
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An important problem that may face the experimenterof monotone failure rates and plays an important role in
in life testing experiments is the prediction of unknown the analysis many types of survival data. It has been well
observations that belong to a future sample, based oestablished in the literature that the EW distribution
current available sample, known as informative sampleprovides significantly better fits than traditional models
For example, the experimenters or the manufacturerbased on the exponential, gamma, Weibull and
would like to have bounds for the life of their products so log-normal distributions. A recent survey on the EW
that their warranty limits could be plausibly set and distribution can be found in the excellent review by
customers purchasing manufactured products would likeNadarajah et al.Z5]. The form of the probability density
to know the bounds for the life of the product to be function (pdf) and cumulative distribution function (cdf)
purchased. For different application areas, ggaifid [5]. of the EW distribution with two shape parametersand
As in the case of estimation, a predictor can be either & are given, respectively, by
point or an interval predictor. Several researchers have
considered Bayesian prediction for future observations f(x;a,8) = a8x® texp(—x)(1—exp(—x*))®~1, (1)
based on several types of censored data; 4e¢d], [ 7],

[8], [9], and [10]. Draper and Guttmarni[l] discussed the wherex>0, a,8 > 0, and
two-sample Bayesian prediction of the future lifetime of

an item based on a Type-| hybrid censored data from an F(xa,0)=(1—exg—x))?, (2
exponential distribution. Ebrahimilp] developed the
classical prediction intervals for future failures in thase Mudholkar and HutsonZ6] showed that the density

of exponential distribution under Type-1 hybrid censoring function of the EW distribution is decreasing when
Recently, Balakrishnan and Shafald] and Shafay and a6 <1 and unimodal whew 6 > 1. The applications of
Balakrishnan 14] considered, respectively, a general the EW distribution have been widespread. For examples,
form for the underlying distribution and a general it's used for modeling of extreme value data using floods,
conjugate prior and developed a general procedure fotree diameters, firmware system failure, the survival
determining the Bayesian prediction intervals for future pattern of test subjects after a treatment is administered t
lifetimes based on Type-Il and Type-l hybrid censoredthem, distribution for excess-of-loss insurance data,
data. software reliability data, bus-motor failure data, mean
There are a number of situations in which an residual life computation of (n - k + 1)-out-of-n systems
observation is retained only if it is a record value ( lower and other models. For more details of these applications
or upper ), which include studies in industrial quality see p5].
control experiments, destructive stress testing, Maximum likelihood estimations (besides testing of
meteorology, hydrology, seismology, athletic events andhypotheses) for the EW distribution using several sets of
mining. An observatioiX; will be called an upper (lower) data are discussed by Mudholkar et &7][ Parametric
record value if its value is greater (less) than that of all characterizations of the density function are discussed by
previous observations. Several authors have discussedudholkar and Hutson2g and Jiang and MurthyZ8].
prediction problems with the data involving record values Other statistical properties of this distribution are
and order statistics. In this context, the prediction ofdiscussed by Nassar and Eis28][ Nassar and Eiss&0]
records based on records and of order statistics based aterived Bayes estimates of the two shape parameters,
order statistics have been addressed. One may refer toeliability and failure rate functions of the EW lifetime
among others,q], [15], [16], [17], [1§], [19], [20], and = model, from complete and Type Il censored samples. Pal
the references contained therein. Recently, Ahmadi anet al. [31] introduced many properties and obtained some
Balakrishnan 21] discussed the prediction of future inferences for the three parameter EW distribution. Kim
records (order statistics) based on order statisticet al. [32] obtained the maximum likelihood and Bayes
(records), and derived several nonparametric predictiorestimators for the two shape parameters and the reliability
intervals for this purpose. Ahmadi and MirMostafagg][  function of the EW model based on progressive Type-II
and Ahmadi et al. 23] obtained prediction intervals for censored samples. Some Bayesian inferences based on
order statistics as well as for the mean life time from ageneralized order statistics from the EW distributions
future sample based on observed usual records from ansing Markov chain Monte Carlo (MCMC) methods are
exponential distribution using the classical and Bayesiardiscussed by Jaheen and Al-Harl3g][
approaches, respectively. The novelty of this article is to apply the prediction
The exponentiated Weibull (EW) distribution (which procedure to the adaptive progressive-censored data taken
is denoted by EWtr, 8)) was introduced by Mudholkar from EW distribution and predicting both the future order
and SrivastavaZ4]. This distribution is an extension of statistics and future upper record values from the same
the well-known Weibull distribution by adding an distribution.
additional shape parameter. The EW family contains The rest of this paper is organized as follows: In
distributions with nonmonotone failure rates besides aSection 2, we describe the formulation of an adaptive type
broader class of monotone failure rates. The EWII progressive-censoring scheme as described by Ng et al.
distribution as a failure model is more realistic than that[3]. In Section 3, we cover Likelihood, Prior and Posterior
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Functions. Bayes prediction for future order statistic and Withdrawn  Withdrawn Withdrawn  Withdrawn
upper record values are presented in Section 4 anc
Section 5, respectively. Data analysis is provided in
Section 6, and finally we conclude the paper in Section 7. . R, R, R, ., R, R
| — I i
xl:m:n ‘x2:m:n e xm—l:m:n xm:m:n T
Start End

2 An Adaptive Type-ll Progressive Scheme

Kundu and Joarder3H] PVOPOSG_d a censpring scheme; Fig. 1: Experiment terminates before tirfie(i.e. Xpymn < T )
called Type- Il progressive hybrid censoring scheme, in

which a life testing experiment with progressive Type-II
right censoring scheméRy,...,Ry) is terminated at a

prefixed timeT. However, the drawback of the Type-Il Withdrawn - Withdrawn - Withdrawn Withdrawn
progressive hybrid censoring, similar to the conventional i
Type-l censoring (time censoring), is that the effective —-m->"R
sample size is random and it can turn out to be a very R, /R, R, -— .
small number (even equal to zero), and therefore the X, x, .. X T Xy Nmimen
standard statistical inference procedures may not be start End

applicable or they will have low efficiency. Ng et aB][

suggest an adaptive Type-Il progressive censoring, in this

censoring, a properly planned adaptive progressively Fig. 2: Experiment terminates after tinfe(i.e. Xpmn > T )
censored life testing experiment can save both the total

test time and the cost induced by failure of the units and

increase the efficiency of statistical analysis. The agapti

type-Il progressive censoring scheme works as follows:The value of T plays an important role in the
Suppose the experimenter provides a tijavhich is an  determination of the values oR and also as a
ideal total test time, but we may allow the experiment to compromise between a shorter experimental time and a
run over timeT. If Xnmn < T, the experiment proceeds higher chance to observe extreme failures. Wiien o,
with the pre-specified progressive censoring schemghe adaptive variant reduces to a progressive Type- II
(Ri, Ry, ..., Rm) and stops at the tim¥nmn (see Figure  censoring one with censoring scherfRy, ..., Rm). If

(1)). Otherwise, once the experimental time passesTime T — 0, this adaptive variant leads to a conventional
but the number of observed failures has not reachesle  Type-Il censoring scheme.

would like to terminate the experiment as soon as
possible for fixed value of, then we should leave as
many surviving items on the test as possible. Supgase
the number of failures observed before tifhg.e.

Let X = X, i = 1,2,...,m, be an adaptive Type-II
progressive censored order statistics of sizBom a life
test onn items whose lifetimes have distribution, with

f(pdf) f(x), (cdf) F(x) and censored schenie = (R,
Ry, ..., Rm). GivenJ = j , the likelihood function based
on this data is given by

Xaemn < T < Xyp1mn, J=0,1,....m,

whereXo:mn = 0 andXm. 1:mn = . After passed timd,
we do not withdraw any items at all except for the time o
the m" failure where all remaining surviving items are
removed. Therefore, we s&,; = ... =Ry_1 =0 and
Rn=n—m-— gij:l R, i.e., the effectively applied scheme

with j*=max{J: Xgmn<T}is R R R
J { Xazzmn } fl,Z,---,m(Xl;m,naX2;m7n7~'~axm;m,n)

Cx m J
<R1,...,Rj*,o,o,o,n—m—J;Fq) =d; l_uf(xﬁm,n)‘| X lu[l—F(KBm,n)]R]

The basic idea of this scheme is to speed up the test as
much as possible when the test duration exceeds a
pre-determined thresholdl. It illustrates how an
experimenter can control the experiment. If he iswhere
interested in getting observations early, he will remove
less units (or even none). If he wants to have larger m min{i—1,J} J
observed failure times, he will remove more units. Figure dj = rl[n— i+1-— z RJ andCj =n—m— ZR
(2) gives the schematic representation of this situation. 1= k=1 i=

®3)

R R R
0< Ximnk <X2mnk < - <Xmmnk < %,
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3 Likelihood, Prior and Posterior Functions

Determinedrl andJ = |, for the EW distribution with PDF

the same population. Based on informative sample, the
important aspect of prediction is to construct a two-sided
predictive interval for thes—th order statisticYs in the

and CDF given in (1) and (2) respectively, the likelihood future sample, KX s<n.

function is given by

m j
((a,8|data) = dj(1—v2)Ciame™ rluiv?—l rlwﬁ (4)
= =
Under assumption that the two parameterand 6 are
unknown, it is assumed thatr and 6 each have

independent gamnfab), and gammg,d) priors
respectively, foa > 0;b > 0;c > 0;d > 0, i.e.

where
ui(a) = u = x"texp(—x7)
vi(a) =vi =1—exp—x)
wi(a,8) =w =17

()

m(ala,b) Da?te®? and m(6lc,d) 06 tedf,

The joint density function of the data, and6 becomes:

m(a,0|datg O qMa-1gmc-1 g bagdb

X (1—V2)Ci ﬁ uvot ﬁlwﬁ (6)

The posterior density6) can be rewritten as

n(a,0|datg O gi(a|0,datgg(6|a,datgH (a, B|datg,
(7)
Where the conditional posterior distributions
01(a|8,datg andgy(6|a,datg of the parameters and6
can be computed and written, respectively, as

ilzml :

gi1(a|6,datg O g™a e Pa

(8)

02(6|a,datg 0 g™ 1egd0
and

9)

H(a,0|data = (1—Vv&)Ci _ﬁvﬁ’l_ﬁ!vvﬁ (10)

4 Bayesian Two-Sample Prediction for
Future Order Statistics

The density function o¥s for givena > 0 and@ > 0
is of the form

0(s)(¥slr. 8) = D(9)[1~ F(yslar, 8) "

x [F(ysla, 0)] " f(ysla. 6),
where D(s) = 7(n—s)?és—1)!’
heref(.|a,0) andF(.|a,8) are given respectively in (1)
and (2). Substituting fromil) and(2) into (11),we obtain

6s-1

(11)

g9 (vsla,8) = D(s)aBydte > (1_ e—yg)

2] n-—s

x [1— (1—e— ) ] .

By using the binomial expansion, the dengify?) takes
the form

09 (yela.8) = D(s)aBye e

n-s o B(kts)—1
xS a(s)(1—e ¥ ,
3 ads) (1-eF)

(12)

(13)

where

a(s) (—1)k<n;3), ys > 0.

The Bayes predictive density functiongfis given by

g (ldatd = [ [ gs (v, 0)m(ar 6|datadade.
(14)
where m(a,6|datg is the joint posterior density of
a and 6 as given in (7). The distribution function
corresponding to the density functigp (ys|a, 8) is

Gy (¥sla,0)
0(k+
(1—e*>’3) (k+s)

B(k+s 1 (15)

n—s
=D(s)6 ) a(s)
2
and the predictive distribution is

Giy (ysldatd = /O /0 Gy (ysla, 8)i(a, 6|datadade.
(16)
It is immediate thagz‘s> (ys|datg andGZ‘s> (ys|datg can not
be expressed in closed form and hence it cannot be

A two-sample prediction scheme is performed as follows:evaluated analytically.

Suppose thatX® .. XR .. XR._. represents an

A simulation based consistent estimator of

observed informative adaptive progressively type-Il g (ys/datg and Gy (ys|datg can be obtained by using

censored sample of sizeobtained from a sample of size
n with progressive censorin@y, ..., Rn) drawn from a
population whose CDF is EW,0) distribution (2).
Suppose also thatyy,Ys,....Y, represents a future
(unobserved) independent sample of sizdrawn from

the MCMC Gibbs sampling procedure and compute
Gz‘s) (ys|datg for all y. The details are explained below.

(@© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 3, 1177-1184 (2016)www.naturalspublishing.com/Journals.asp NS = 1181

Gibbs Sampling: Ahmadi and Balakrishnan2]l] discussed how one can
predict future usual records (order statistics) from an
We need the following theorem for further independent Y-sequence based on order statistics (usual

development. records) from an independent X-sequence and developed
Theorem 1. The density functiom;(a|6,datg as given  nonparametric prediction intervals. Ahmadi and
in (8) has a log-concave density function. Balakrishnan 21] and Ahmadi and MirMostafaee2p]
Proof: It's easy to proof that: obtained prediction intervals for order statistics as asll|

42 for the mean life time from a future sample based on

— log[g1(a|6,data)) observed usual records from an exponential distribution

da using the classical and Bayesian approaches, respectively
o (m+a—1) _ c X log2x < 0 Here, we consider the case of records and order statistics
N a2 i; 100X ' jointly and discuss the construction of prediction intdésva

. ) , for future records based on observed informative adaptive
Smcegﬂa|9,p|a_ta) has_a log-concave density, using the progressively type-Il censored sample. We are interested
idea of B9, it is possible to generate a sample from i, yyo-sided prediction intervals of the future records.

01(a|6,data). Moreover, sincegz(6|a,data) follows We assume thatXR = XR xR ) are the
gammam+-c,d), it is quite simple to generate from pserved adaptive progressively type-Il censored order
02(6|a,data). statistics from a population whose CDF is E&V6)

Using The*orem 1, a simulation based consisteniyjstripution (2), andZy (1), Zu(2), - Zu(r)) are the first
estimate of G, (ys|datg can be obtained using the ,pner records from a future sequence from the same

following Algorithm: _ distribution. Suppose that we are interested in the
Step 1: Generatar from g;(a|6,data) using the predictive density of the upper recoffs,1 <s<r .
method developed byap]. The probability density function of th&" upper record is

Step 2: Generaté from gz(0|a,data). _given by
Step 3: Repeat Step 1 and Step 2 and obtain
{(a,8).i =1,2,...,M}. _ 1 1
Step 4: A simulation consistent estimator of hs(zla,8) = (s—1)! {~log(1-F(z))}" " f(z),
Gy (ys|datg can be obtained as (21)
by using(1) and(2), h(zl|a, 8) can be written as

A, M 6-1
Gls)(ys|data = i;% (yslai, 6)W A7) hg(z|a,0) = Laeg—le—ﬁ (1—e—4 )

(s—1)!
where x[log(l-(1-e®))t  (22)
W = M (18) and the distribution function corresponding to the density
g H(ai, 6|dats functionhg(z|a, 8), is given by
=t H (zsla,6)
Step 5: A symmetric 10@% predictive interval foiYs 1 7 . o 0-1
can be obtained by solving the non-linear equations (19)= m/o abtdle s (1—e*t5)

and (20), for the lower bound, and upper boundy: .
x[—log(1— (1—e%))8))5 1dt.
1+y )

P[Ys > L|data]= 1— G} (L|datg = —, (19) (1-(1-e%))®
[ S | (S)( | @ 2 _ _#/ (_log(w))(s—l)dw
and (s—='J1
Ly - o [T (s—logL—(1-e#)%)]. (23
P[Ys > Uldata]=1— G (U|datg = 5 (20) _ T o _
Using Equations (6) and (22), the Bayes predictive density

We need to apply a suitable numerical method as theyf Z(s) is given by
cannot be solved analytically.

h* (25|aa 6) = h S (25|aa e)n(av 9|datadad9,
(s) o Jo o

5 Bayesian Prediction Interval for Future (24)
Records and predictive distribution o 4 is then given by

Many researchers have considered the prediction of . S
records based on records, and similarly the prediction of Mg (%[0 ©) :/o /0 H)(z|a,0)n(a, 0|datgdado,
order statistics based on order statistics. Recently, (25)
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Table 1: 100 observations on breaking stress of carbon fibres Table 2: Two-sample prediction for the future order statisies

37 | 274 | 273 |25 | 36 90% prediction intervals forg

3.11| 3.27 | 287 | 1.47| 3.11 Ys | [Lower,Upper] | Length

442 241 | 3.19 | 3.22| 1.69 Y1 | [0.6391,1.1815]| 0.5424

3.28 | 3.09 | 1.87 | 3.15| 4.9 Y, | [0.9035,1.3084]| 0.4049

3.75| 243 | 295 | 2.97| 3.39 Y3 | [1.0745,1.4287]| 0.3542

296 | 253 | 2.67 | 2.93| 3.22 Y4 | [1.2166,1.5518]| 0.3352

3.39| 281 | 42 3.33| 2.55 Ys | [1.3610,1.6964]| 0.3354

331|331 | 285 | 256 | 3.56 95% prediction intervals fors

3.15| 235 | 255 | 259 | 2.38 Ys | [Lower,Upper] | Length

2.81 | 2.77 2.17 | 2.83| 1.92 Y, | [0.5593,1.1887]| 0.6294

141 3.68 | 297 | 1.36 | 0.98 Y, | [0.8400,1.3151]| 0.47510

276 | 491 | 3.68 | 1.84 | 1.59 Y3 | [1.0162,1.4348]| 0.4186

319|157 | 081 | 556 | 1.73 Y4 | [1.1674,1.5633]| 0.3959

1592 122 112|171 Ys | [1.3009,1.7022]| 0.4013

2.17| 117 | 5.08 | 2.48 | 1.18

351|217 | 169 | 1.25| 4.38

1.84 | 0.39 | 3.68 | 2.48| 0.85

ig% i'gg ‘2"33 i'gi ;'22 Example 1. In this example we consider the case
189 | 288 | 282 | 205 | 365 when the data are adaptive Type-Il progressive censored.

It is assumed that we observe only thm = 60) data
points and the rest are progressive censored. In this case
we takem = 60, T = 1.4 andR = ( 20, 0°® 20), where
the notation: (2,3°) = {2,0,0,0}.Thus, the adaptive
progressive censored sample is: 0.39, 0.85, 0.98, 1.12,
1.17,1.18,1.22, 1.36, 1.41, 1.57, 1.57, 1.59, 1.61, 1.61,
1.69, 1.69, 1.71, 1.73, 1.80, 1.84, 1.84, 1.87, 1.92, 2.03,
2.03, 2.12, 2.17, 2.17, 2.17, 2.35, 2.38, 2.41, 2.48, 2.48,
2.5, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.74, 2.77, 2.79,
2.81, 2.82, 2.83, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 2.97,
M 3.09, 3.11, 3.11, 3.15, 3.15, 3.19 wiffj = 8). It is
Fl(‘s)(ZsIdat&) — ZH(s)(ZsWia 6 )W. (26)  assumed that both the parameters are unknown. Since we
is do not have any prior information available, we use
non-informative priors on both a and 6,
(a=b=c=d=0.001). Suppose we put 50 new carbon
fibres on the same test, and we wish to find predictive
interval of the future sample, based on the observed
. Voo y sample. Now using Algorithm in Section 3 , we generate
H (L|data = > H( (Uldata = 1—5 (27) 1000 MCMC samples{(a;,6),i = 1,2,...,1000; and
based on them we compute a symmetric 90% and 95%
In this case it is also not possible to obtain the solutionsPredictive intervals forYs , by solving the non-linear

analytically, and one needs a suitable numerical techniquéguations (19) and (20). The results are listed in Table 2
for solving these non-linear equations. for the future order statisticss and in Table 3 for the

future upper recordgs, s=1,...,5.

where m(a,6|datg is the joint posterior density of
a and 8 as given in(6). Since (24) and (25) do not
permit explicit solutions for the prediction boundsdg),
then, as in the previuse section, using MCMC sample
{(ai,8),i = 1,2,..,M}, a simulation consistent
estimators of—l(*s)(zs|a, 6) can be obtained as

Moreover, a symmetric 100% predictive interval g
can be obtained by solving the non-linear equati@,
for the lower bound. and upper bound

6 Illustrative Examples

In this section we consider a real life data set and illustrat

the methods proposed in the previous sections. The data

set is from B6]. A complete sample from the data gives Example 2. In this example, we consider that= 60 and

100 observations on breaking stress of carbon fibres (if = 3.33 andR/’s are same as in Example 1. In this case

Gba) are given in Table 1. the adaptive progressive censored sample is : 0.39, 0.81,
0.98, 1.08, 1.12, 1.18, 1.22, 1.25, 1.36, 1.47, 1.57, 1.57,
1.59, 1.61, 1.61, 1.69, 1.69, 1.71, 1.73, 1.84, 1.84, 1.87,
2.0, 2.03, 2.03, 2.05, 2.12, 2.17, 2.17, 2.35, 2.38, 2.43,

Qian [37] used the standard likelihood ratio test to 2.48, 2.48, 2.5, 2.53, 2.55, 2.55, 2.56, 2.59, , 2.73, 2.74,
show that the EWdistribution is acceptable for modeling2.76, , 2.81, 2.81, 2.82, 2.83, 2.87, 2.88, 2.93, 2.95, 2.97,
the breaking stress. 2.97, 3.09, 3.11, 3.15, 3.19, 3.19, 3.22, 3.22, with
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Table 3: Two-sample prediction for the future upper record Table 5: Two sample prediction for the future upper record

valuesZg valuesZg

90% (HPD) credible intervals fafs 90% prediction intervals faZg

Zs | [Lower,Upper] Length Zs [Lower,Upper] | Length
Z1 | [1.1245,4.5879]| 3.4634 Z1 | [1.1420,4.9406] | 3.7986
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