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Abstract: One of the most important issues in data envelopment asalysiensitivity analysis of efficient and inefficient dearsi
making units (DMUs). Sensitivity analysis of inefficientittnhas been more studied recently. We know that a specifftidiesit
DMUcan scarcely reach to the efficient frontier and achigyime score 1 in efficiency but it can easily obtain an efficjeswore of

a (a is a constant which is usually closed to 1 and defined by thisidecmaker). In this paper we are going to find a region which
named Improvement Region (IR) for a specific inefficient DMUieih can obtain at least an efficiency scorexofin this region the
inefficient DMU which is under evaluation can satisfy the decision makeradsal it can be improved itself to gain a new efficiency
score and by these variations it is made more contented éside maker. The procedure is illustrated by numericahgxas.

Keywords: Data Envelopment Analysis (DEA), Sensitivity Analysisfi&ency, Improvement Region (IR), Decision maker

1 Introduction DMU under evaluation remains efficien6][ In 1998
Seiford and Zhu developed a procedure to determine an
In 1978 data envelopment analysis is introduced byinput stability region (ISR) and an output stability region
Charnes, Cooper, RhodeH [CCR model) and extended (OSR) for efficient DMU []. They stated that an efficient
by Banker, P] (BCC model) .It is one of the best ways for DMU will remain efficient after the input increases or
assessing the relative efficiency of group of homogenou®utput decreases if and only if such changes occur within
decision making units (DMUs) that use multiple inputs to the ISR or OSR ], and this subject are considering in
produce multiple outputs. In recent years, one of therecent years. Jahanshahloo et 8].gxtended the largest
important issues in DEA is the sensitivity analysis Stability region for BCC model and Additive model by
included efficient and inefficient DMUswhich more supporting hyperplanes for DMU under evaluation which
researchers have great attention. In 1985, sensitivityll inputs and outputs of DMUs except DMU under
analysis of CCR model for a specific efficient DMU with evaluation are assumed fixed. The variations of inputs and
a single output was initiated by Charned.[They built ~ outputs are included in four cases:
variations in data for DMU under consideration and led to
alter the inverse matrix used to generate solutions in the
usual simplex algorithm computer codes. In 1990 Charnes
and Neralic considered additive model and they obtained
sufficient conditions for remaining efficiend][ Then in
1992, Charnes et al. obtained a specific stability region byBy variation in case 4 the efficient unit preserves its
usingL; andL. [5]. These researchers have studied theefficiency because increase of outputs associated by
methods which simultaneous proportional change isdecrease of inputs cannot worsen the efficiency of the
assumed in inputs and outputs for a specific efficientDMU. They obtained this largest stability region by
DMU under evaluations. Then Zhu (1996) provides arestricted their attention to the cases 1, 2 and 3 (8pe [
modified DEA model to compute a stability region which They consider the situation where data variations are only

l.increase of outputs and increase of inputs,
2.decrease of outputs and the increase of inputs,
3.decrease of outputs and decrease of inputs,
4.increase of outputs and decrease of inputs.
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applied to the efficient DMU under evaluation and the where eachDMU consumes m inputs to produce s
data for the remaining DMUs are assumed fixed.In someoutputs. Suppose that the observed input and output
works sensitivity analysis are based on the supewectors of DMU; are Xj = (Xij,...,Xmj) and
efficiency DEA approach in which the efficient DMU y; = (ylj,...,ysj) respectively, and lex; > 0 andx; # 0
under evaluation is not included in the referenceandy; > 0 andy; # O ( This means that all data are
set P-12]. assumed to be negative, but at least one component of
Sensitivity analysis of an inefficient DMU is studied less every input and output vector is positive).

than sensitivity of an efficient DMU. In 1992, Charnes, et The production possibility set (PP%®)is defined by:

al. obtained an improvement for inefficient DMU by

using Chebychev norm5]. The model dealt with n n ,
improvements in both inputs and outputs that could occur’c = {(Xvw X= 3 AX,y< 3 AjyjpAi =0 j= 17""”}

for an inefficient DMU before its statues would change to =1 =1

efficient. In the recent years data analysis of inefficienttne apove definition implies that the CCR model is as
units has been more studied. In 2011 Jahanshahloo et &)|ows:

supposed that DMU under evaluation is inefficient by the

efficiency score 0B} and6; < a < 1 whicha is a fixed min 6

constant and defined by the manager.They obtained the st 3" 1A < O%po,i=1,....m 1
new frontier Tywith efficiency score ofa. They proved ijl)\jyrj >V, r=1,..5s @
that as the efficiency score of all points on the main Aj >0, i=1,..n.

frontier supposed to be 1, the efficiency score on the new

frontierisa [13]. WhereDMU;, is the DMU under evaluation.

In this paper it is going to be found a region for those In addition, the Production Possibility SEtis defined by:
inefficient units whose efficiency score is less than a fixed n n n

constanta which is defined by the manager to obtain at T, = {(x,y) X > ZAij,yé ZAjyj, ZAj =1,
leasta. It means that a specific inefficient DMU with = = =

efficiency score jand 6; < a < 1 can have an A >0i1
improvement in efficiency score for at least— 6;.This =% = ,...,n}

region which called “Improvement Region” (IR) is the  The apove definition implies that the BCC model is as
region that the efficiency score of a specific inefficient ¢5)ows:

DMU is become at leastr. In this region the efficiency

score ofa is the least efficiency score which can be min 6

obtained by a specific inefficienDMU. Thus the st T4 < 0%o,i=1,...,m
inefficient DMUwhich is under evaluation can satisfy the S AV > Vo, T=1,...,8 2)
decision maker and also it can be improved itself to gain a SO A =1,

new efficiency scorg; and6; < a < B < 1. This new )\j‘; 0 i=1..n

efficiency scoref; can be obtained by different ways

such as decreasing inputs, increasing outputs or

combination strategies. After defining "Improvement

Region” for every inefficient unit with the usage of some Definition 1(Reference Set)for a DMU, , we define its
theorems, it will be proved that the new efficiency SCOre aference set, £ jAr > O} in some optimal solution
of each point of the Improvement Region for a specific ]

inefficient DMU with efficiency scored; is f; and t©1or2[14.

a < f, =1 (ais a constant which is defined by the pefinition 2(Pareto-Koopmans ~ Efficiency). DMU,
manager). This paper proceeds as follows. The neéXj, 11 n1) is a Pareto-Koopmans Efficiency if and
section represents some basic DEA models. Section nly if it is not possible to improve any input or output

develops a proposed method for finding“lmprovement, s o\t worsening some other input or outp@4].
Region”. Section 4 illustrates a numerical example.

Section 5 presents method results using application irDefinition 3.A DMU, is extreme efficient, if and only if it
hospitals. and finally conclusions are given in section 6.  satisfies the following two conditionst 3]

()1t is efficient (Pareto-Koopmans Efficient).
2 Background (i) [ o] = 1.

L ) Definition 4.A DMU, is non-extreme efficient, if and only
Data Enve_Iopme'nt' Analysis is a nonparametric methoqf it satisfies the following two conditions1§]
for evaluating efficiency of systems with multiple inputs

and multiple outputs. In this section we present some ()it is efficient (Pareto-Koopmans Efficient).
basic definitions, models and concepts that will be used in(if) [Eo| > 1 (that is the CCR or BCC envelopment model
other sections in DEA. Considd®MUj, (j = 1,...,n), corresponding DMY has alternate optimal).
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Definition 5.A DMU, with efficiency score of6; is
inefficient if and only i6; < 1. [14]

Definition 6.H is a hyperplane if H= {Z]p‘'z+ a = 0}
wherez= (X1, ..,Xm, Y1, ---,Ys) and pis the gradient of the
hyperplane andr is a scalar. Hyperplane "
H = {z|p'z+ a = 0} is strong if none of components of p
are zero. In PPS, based on inputs and outputs of the units s
DEA forms efficient surfaces consist of strong and weak
efficient surfaces. These surfaces are hyperplanes consi ’|
of strong and weak hyperplanes. In DEA these strong .|
hyperplanes are defining too.

For more details and the method of finding strong defining
hyperplane of PP,Slﬂ' o ) Fig. 1: Ty andTy frontier [13]
Afterwards, to find extreme efficient DMU in BCC  1pg efficiency score of each point on tRgfrontier is 1 (inTy)

model, the following linear programming is solved for The efficiency score of each point on thgfrontier isa (in T)
each efficient DMU:

max VO = EnJ':l )\J
j#0

st YA < Xo Theorem 1The efficiency score of each point Sfie T, is
Yi—1AiYi = Yo @ o«
n R
)\21:;31 =1 i=1..n ProofSee [L3]
=Y =4y

DMU, is an extreme efficient in BCC model if and only if ét;enné%n LThere is one- to- one correspondence between

the optimal value of3) is equal to zero.16,17)
Let the set of extreme efficient DMUs iy be E and with  prgofSee 13].
determining the set of E, the setBfis defined as follows

[13: Attention 2There is one-to-one correspondence between
1 T, and T, frontier points.
E=<{(X,Y) | (X,Y) ==X,y ],j€E
{( Y1) | (6.)) (a ! y’) I€ } ProofSee [L3]
And the new production possibility s&f : Theorem 2The efficiency score of each point on thg T
frontierisa in Ty.
= {(Y) K== S ALY < T Ay, 3 A =1 ’
v o 2.71% 2. AiYi ) A
= i€ i€ ProofSee [L3]

Aj 20, € E} The region for every inefficient unit whose efficiency

The sensitivity analysis of an inefficient DMU is studied Score is smaller thaw is called "Improvment Region”.
less than the sensitivity of an efficient units classificatio The efficiency score oDMU, with efficiency scoref;
and it seems to be ignored but in the recent years thi&nd6; < a <1 has an improvement for at least— 6;.
issue has been more studied. In 2011 Jahanshahloo et af.Will be looked more closely at the process in the next
supposed that DMU under evaluation is inefficient by the S€ction.

efficiency score oB; and6; < a < 1 whicha is a fixed

constant and defined by the manager.They obtained the

new frontier . They proved that as the efficiency score of3 Proposed method

all points on the main frontier supposed to be 1, the

efficiency score on the new frontier ¢s. Then by using In this method, it is supposed thBMU, which is under
different ways such as decreasing inputs, increasingvaluation is inefficient with efficiency score of
outputs or combination strategid8MU, with efficiency  6;and6; < o < 1 anda is a constant which is defined
score of6; can obtain efficiency score af and has an by the decision maker. The method to improve an
improvement forr — 6; in efficiency. [L3] inefficient DMU, to obtain an exactly efficiency score of
To illustrate the subject, suppose an ineffici&ivU, a has been developed by Jahanshahloo etl&)].4nd it
with efficiency score of6; and @* < a < 1) is under  was extensively discussed in section 2. In the sequel, it is
evaluationT, frontier and T, frontier are depicted in going to be defined a region which is called the

figure 1. The efficiency score of all points on thig is “Improvement Region”. In this region the efficiency score
supposed to be 1 and on thg a. of a is the least efficiency score which can be obtained by
(@© 2016 NSP
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a specific inefficientDMUy. Therefore the inefficient

Corresponding defining hyperplartd/, the half space

DMU, can satisfy the decision maker and also it can beHI’— . .and, aH|/+ are expressed as follows:

improved itself to gain a new efficiency scofif and
65 < a < 5 < 1. This new efficiency scor@; can be

obtained by different ways such as decreasing inputs,

increasing outputs or combination strategies.

To illustrate the subject, suppose that a specific inefficien

DMU, with efficiency scored; andf; < a < 1. Figure 2

H- = {z’|p/tz{ +tal <0l = 1,..,k},
H* = {Zp'4 +a/> 01 =1,.k}

shows Improvement Region (IR). It is the area consistingFigure 2 shows the “Dominated Region” (D) where in red
of the bold line ABF plus the vertical line FP and bold lines s the area that crosses the both fronfleand ;. This
PQ, QR, horizontal line AR and all points between thesefegion is consisting of all points that are defined as

line segments.

>

Fig. 2: Representing “mprovement Region” (IR) f@MU,
(inefficient unit)

At first glance, it can be used moddl) (or model @) to
evaluat®dMU; (j =1,...,n) and to be found all extreme
efficient DMUs for T, and T, by using model §). by
attention 2 there is one-to-one correspondence betlgen
andT, frontier points.

By definition 6 it can be found all strong supporting
hyperplanes of product possibility set (PP$3|[ Let be

H, The strong supporting hyperplanesTffrontier, with

I =1,...,kgiven by:

H {Zlp'z +a,=0,1 =1,....k} where
Z= (X1,.,.Xm,Y1,--,Ys) and p is the gradient of the
hyperplane anda is a scalar. Corresponding to the
hyperplaneH;, the half spacesl,” and H" are defined as
follow:

H™={zZp'z+a <0,l=1.Kk},

Hf={Zpz+a >01=1,.k}

Similarly,the procedure will be repeated to find all of the
supporting hyperplanes of, frontier. They can be
represented adj, ..., H; which expressed as follows:

H- = {z’|p"z|’+a( —0,l = 1,..,k}

whereZ = (X,,..,Xn, Y1, --.Ys) and p’ is the gradient of
the hyperplane and’ is scalar.

follows:

D={(XY)[(XY) € Tv,(—X.Y) = (Xo,Yo)}
Referring to defined half spaces, the set S is given by:

S =
|

W S— UM s (sNs)
=1

[D~

Finally “mprovement Region” (IR) is determined by:

IR = (SND)

Theorem 3The efficiency score of each point of
"Improvement Region” (IR) i8* thata < 3* < 1.

ProofLet M with coordinates(Xg, Ygr) be an arbitrary
point in IR as It is shown in Figure 3. There are three
cases to discuss .First M is a point onT, frontier, the
efficiency scoreB* = 1 . Second ifM is a point onT,
frontier by theorem 2 the efficiency scofié = a. Third
supposed tha¥l is a point of area between two frontiers.
Respecting to poinM there is a point likeM’ with
coordinates Xy, Yw) on the T, frontier and there is a
point like M with coordinategXu, Ym) on theT, frontier
such that(Xy, Yyr) = (Xw — €,Ywr) wheree > 0. Then,
the pointM’ is evaluated by the BCC model T frontier
as follows:

min Gy

st zjeE/\ij < B X
zjeE/\jy’j > Yw
YjeeAj=1
Aj>0, jeE.

Theorem 2 asserts that there exists a feasible solution
(65 =a,Am=1,4j=0,j#M) which is held in
constraints. From the first constraint, it is concluded that
Xm = aXy (1). BecauseXy = Xy — €, € = 0, for
having equation 1¢ should increase. Morever, we know

that
() X =Xw —¢
(1Y = Y

If the pointM is evaluated by the BCC modelT frontier,
then by (1) and (I)8* > a is obtained and it is complete
the proof.
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Fig. 3: M is an orbitrary point in (IR)

4.1 Example (using BCC Model):

Consider a system of 6 DMUs with a single output and
input as show in figure 4. Data is given in Table 1. Assume
a =0.800

Table 1: Data of numerical example 4.1

DMUs A B C G E F
X 1 2 4 3 5 3
Y 1 3 5 3 2 4
Results 1.000 1.000 1.000 0.670 0.300 1.000

The extreme efficient DMUs are A, B and C. the set
E = {A(1,1),B(2,3),C(4,5}. F is non- extreme

The procedure of finding "Improvement Region” can be efficient DMU and E and G are inefficient DMUs.

expressed by an algorithm as follows:
Stepl.Obtain all extreme points ofy frontier by using
model 2.3
Step2.Obtain all extreme points of,, frontier by using
model 2.3
Step3.Calculate all supporting hyperplanesTffrontier
which are namedH;,Hy,...,Hx and respectively fofT,
frontier which are calledi;,H, ...,H; by using proposed
method by Jahanshahloo et &bJ.
Step4.Construct all half spaces,” with | = 1,...,k given
by:

H™ :{zlp'z + o <01 =1k}
Similarly according to define hyperplak#, the half space
Hl/+ is given by:

H™:{Z|p'Z+a/ >0l =1k}

Step5. Determined the “Dominated Region” (D) as
follows:

D={(X%Y)|(X,Y) € T, (—X,Y) > (Xo,¥o)}

Step6.Formulate the region which is called “Improvement
Region” (IR) as follows:

Si=NHT S =UCH T,
S=(&NS) = [(ﬂrlef) n (U'kilH'/Jr)}
IR= (SND) = [(szl Hli) n (U'l(ilH'/+)}

A{ (Y 16Y) € T (%) > (%0.Yo) |

4 Numerical example.

The Strong hyperplanes by using[15] are:

AB: Hi={(xy)ly—2x= -1},
BC: Hy={(xy)ly-x=1}

DMUE is inefficient with efficiency scorég = 0.3000<
a = 0.800. Now the seE’ and Strong hyperplanes @f
frontier are defined as follows:

E'={A(1.251),B'(25,3),C'(5,5)}

AB 1 H = {(xy)[2x— 1.25y = 1.25},

B'C': H, = {(x,y)[2x— 2.5y = —2.5}

Figure 4.portrays the Improvement Region for inefficient
DMUE. The region represented by line segmefHs),
(BC), (CT), (TB), (BF) and(E7H).

29

Fig. 4: Improvement Region for inefficie@MUg

Sy =Hy NHy ={(xy)ly-2x<-1y-x<1},
S =H;" UH," = {(x,y)|2x— 1.25y > 1.25,2x — 2.5y > —2.5}

In this section we are going to illustrate the prOpOSGdS:&nSZ:{(x7y)‘y_2x§_17y_X§ 1}

method by numerical example in CCR and BCC models.

N{(x,y)|2x—1.25y > 1.25, 2x— 2.5y > —2.5}

(@© 2016 NSP
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Dominated regionD is defined as follows which is
restricted to:

D= {(va) | (xay) € TV7 (_va) Z (anyE)}
Finally the “Improvement Region” is defined as follows:
IR=(SND)
({(x.y)[2x—1.25y > 1.25 2x— 2.5y > —2.5}

m{(X7Y) | (Xay) €ly, (_X7Y) 2 (XE7YE)}

One of The points in the frontieF,with efficiency score
of o = 0.8 is E' = (1.8752). The other points such as
H=(17521),K= (180,205 ,L=(1.7525),M =
(4,4.5) andN = (3,3.9) are in the "Improvment Region”

with efficiency score 0.89, 0.89, 0.85, 0.93, 0.88 and 0.9

respectively. All of these points satisfy in the "Improvnien

Region” and half spaces.Thus these points are points that

their input is less than input @MUg and their output is
more than output dMUEg. Therefore efficiency scores of
these points are better than efficiency sddMUE.

4.2 Example (using CCR Model):

Consider a system of 4 DMUs with a single output and 2

Table 2: Data of numerical example 4.1

DMUs A B Cc F
X1 1 2 5 6
%o 4 2 1 5
Vi 1 1 1 1

Results 1.000 1.000 1.000 0.380

Now the setE’ and Strong hyperplanes &f are defined
as follows:

E'={A(1.255,1),B'(2.5,2.5,1),C' (6.25,1.25,1)}

AB H = {(X1,X2,Y) | — 2.5% — 1.25% + 9.375 = 0}
B'C': Hj = {(X1,X2,Y) | — 1.25% — 3.75%, + 12.5y = 0}

S = HfﬂHg
= {(X1,X2,¥) |6y — 2X1 — X2 < 0,8y — X1 — 3%> < 0}
S =H,* UH,"

= {(X1,X2,¥) | — 2.5% — 1.25% +9.375y > 0
,—1.25%; — 3.75% + 12.5y > 0}
S =5N&

D= {(Xlax27Y) | (X17X27y) S TV; (X17x27y) Z (XFaxFayF)}
Finally the Improvement Region (IR) is defined as follows:

IR = (SND)

inputs as show in figure 5. Data is given in Table 2. AssumeThe points, such ad = (2,25,1) , E = (3,2,1) ,

a =0.800

@ =10/800

Fig. 5: Data set inly

The extreme efficient DMUs ard, B and C. the set
E = {A(1,4,1),B(2,2,1),C(5,1,1)}. The inefficient
DMUE is under evaluation with efficiency score
6* =0.380< a = 0.800

The Strong Supporting hyperplanes by using [15] are:

AB: Hy = {(X1,X2,Y) |6y — 2% —Xo = 0}
BC: Hy = {(X1,%X2,Y) |8y — X3 — 3%, = 0}

K = (2,351 and L = (15,3,2,1) are in the
"Improvment Region” with efficiency score 0.92, 0.89,
0.80 and 0.97 respectively. All of these points satisfy in
the "Improvment Region” and half spaces.Thus these
points are points that their inputs are less than inputs of
DMUE. Therefore efficiency scores of these points are
better than efficiency scor®MUg. It is clear that

M = (4,3,1) doesn't satisfy in the “Improvement
Region” and half spaces, however its inputs are less than
inputsDMUE.

5 Application in hospitals

The examples used in previous section have been very
limited in the number of inputs and outputs used. This
made it possible to use simple graphic displays to clarify
"Improvment Region” but, of course, this was at the
expanse of the realism needed to deal with the multiple
inputs and multiple outputs. Hence, we illustrate our
approach in finding "Improvment Region” for data set 12
hospitals. A list of hospitals used is provided in Table 3.
In this report, there are number of doctors, number of
nurses, number of outpatients and inpatients which
number of doctors and nurses are considered as inputs
and number of outpatients and inpatients are as outputs.
Assumea = 0.70. The example is received frorh4] and

is about evaluation the relative efficiency of 12 hospitals.

(@© 2016 NSP
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model 2 (CCR) is used for efficiency evaluation. The output (output increasing) or simultaneous changes in
extreme efficient hospitals are B andD. The setE = input and output is impossible but the Improvement
{A(20,151,100,90)),B(19,131,150,50) ,D (27,104,180,72) }. Region is available for each inefficient DMU and the
The other hospitals are inefficiettospitak is inefficient  manager can examine different strategies and decided
with efficiency scoref = 0.21 < a = 0.70. Now setE’ more explicitly for the future.

is defined as follows:

E' = {A(284,21442,100,90),B' (26.98,1862,150,50),
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