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Abstract: Adaptive progressive censoring schemes have been shown to be useful in striking a balance between statistical estimation
efficiency and the time spent on a life-testing experiment. In this paper, the problem of predicting the future order statistics and future
upper record values based on observed adaptive progressiveType-II censored samples from exponentiated Weibull (EW) distribution
is addressed. Using the Bayesian approach and the two-sample scheme, the predictive and survival functions are derivedand then the
interval predictions of the future samples are obtained. Two-sample Bayesian predictive survival function can not be obtained in closed-
form and so Gibbs sampling procedure is used to draw Markov Chain Monte Carlo (MCMC) samples, which are then used to compute
the approximate predictive survival function. The paper also includes an illustration of our method in examples about breaking stress
of carbon fibres.
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1 Introduction

Before a new product is launched to the market, life tests
are often required to assess its reliability. During the
testing, censoring is usually adopted to obtain the lifetime
information within a reasonable timeframe. The
traditional censoring schemes (type-I and type-II
censoring) do not allow for units to be removed from the
test at points other than the terminal point of the
experiment. This allowance will be important when a
compromise between reduced time of experimentation
and the observations of at least some extreme lifetimes
are sought. Moreover, it is important when some of the
surviving units in the experiment that are removed earlier
can be used for some other tests. To allow for more
flexibility in removing surviving units from the test, more
general censoring approaches are called for. The
progressive Type-II right censoring scheme is an
appealing one and has attracted much attention in the
literature. For extensive reviews of literatures on
progressive censoring, see [1] and the monograph by
Balakrishnan and Aggarwala [2]. The design of the
progressively Type-II censored experiment can be
described as follows: Starting alln units at the same time,
the first progressive censoring step takes place at the

observation of the first failure timeX1:m:n. At this time,R1
units are withdrawn from the experiment. Then, the
experiment continues with the reduced sample size
n−R1−1. After observing the next failure at timeX2:m:n,
R2 units from the still operating units are withdrawn. We
proceed with this censoring steps until them− th failure
is observed. Then, the experiment ends. The observed
failure timesX1:m:n, . . . , Xm:m:n are called progressively
Type-II censored order statistics of sizem observed from
sample of sizen with censoring scheme(R1, ...,Rm). A
crucial assumption in the design of the progressively
censored experiment is that the censoring scheme
(R1, ...,Rm) is known in advance, which means that the
integersR1, ...,Rm are prefixed. However, although this
assumption is normally assumed in the literature, it may
not be satisfied in real-life experiments since the
experimenter may change the censoring numbers during
the experiment (for some reasons). Therefore, it is
desirable to have a model that takes into account such an
adaption process. Such a model is the adaptive
progressive censoring proposed by Ng et al. [3], who
introduce a (prefixed) threshold parameterT > 0 as a
control parameter in their life-time experiment.
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An important problem that may face the experimenter
in life testing experiments is the prediction of unknown
observations that belong to a future sample, based on
current available sample, known as informative sample.
For example, the experimenters or the manufacturers
would like to have bounds for the life of their products so
that their warranty limits could be plausibly set and
customers purchasing manufactured products would like
to know the bounds for the life of the product to be
purchased. For different application areas, see [4] and [5].
As in the case of estimation, a predictor can be either a
point or an interval predictor. Several researchers have
considered Bayesian prediction for future observations
based on several types of censored data; see [4], [6], [7],
[8], [9], and [10]. Draper and Guttman [11] discussed the
two-sample Bayesian prediction of the future lifetime of
an item based on a Type-I hybrid censored data from an
exponential distribution. Ebrahimi [12] developed the
classical prediction intervals for future failures in the case
of exponential distribution under Type-I hybrid censoring.
Recently, Balakrishnan and Shafay [13] and Shafay and
Balakrishnan [14] considered, respectively, a general
form for the underlying distribution and a general
conjugate prior and developed a general procedure for
determining the Bayesian prediction intervals for future
lifetimes based on Type-II and Type-I hybrid censored
data.

There are a number of situations in which an
observation is retained only if it is a record value ( lower
or upper ), which include studies in industrial quality
control experiments, destructive stress testing,
meteorology, hydrology, seismology, athletic events and
mining. An observationX j will be called an upper (lower)
record value if its value is greater (less) than that of all
previous observations. Several authors have discussed
prediction problems with the data involving record values
and order statistics. In this context, the prediction of
records based on records and of order statistics based on
order statistics have been addressed. One may refer to,
among others, [5], [15], [16], [17], [18], [19], [20], and
the references contained therein. Recently, Ahmadi and
Balakrishnan [21] discussed the prediction of future
records (order statistics) based on order statistics
(records), and derived several nonparametric prediction
intervals for this purpose. Ahmadi and MirMostafaee [22]
and Ahmadi et al. [23] obtained prediction intervals for
order statistics as well as for the mean life time from a
future sample based on observed usual records from an
exponential distribution using the classical and Bayesian
approaches, respectively.

The exponentiated Weibull (EW) distribution (which
is denoted by EW(α, θ )) was introduced by Mudholkar
and Srivastava [24]. This distribution is an extension of
the well-known Weibull distribution by adding an
additional shape parameter. The EW family contains
distributions with nonmonotone failure rates besides a
broader class of monotone failure rates. The EW
distribution as a failure model is more realistic than that

of monotone failure rates and plays an important role in
the analysis many types of survival data. It has been well
established in the literature that the EW distribution
provides significantly better fits than traditional models
based on the exponential, gamma, Weibull and
log-normal distributions. A recent survey on the EW
distribution can be found in the excellent review by
Nadarajah et al. [25]. The form of the probability density
function (pdf) and cumulative distribution function (cdf)
of the EW distribution with two shape parameters,α and
θ are given, respectively, by

f (x;α,θ ) = αθxα−1exp(−xα)(1−exp(−xα))θ−1, (1)

wherex > 0, α,θ > 0, and

F(x;α,θ )= (1−exp(−xα))θ
, (2)

Mudholkar and Hutson [26] showed that the density
function of the EW distribution is decreasing when
αθ ≤ 1 and unimodal whenαθ > 1. The applications of
the EW distribution have been widespread. For examples,
it’s used for modeling of extreme value data using floods,
tree diameters, firmware system failure, the survival
pattern of test subjects after a treatment is administered to
them, distribution for excess-of-loss insurance data,
software reliability data, bus-motor failure data, mean
residual life computation of (n - k + 1)-out-of-n systems
and other models. For more details of these applications
see [25].

Maximum likelihood estimations (besides testing of
hypotheses) for the EW distribution using several sets of
data are discussed by Mudholkar et al. [27]. Parametric
characterizations of the density function are discussed by
Mudholkar and Hutson [26] and Jiang and Murthy [28].
Other statistical properties of this distribution are
discussed by Nassar and Eissa [29]. Nassar and Eissa [30]
derived Bayes estimates of the two shape parameters,
reliability and failure rate functions of the EW lifetime
model, from complete and Type II censored samples. Pal
et al. [31] introduced many properties and obtained some
inferences for the three parameter EW distribution. Kim
et al. [32] obtained the maximum likelihood and Bayes
estimators for the two shape parameters and the reliability
function of the EW model based on progressive Type-II
censored samples. Some Bayesian inferences based on
generalized order statistics from the EW distributions
using Markov chain Monte Carlo (MCMC) methods are
discussed by Jaheen and Al-Harby [33].

The novelty of this article is to apply the prediction
procedure to the adaptive progressive-censored data taken
from EW distribution and predicting both the future order
statistics and future upper record values from the same
distribution.

The rest of this paper is organized as follows: In
Section 2, we describe the formulation of an adaptive type
II progressive-censoring scheme as described by Ng et al.
[3]. In Section 3, we cover Likelihood, Prior and Posterior
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Functions. Bayes prediction for future order statistic and
upper record values are presented in Section 4 and
Section 5, respectively. Data analysis is provided in
Section 6, and finally we conclude the paper in Section 7.

2 An Adaptive Type-II Progressive Scheme

Kundu and Joarder [34] proposed a censoring scheme
called Type- II progressive hybrid censoring scheme, in
which a life testing experiment with progressive Type-II
right censoring scheme(R1, ...,Rm) is terminated at a
prefixed timeT . However, the drawback of the Type-II
progressive hybrid censoring, similar to the conventional
Type-I censoring (time censoring), is that the effective
sample size is random and it can turn out to be a very
small number (even equal to zero), and therefore the
standard statistical inference procedures may not be
applicable or they will have low efficiency. Ng et al. [3]
suggest an adaptive Type-II progressive censoring, in this
censoring, a properly planned adaptive progressively
censored life testing experiment can save both the total
test time and the cost induced by failure of the units and
increase the efficiency of statistical analysis. The adaptive
type-II progressive censoring scheme works as follows:
Suppose the experimenter provides a timeT , which is an
ideal total test time, but we may allow the experiment to
run over timeT . If Xm:m:n < T , the experiment proceeds
with the pre-specified progressive censoring scheme
(R1, R2, ..., Rm) and stops at the timeXm:m:n (see Figure
(1)). Otherwise, once the experimental time passes timeT
but the number of observed failures has not reachedm, we
would like to terminate the experiment as soon as
possible for fixed value ofm, then we should leave as
many surviving items on the test as possible. SupposeJ is
the number of failures observed before timeT , i.e.

XJ:m:n < T < XJ+1:m:n, J = 0,1, ...,m,

whereX0:m:n ≡ 0 andXm+1:m:n ≡ ∞. After passed timeT ,
we do not withdraw any items at all except for the time of
the mth failure where all remaining surviving items are
removed. Therefore, we setRJ+1 = ... = RJ−1 = 0 and
Rm = n−m−∑ j

i=1 Ri, i.e., the effectively applied scheme
with j∗ = max{J : XJ::m:n < T} is

(

R1, ...,R j∗ ,0,0,0,n−m−
j∗

∑
i=1

Ri

)

The basic idea of this scheme is to speed up the test as
much as possible when the test duration exceeds a
pre-determined thresholdT . It illustrates how an
experimenter can control the experiment. If he is
interested in getting observations early, he will remove
less units (or even none). If he wants to have larger
observed failure times, he will remove more units. Figure
(2) gives the schematic representation of this situation.

Fig. 1: Experiment terminates before timeT (i.e. Xm:m:n < T )

Fig. 2: Experiment terminates after timeT (i.e. Xm:m:n ≥ T )

The value of T plays an important role in the
determination of the values ofRi and also as a
compromise between a shorter experimental time and a
higher chance to observe extreme failures. WhenT = ∞,
the adaptive variant reduces to a progressive Type- II
censoring one with censoring scheme(R1, ..., Rm). If
T = 0, this adaptive variant leads to a conventional
Type-II censoring scheme.

Let Xi = XR
i;m,n, i = 1,2, ...,m, be an adaptive Type-II

progressive censored order statistics of sizem from a life
test onn items whose lifetimes have distribution, with
(pd f ) f (x), (cd f ) F(x) and censored schemeR = (R1,
R2, ..., Rm). Given J = j , the likelihood function based
on this data is given by

f1,2,...,m(x
R
1;m,n,x

R
2;m,n, ...,x

R
m;m,n)

= dJ

[

m

∏
i=1

f (xR
i;m,n)

]

×

[

J

∏
i=1

[1−F(xR
i;m,n)]

Ri

]

(3)

0< xR
1;m,n,k < xR

2;m,n,k < ... < xR
m;m,n,k < ∞,

where

dJ =
m

∏
i=1

[n− i+1−
min{i−1,J}

∑
k=1

Rk] andC j = n−m−
J

∑
i=1

Ri
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3 Likelihood, Prior and Posterior Functions

DeterminedT andJ = j, for the EW distribution with PDF
and CDF given in (1) and (2) respectively, the likelihood
function is given by

ℓ(α,θ |data) = d j(1− vθ
m)

C j αmθ m
m

∏
i=1

uiv
θ−1
i

j

∏
i=1

wRi
i (4)

where
ui(α)≡ ui = xα−1

i exp(−xα
i )

vi(α) ≡ vi = 1−exp(−xα
i )

wi(α,θ )≡ wi = 1− vθ
i







(5)

Under assumption that the two parametersα and θ are
unknown, it is assumed thatα and θ each have
independent gamma(a,b), and gamma(c,d) priors
respectively, fora > 0;b > 0;c > 0;d > 0, i.e.

π1(α|a,b) ∝ αa−1e−b α and π2(θ |c,d) ∝ θ c−1e−d θ .

The joint density function of the data,α andθ becomes:

π(α,θ |data) ∝ αm+a−1θ m+c−1 e−b α e−dθ

×(1− vθ
m)

C j
m

∏
i=1

uiv
θ−1
i

j

∏
i=1

wRi
i (6)

The posterior density(6) can be rewritten as

π(α,θ |data) ∝ g1(α|θ ,data)g2(θ |α,data)H(α,θ |data),
(7)

Where the conditional posterior distributions
g1(α|θ ,data) andg2(θ |α,data) of the parametersα andθ
can be computed and written, respectively, as

g1(α|θ ,data) ∝ αm+a−1 e−b α
m

∏
i=1

ui (8)

g2(θ |α,data) ∝ θ m+c−1 e−d θ (9)

and

H(α,θ |data) = (1− vθ
m)

C j
m

∏
i=1

vθ−1
i

j

∏
i=1

wRi
i (10)

4 Bayesian Two-Sample Prediction for
Future Order Statistics

A two-sample prediction scheme is performed as follows:
Suppose thatXR

1:m:n, XR
2:m:n, ..., XR

m:m:n represents an
observed informative adaptive progressively type-II
censored sample of sizem obtained from a sample of size
n with progressive censoring(R1, ..., Rm) drawn from a
population whose CDF is EW(α,θ ) distribution (2).
Suppose also thatY1,Y2, ...,Yn represents a future
(unobserved) independent sample of sizen drawn from

the same population. Based on informative sample, the
important aspect of prediction is to construct a two-sided
predictive interval for thes − th order statisticYs in the
future sample, 1≤ s ≤ n.

The density function ofYs for givenα > 0 andθ > 0
is of the form

g(s)(ys|α,θ ) = D(s) [1−F(ys|α,θ )](n−s)

× [F(ys|α,θ )]s−1 f (ys|α,θ ), (11)

where D(s) = n!
(n−s)!(s−1)! ,

here f (.|α,θ ) andF(.|α,θ ) are given respectively in (1)
and (2). Substituting from(1) and(2) into (11),we obtain

g(s)(ys|α,θ ) = D(s)αθyα−1
s e−yα

s

(

1− e−yα
s

)θs−1

×

[

1−
(

1− e−yα
s

)θ
]n−s

. (12)

By using the binomial expansion, the density(12) takes
the form

g(s)(ys|α,θ ) = D(s)αθyα−1
s e−yα

s

×
n−s

∑
k=0

ak(s)
(

1− e−yα
s

)θ(k+s)−1
, (13)

where

ak(s) = (−1)k
(

n− s
k

)

, ys > 0.

The Bayes predictive density function ofYs is given by

g∗(s)(ys|data) =
∫ ∞

0

∫ ∞

0
g(s)(ys|α,θ )π(α,θ |data)dαdθ ,

(14)
where π(α,θ |data) is the joint posterior density of
α and θ as given in (7). The distribution function
corresponding to the density functiong(s)(ys|α,θ ) is

G(s)(ys|α,θ )

= D(s)θ
n−s

∑
k=0

ak(s)







(

1− e−yα
s

)θ(k+s)

θ (k+ s)
−1






(15)

and the predictive distribution is

G∗
(s)(ys|data) =

∫ ∞

0

∫ ∞

0
G(s)(ys|α,θ )π(α,θ |data)dαdθ .

(16)
It is immediate thatg∗(s)(ys|data) andG∗

(s)(ys|data) can not
be expressed in closed form and hence it cannot be
evaluated analytically.
A simulation based consistent estimator of
g∗(s)(ys|data) and G∗

(s)(ys|data) can be obtained by using
the MCMC Gibbs sampling procedure and compute
G∗
(s)(ys|data) for all y. The details are explained below.
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Gibbs Sampling:

We need the following theorem for further
development.
Theorem 1. The density functiong1(α|θ ,data) as given
in (8) has a log-concave density function.
Proof: It’s easy to proof that:

d2

dα2 log[g1(α|θ ,data)]

= −
(m+ a−1)

α2 −
m

∑
i=1

xα
i log2 xi < 0.

Sinceg1(α|θ ,data) has a log-concave density, using the
idea of [35], it is possible to generate a sample from
g1(α|θ ,data). Moreover, sinceg2(θ |α,data) follows
gamma(m + c,d), it is quite simple to generate from
g2(θ |α,data).

Using Theorem 1, a simulation based consistent
estimate of G∗

(s)(ys|data) can be obtained using the
following Algorithm:

Step 1: Generateα from g1(α|θ ,data) using the
method developed by [35].

Step 2: Generateθ from g2(θ |α,data).
Step 3: Repeat Step 1 and Step 2 and obtain

{(αi,θi), i = 1,2, ...,M}.
Step 4: A simulation consistent estimator of

G∗
(s)(ys|data) can be obtained as

Ĝ∗
(s)(ys|data) =

M

∑
i=1

G(s)(ys|αi,θi)Wi (17)

where

Wi =
H(αi,θi|data)

M
∑

i=1
H(αi,θi|data)

(18)

Step 5: A symmetric 100γ% predictive interval forYs
can be obtained by solving the non-linear equations (19)
and (20), for the lower bound,L and upper bound,U :

P[Ys > L|data]= 1−G∗
(s)(L|data) =

1+ γ
2

, (19)

and

P[Ys >U |data]= 1−G∗
(s)(U |data) =

1− γ
2

, (20)

We need to apply a suitable numerical method as they
cannot be solved analytically.

5 Bayesian Prediction Interval for Future
Records

Many researchers have considered the prediction of
records based on records, and similarly the prediction of
order statistics based on order statistics. Recently,

Ahmadi and Balakrishnan [21] discussed how one can
predict future usual records (order statistics) from an
independent Y-sequence based on order statistics (usual
records) from an independent X-sequence and developed
nonparametric prediction intervals. Ahmadi and
Balakrishnan [21] and Ahmadi and MirMostafaee [22]
obtained prediction intervals for order statistics as wellas
for the mean life time from a future sample based on
observed usual records from an exponential distribution
using the classical and Bayesian approaches, respectively.
Here, we consider the case of records and order statistics
jointly and discuss the construction of prediction intervals
for future records based on observed informative adaptive
progressively type-II censored sample. We are interested
in two-sided prediction intervals of the future records.

We assume that(XR
1;m,n,X

R
2;m,n, ...,X

R
m;m,n) are the

observed adaptive progressively type-II censored order
statistics from a population whose CDF is EW(α,θ )
distribution (2), and(ZU(1),ZU(2), ...,ZU(r)) are the firstr
upper records from a future sequence from the same
distribution. Suppose that we are interested in the
predictive density of the upper recordZU(s),1 ≤ s ≤ r .
The probability density function of thesth upper record is
given by

h(s)(zs|α,θ ) =
1

(s−1)!
{− log(1−F(zs))}

s−1 f (zs),

(21)
by using(1) and(2), h(s)(zs|α,θ ) can be written as

h(s)(zs|α,θ ) =
1

(s−1)!
αθ zα−1

s e−zα
s

(

1− e−zα
s

)θ−1

×[− log(1− (1− e−zα
s ))θ )]s−1, (22)

and the distribution function corresponding to the density
functionh(s)(zs|α,θ ), is given by

H(s)(zs|α,θ )

=
1

(s−1)!

∫ zs

0
αθ tα−1

s e−tα
s

(

1− e−tα
s

)θ−1

×[− log(1− (1− e−tα
s ))θ )]s−1dt.

= −
1

(s−1)!

∫ (1−(1−e−zα
s ))θ )

1
(− log(w))(s−1)dw.

=
1

(s−1)!

[

Γ (s)−Γ (s,− log(1− (1− e−zα
s ))θ ))

]

. (23)

Using Equations (6) and (22), the Bayes predictive density
of Z(s) is given by

h∗(s)(zs|α,θ ) =
∫ ∞

0

∫ ∞

0
h(s)(zs|α,θ )π(α,θ |data)dαdθ ,

(24)
and predictive distribution ofZ(s) is then given by

H∗
(s)(zs|α,θ ) =

∫ ∞

0

∫ ∞

0
H(s)(zs|α,θ )π(α,θ |data)dαdθ ,

(25)
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Table 1: 100 observations on breaking stress of carbon fibres
3.7 2.74 2.73 2.5 3.6
3.11 3.27 2.87 1.47 3.11
4.42 2.41 3.19 3.22 1.69
3.28 3.09 1.87 3.15 4.9
3.75 2.43 2.95 2.97 3.39
2.96 2.53 2.67 2.93 3.22
3.39 2.81 4.2 3.33 2.55
3.31 3.31 2.85 2.56 3.56
3.15 2.35 2.55 2.59 2.38
2.81 2.77 2.17 2.83 1.92
1.41 3.68 2.97 1.36 0.98
2.76 4.91 3.68 1.84 1.59
3.19 1.57 0.81 5.56 1.73
1.59 2 1.22 1.12 1.71
2.17 1.17 5.08 2.48 1.18
3.51 2.17 1.69 1.25 4.38
1.84 0.39 3.68 2.48 0.85
1.61 2.79 4.7 2.03 1.8
1.57 1.08 2.03 1.61 2.12
1.89 2.88 2.82 2.05 3.65

where π(α,θ |data) is the joint posterior density of
α and θ as given in(6). Since (24) and (25) do not
permit explicit solutions for the prediction bounds onZ(s),

then, as in the previuse section, using MCMC samples
{(αi,θi), i = 1,2, ...,M}, a simulation consistent
estimators ofH∗

(s)(zs|α,θ ) can be obtained as

Ĥ∗
(s)(zs|data) =

M

∑
i=1

H(s)(zs|αi,θi)Wi. (26)

Moreover, a symmetric 100% predictive interval forZ(s)

can be obtained by solving the non-linear equations(26),
for the lower boundL and upper boundU

Ĥ∗
(s)(L|data) =

γ
2
, Ĥ∗

(s)(U |data) = 1−
γ
2

(27)

In this case it is also not possible to obtain the solutions
analytically, and one needs a suitable numerical technique
for solving these non-linear equations.

6 Illustrative Examples

In this section we consider a real life data set and illustrate
the methods proposed in the previous sections. The data
set is from [36]. A complete sample from the data gives
100 observations on breaking stress of carbon fibres (in
Gba) are given in Table 1.

Qian [37] used the standard likelihood ratio test to
show that the EWdistribution is acceptable for modeling
the breaking stress.

Table 2: Two-sample prediction for the future order statisticsYS

90% prediction intervals forYS
YS [Lower,Upper] Length
Y1 [0.6391,1.1815] 0.5424
Y2 [0.9035,1.3084] 0.4049
Y3 [1.0745,1.4287] 0.3542
Y4 [1.2166,1.5518] 0.3352
Y5 [1.3610,1.6964] 0.3354

95% prediction intervals forYS
YS [Lower,Upper] Length
Y1 [0.5593,1.1887] 0.6294
Y2 [0.8400,1.3151] 0.47510
Y3 [1.0162,1.4348] 0.4186
Y4 [1.1674,1.5633] 0.3959
Y5 [1.3009,1.7022] 0.4013

Example 1. In this example we consider the case
when the data are adaptive Type-II progressive censored.
It is assumed that we observe only the(m = 60) data
points and the rest are progressive censored. In this case
we takem = 60, T = 1.4 andR = ( 20, 058,20), where
the notation: (2,30) = {2,0,0,0}.Thus, the adaptive
progressive censored sample is: 0.39, 0.85, 0.98, 1.12,
1.17, 1.18, 1.22, 1.36, 1.41, 1.57, 1.57, 1.59, 1.61, 1.61,
1.69, 1.69, 1.71, 1.73, 1.80, 1.84, 1.84, 1.87, 1.92, 2.03,
2.03, 2.12, 2.17, 2.17, 2.17, 2.35, 2.38, 2.41, 2.48, 2.48,
2.5, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.74, 2.77, 2.79,
2.81, 2.82, 2.83, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 2.97,
3.09, 3.11, 3.11, 3.15, 3.15, 3.19 with( j = 8). It is
assumed that both the parameters are unknown. Since we
do not have any prior information available, we use
non-informative priors on both α and θ ,
(a = b = c = d = 0.001). Suppose we put 50 new carbon
fibres on the same test, and we wish to find predictive
interval of the future sample, based on the observed
sample. Now using Algorithm in Section 3 , we generate
1000 MCMC samples{(αi,θi), i = 1,2, ...,1000} and
based on them we compute a symmetric 90% and 95%
predictive intervals forYs , by solving the non-linear
equations (19) and (20). The results are listed in Table 2
for the future order statisticsYs and in Table 3 for the
future upper recordsZs, s = 1, ...,5.

Example 2. In this example, we consider thatm = 60 and
T = 3.33 andRi’s are same as in Example 1. In this case
the adaptive progressive censored sample is : 0.39, 0.81,
0.98, 1.08, 1.12, 1.18, 1.22, 1.25, 1.36, 1.47, 1.57, 1.57,
1.59, 1.61, 1.61, 1.69, 1.69, 1.71, 1.73, 1.84, 1.84, 1.87,
2.0, 2.03, 2.03, 2.05, 2.12, 2.17, 2.17, 2.35, 2.38, 2.43,
2.48, 2.48, 2.5, 2.53, 2.55, 2.55, 2.56, 2.59, , 2.73, 2.74,
2.76, , 2.81, 2.81, 2.82, 2.83, 2.87, 2.88, 2.93, 2.95, 2.97,
2.97, 3.09, 3.11, 3.15, 3.19, 3.19, 3.22, 3.22, with
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Table 3: Two-sample prediction for the future upper record
valuesZS

90% (HPD) credible intervals forZS
ZS [Lower,Upper] Length
Z1 [1.1245,4.5879] 3.4634
Z2 [1.8556,6.1634] 4.3078
Z3 [2.4624,7.6056] 5.1432
Z4 [3.0289,8.8879] 5.8590
Z5 [3.5874,10.1545] 6.5671
95% (HPD) credible intervals forZS
ZS [Lower,Upper] Length
Z1 [0.9598,5.2428] 4.2830
Z2 [1.6539,6.8960] 5.2421
Z3 [2.2220,8.4183] 6.1963
Z4 [2.7516,9.8634] 7.1118
Z5 [3.2637,11.1584] 7.8947

Table 4: Two-sample prediction for the future order statisticsYS

90% prediction intervals forYS
YS [Lower,Upper] Length
Y1 [0.6406,1.2105] 0.5699
Y2 [0.9223,1.3478] 0.4255
Y3 [1.1001,1.4704] 0.3703
Y4 [1.2550,1.6086] 0.3536
Y5 [1.4017,1.7584] 0.3567
95% prediction intervals forYS

YS [Lower,Upper] Length
Y1 [0.5586,1.2173] 0.6587
Y2 [0.8525,1.3526] 0.5001
Y3 [1.0439,1.4835] 0.4396
Y4 [1.1950,1.6125] 0.4175
Y5 [1.3355,1.7611] 0.4256

( j = 60, i.e. Xm:m:n < T ).
Using Algorithm in Section 3 , we generate 1000 MCMC
samples{(αi,θi), i = 1,2, ...,1000} and based on them we
compute a symmetric 90% and 95% predictive intervals
for Ys , by solving the non-linear equations in (27). The
results are listed in Table 4 for the future order statisticsYs
and in Table 5 for the future upper recordsZs, s = 1, ...,5.

7 Conclusion

In this paper we have considered the Bayesian
two-sample prediction problem of the exponentiated
Weibull distribution based on adaptive progressive
Type-II censored data. The prior belief of the model is
represented by the independent gamma priors on the two
shape parameters. It is observed that when the two shape
parameters are unknown the prediction intervals can not
be obtained in closed form. We used the Gibbs sampling
technique to generate MCMC samples and obtained the
predictive intervals for the future order statistics and
future upper records. The details have been explained
using a real life example.

Table 5: Two sample prediction for the future upper record
valuesZS

90% prediction intervals forZS
ZS [Lower,Upper] Length
Z1 [1.1420,4.9406] 3.7986
Z2 [1.9251,6.6788] 4.7537
Z3 [2.5800,8.3013] 5.7213
Z4 [3.2124,9.7846] 6.5722
Z5 [3.8193,11.2480] 7.4287
95% prediction intervals forZS

ZS [Lower,Upper] Length
Z1 [0.9775,5.6563] 4.6813
Z2 [1.7015,7.5947] 5.8932
Z3 [2.3221,9.2557] 6.9336
Z4 [2.8996,10.8781] 7.9785
Z5 [3.4567,12.4636] 9.0067
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