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Abstract: In the present paper, we study the fine structure of spectra ofinfinite upper triangular double-band matrices as operators
on ℓp, where 1≤ p< ∞. Three methods for classifying the spectrum are considered. Moreover, the obtained results are used to study
the eigenvalue problem associated with certain infinite matrices. Our results improve and generalize many known results in the current
literature.
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1. Introduction and preliminaries

Several authors have studied the fine structure of spectra
of linear operators defined by some particular infinite
matrices as operators over sequence spaces [1–20]

Karakaya and Altun [21] have studied the fine spectra
of upper triangular double-band matrices over the
sequences spacesc0 andc; see also [22]. Recently Fathi
and Lashkaripour [23] have studied the fine structure of
the spectra of upper triangular double-band matrices as
operators over the sequence spaceℓ1. Very recently
Karaisa [24,25] have studied the fine structure of spectra
of the upper triangular double-band matrices as operators
over the sequence spaceℓp, where 1≤ p < ∞. All the
results in [21–25] have been given under strong
conditions that must be fulfilled for the matrices under
consideration.

In this paper, by omitting all the conditions on the
matrices, we obtain new results in the general case. Our
results not only improve and generalize the results
of [23–25], but also give results for some more operators.
Results are illustrated by considering the eigenvalue
problem associated with certain infinite matrices. A
similar treatment can be given to generalize and improve
the results of [21,22].

Let X be a complex Banach space andT a bounded
linear operator with domainD(T) and rangeR(T) in X.
By B(X), we denote the set of all bounded linear
operators onX into itself. If T ∈ B(X), then the adjoint

T∗ of T is a bounded linear operator on the dualX∗ of X
defined by(T∗ f )(x) = f (Tx), for all f ∈ X∗ andx ∈ X.
With T we associate the operatorTλ = T −λ I , whereλ
is a complex number andI is the identity operator with
domainD(T). All of the pointsλ in the complex planeC
are divided into two mutually exclusive and
complementary sets: theresolvent setρ (T,X) and the
spectrumσ (T,X). The setρ (T,X) consists of allλ ∈ C

for which the following conditions are satisfied:
(R1)T−1

λ exists,

(R2)T−1
λ is bounded,

(R3)T−1
λ is defined on a set which is dense inX.

The spectrumσ (T,X) is the complement ofρ (T,X) in the
complex planeC .

It is useful to make a finer classification of points by
subdividingσ (T,X) in some way. One such method of
subdivision is well-known; the spectrumσ (T,X) can be
analyzed into three disjoint sets as follows:

The point(discrete) spectrumσp(T,X) is the set of
all λ ∈ C such thatT−1

λ does not exist. Any suchλ ∈
σp(T,X) is called aneigenvalueof T.

The continuous spectrumσc(T,X) is the set of allλ ∈
C such thatT−1

λ exists and satisfies (R3) but not (R2), that
is, T−1

λ is unbounded.

The residual spectrumσr (T,X) is the set of allλ ∈ C

such thatT−1
λ exists (and may be bounded or not) but does
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not satisfy (R3), that is, the domain ofT−1
λ is not dense in

X.
Therefore, these three subspectra form a disjoint

subdivision

σ (T,X) = σp(T,X)∪σc(T,X)∪σr(T,X). (1)

This subdivision is the customary subdivision (see, for
example, Stone [26], where the definitions are given in
the context of Hilbert spaces). An advantage of this
classification is the division of the spectrum into disjoint
sets. It is based on the consideration ofT −λ I . Let us say
that some of the sets in the above definition may be
empty. For instance, we may have
σc (T,X) = σr (T,X) = ∅ even if X is infinite
dimensional space (see Example1).

Another classification of the spectrum is also
considered. Following Taylor and Halberg [27, 28], a
linear operatorT with domain and range in a normed
spaceX, is classifiedI, II or III , according as its range,
R(T), is all of X; is not all of X, but is dense inX; or is
not dense inX. In addition T is classified 1, 2 or 3
according asT−1 exists and is continuous; exists, but is
not continuous; or does not exist. The state of an operator
is the combination of its Roman and Arabic numerical
classifications and is denoted by the Roman numeral with
the Arabic numeral as a subscript (cf. [27], p.94, [28],
p.235-236).

For a bounded linear operatorT on a complex Banach
spaceX, we partition the complex plane into subsets
corresponding to the states of the operatorT − λ I . For
example, the subset consisting of thoseλ for which the
state of the operatorT − λ I is II 3 will be denoted by
II 3(T,X). Thus the resolvent set,ρ(T,X), of the operator
T consists of the union ofI1(T,X) andII 1(T,X), the point
spectrum consists of the union ofI3(T,X), II 3(T,X) and
III 3 (T,X), the residual spectrum consists of the union of
III 1 (T,X) and III 2(T,X) and the continuous spectrum
consists ofII 2(T,X) (cf. [27], p.109, [28], p. 264).

Following Appel et al. [29], three more subdivisions
of the spectrum can be defined; theapproximate point
spectrum, defect spectrumandcompression spectrum.

Given a bounded linear operatorT in a Banach space
X, we call a sequence (xk) in X a Weyl sequencefor T if
‖xκ‖= 1 and‖Txκ‖→ 0, asκ → ∞.

In what follows, we call the set

σap(T,X) := {λ ∈ C : ∃ a Weyl sequence f orλ I −T}
(2)

the approximate point spectrumof T. Moreover, the
subspectrum

σδ (T,X) := {λ ∈ C:λ I −T is not surjective} (3)

is calleddefect spectrumof T. The two subspectra given
by (2) and (3) form a (not necessarily disjoint) subdivision
of the spectrum, that is

σ (T,X) = σap(T,X)∪σδ (T,X).

There is another subspectrum

σco(T,X) = {λ ∈C : R(λ I −T) 6= X}, (4)

which is often called compression spectrumin the
literature. The compression spectrum gives rise to another
(not necessarily disjoint) decomposition

σ (T,X) = σap(T,X)∪σco(T,X)

of the spectrum. Clearly,σp(T,X) ⊆ σap(T,X) and
σco(T,X) ⊆ σδ (T,X). Moreover, comparing these
subspectra with those in (1) we note that

σr (T,X) = σco(T,X) \ σp (T,X)

σc (T,X) = σ (T,X) \ [σp (T,X)∪σco(T,X)] .

Next proposition is required in our study.

Proposition 1. [29] The following statements hold:
(a) σ (T∗,X∗) = σ(T,X),
(b) σc (T∗,X∗)⊆ σap(T,X),
(c) σap(T∗,X∗) = σδ (T,X),
(d) σδ (T

∗,X∗) = σap(T,X),
(e) σp(T∗,X∗) = σco(T,X),
(f) σco(T∗,X∗)⊇ σp(T,X),
(g) σ (T,X) = σap(T,X)∪σp (T∗,X∗)

= σp (T,X)∪σap(T∗,X∗) .

By w, we shall denote the space of all real or complex
valued sequences. Any vector subspace ofw is called a
sequence space. Byℓ1andℓp we denote the spaces of all
absolutely summable sequences andp-absolutely
summable sequences, which are the Banach spaces with

the norms‖x‖ = ∑k |xk| and ‖x‖p = (∑k |xk|
p)

1
p , where

1 < p < ∞, respectively. Also we writeℓ∞, c andc0 for
the spaces of all abounded, convergent and null
sequences, which are the Banach spaces with the
sup-norm‖x‖∞ = supk∈N |xk| , whereN= {0,1,2, · · ·}.

Let λ and µ be two sequence spaces andA = (ank)
an infinite matrix of real or complex numbersank, where
n, κ ∈ N. We say thatA defines a matrix mapping fromλ
into µ , and we denote it byA : λ → µ , if for every sequence
x= (xk) ∈ λ , the sequenceAx= {(Ax)n}, theA-transform
of x, is in µ , where

(Ax)n =
∞

∑
k=0

ankxk , (n∈ N).

Now, let(ak) and(bk) be two convergent sequences of
nonzero real numbers with

lim
k→∞

ak = a

and
lim
k→∞

bk = b 6= 0.
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We define the operator△ab on the sequence spaceℓp,
where 1≤ p< ∞ as follows:

△abx=△ab(xk) = (ak xk+ bk xk+1 )
∞
k=0.

Clearly, the operator△ab can be represented by the upper
triangular double-band matrixA=△ab, where

A=









a0 b0 0 · · ·
0 a1 b1 · · ·
0 0 a2 · · ·
...

...
...

. . .









In this paper, the spectrum and the fine structure of
spectrum of △ab on the sequence spaceℓp, where
1≤ p< ∞ are considered. In Section 2, the spectrum and
the Stone’s classification of the spectrum are given. These
are the main results of the paper. Some additional results
concerning other classifications of the spectrum are given
in Section 3. In Section 4, it may be helpful to provide
some illustrative examples to support the results. We
make use of the main results in Section 2 to study the
eigenvalue problem

△abx= λx, (5)

whereλ ∈ C and x ∈ ℓp. We can find, in general, all
the values ofλ for which Eq. (5) has nontrivial solutions.
Section 5 briefly concludes suggestions for future work.

2. Main results

In this section we focus on the spectrum and the fine
structure of spectrum of the operator△ab on ℓp with
respect to the first classification of Stone.

The following theorem is one of the main results,
which gives the bounded linearity of the operator△ab on
ℓp.

Theorem 1. The operator△ab: ℓp −→ ℓp is a bounded
linear operator satisfying the inequality

∥

∥

∥
△ab

∥

∥

∥

ℓp
≤ supk |ak|+ supk |bk| ,

for 1< p< ∞ and
∥

∥

∥
△ab

∥

∥

∥

ℓ1
= supk (|ak|+ |bk−1|) .

Proof. Firstly, we consider the case for which 1< p< ∞.
The linearity of△ab is trivial and so is omitted. Let us take
anyx= (xk) ∈ ℓp. Then

∥

∥

∥
△abx

∥

∥

∥

ℓp
=

(

∞

∑
k=0

|akxk+bkxk+1|
p

) 1
p

.

Therefore, by Minkowski’s inequality, we have

∥

∥

∥
△abx

∥

∥

∥

ℓp

≤

(

∞

∑
k=0

|akxk|
p

)
1
p

+

(

∞

∑
κ=0

|bκ xκ+1|
p

)
1
p

≤ supk |aκ |

(

∞

∑
κ=0

|xκ |
p

)
1
p

+supk |bκ |

(

∞

∑
κ=0

|xκ |
p

)
1
p

= (supk |aκ | +supk |bκ |)‖x‖ℓp
.

Thus,
∥

∥

∥
△ab

∥

∥

∥

ℓp
≤ supk |ak|+ supk |bk| .

This completes the proof where 1< p< ∞. Analogously,
we can deal with the casep= 1.�

Remark 1. One can prove that
∥

∥

∥
△ab

∥

∥

∥

ℓp
≥ sup

k
(|ak|

p + |bk−1|
p)

1
p ,

for 1< p< ∞.
If T: ℓp → ℓp, where 1≤ p < ∞, is a bounded linear

operator with matrixA, then it is known that the adjoint
operatorT∗ : ℓ∗p −→ ℓ∗p is defined by the transpose of the
matrix A. It is well-known that the dual spaceℓ∗p of ℓp is
isomorphic toℓq with p−1+q−1 = 1, for 1< p<∞. Also,
the dual spaceℓ∗1 of ℓ1 is isomorphic toℓ∞.

In [6], the spectrum of the lower triangular
double-band matrix△ab = (△ab)t has been studied, and
it is proved that

σ (△ab, ℓp) = {λ ∈ C : |λ −a| ≤ |b|}∪E,

where
E = {ak : κ ∈ N, |ak−a|> |b|}. (6)

Also, the spectrum of the operator△ab on ℓ∞ equals
σ(△ab, ℓp ), which can be derived by analogy to that on
the spaceℓp . Now, since △ab is a bounded linear
operator on the Banach spaceℓp into itself, the spectra of
the operator△ab and its adjoint△ab ∗ = △ab : ℓq → ℓq,
are equal (by Proposition1(a)). Then, we have the
following main result:

Theorem 2.For 1≤ p< ∞,

σ
(

△ab, ℓp

)

= {λ ∈ C : |λ −a| ≤ |b|}∪E,

where E is given as in (6).

The next theorem gives the point spectrum of the
operator△ab on ℓp.

Theorem 3.For 1≤ p< ∞,

σp

(

△ab, ℓp

)

= {λ ∈ C :
∞

∑
k=0

∣

∣

∣

∣

∣

k

∏
i=0

λ −ai

bi

∣

∣

∣

∣

∣

p

< ∞}.
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Proof. Consider the equation △abx = λx for
x= (x0,x1,x2, . . .) 6= θ in ℓp. Then, we obtain that

xk+1 =
λ −ak

bk
xk = x0

k

∏
i=0

λ −ai

bi
, κ ∈ N.

For λ = ak, κ ∈ N, there exists a nonzero vector
x = (x0,x0

λ−a0
b0

,x0 ∏1
i=0

λ−ai
bi

, . . . ,x0 ∏k
i=0

λ−ai
bi

,0, . . . )
with x0 6= 0, which presents an eigenvector corresponding
to the eigenvalueλ = ak, and in this case we have

∑∞
k=0

∣

∣

∣∏k
i=0

λ−ai
bi

∣

∣

∣

p
< ∞. Also, for all λ 6= aκ , κ ∈ N, we

obviously haveλ ∈ σp(△
ab, ℓp) if and only if there exists

x 6= θ in ℓp with △abx= λx, that is, if and only if

∞

∑
k=0

∣

∣

∣

∣

∣

k

∏
i=0

λ −ai

bi

∣

∣

∣

∣

∣

p

< ∞.

Thus, the required result follows.�

Remark 2. One can easily observe thatλ ∈ σp
(

△ab , ℓp
)

if and only if the sequence
(

∏k
i=0

λ−ai
bi

)

belongs toℓp.

Also, the point spectrum can be given in the form

σp

(

△ab, ℓp

)

= {λ ∈C : |λ −a|< |b|}∪E∪H,

where E is given as in(6) and

H = {λ ∈ C : |λ −a|= |b| ,
∞

∑
k=0

∣

∣

∣

∣

∣

k

∏
i=0

λ −ai

bi

∣

∣

∣

∣

∣

p

< ∞}.

The following theorem gives the point spectrum of the
adjoint operator△ab ∗.

Theorem 4.σp(△
ab ∗, ℓ∗p) = E ∪Kp , where

Kp = {a j : j ∈ N,
∣

∣a j −a
∣

∣= |b| ,
∞

∑
k=m

∣

∣

∣

∣

∣

k

∏
i=m

bi−1

a j −ai

∣

∣

∣

∣

∣

q

< ∞,

f or some m∈N},

for 1< p< ∞ and

K1 = {a j : j ∈N,
∣

∣a j −a
∣

∣= |b| , supk≥m

∣

∣

∣

∣

∣

k

∏
i=m

bi−1

a j −ai

∣

∣

∣

∣

∣

< ∞,

f or some m∈ N}

and E is given as in (6).

Proof.We consider the case for which 1< p<∞. Suppose
△ab ∗ f = λ f for f ∈ ℓ∗p

∼= ℓq with p−1+ q−1 = 1. Then,
we obtain that

(a0−λ ) f0 = 0 andbk fk+(ak+1−λ ) fk+1 = 0,

for all κ ∈ N. Indeed, we have two cases:
Case(i): if the sequence (ak) is a constant sequence, then
we obtain thatf = θ , and so,σp(△

ab ∗, ℓ∗p) = ∅. In this
caseE = Kp =∅.
Case(ii ): if the sequence (ak) is not a constant sequence,
then for allλ /∈ {aκ : κ ∈N}, we havefk = 0 for all κ ∈N.
Henceλ /∈ σp(△

ab ∗, ℓ∗p). As well as, ifλ = a, we can
prove thatλ /∈ σp

(

△ab ∗, ℓ∗p
)

. Therefore

σp

(

△ab ∗, ℓ∗p

)

⊆ {aκ : κ ∈ N}\{a} .

Now, if λ ∈ σp
(

△ab ∗, ℓ∗p
)

, thenλ = a j 6= a for some
j ∈ N and there existsf ∈ ℓ∗p, f 6= θ such that△ab ∗ f =
a j f . So, we have

lim
k→∞

∣

∣

∣

∣

fk+1

fk

∣

∣

∣

∣

q

=

∣

∣

∣

∣

b
a j −a

∣

∣

∣

∣

q

≤ 1

This implies thatλ = a j ∈ E or
∣

∣a j −a
∣

∣= |b|. In the case
when

∣

∣a j −a
∣

∣= |b| we have, for somem∈N

fk =
bk−1bk−2 . . .bm−1

(a j −ak) (a j −ak−1) . . . (a j −am)
fm−1

= fm−1

k

∏
i=m

bi−1

a j −ai
, κ ≥ m.

Therefore
∞

∑
k=0

| fk|
q < ∞

if

∑∞
k=m

∣

∣

∣∏k
i=m

bi−1
a j−ai

∣

∣

∣

q
< ∞, for somem∈ N.

Then λ = a j ∈ Kp. So, λ = a j ∈ E ∪ Kp. Thus
σp
(

△ab ∗, ℓ∗p
)

⊆ E∪Kp.
Conversely, letλ ∈ E∪Kp. If λ ∈ E, then there exists

i ∈ N such thatλ = ai 6= a and so we can takef 6= θ such
that△ab ∗ f = ai f and

lim
k→∞

∣

∣

∣

∣

fk+1

fk

∣

∣

∣

∣

q

=

∣

∣

∣

∣

b
a−ai

∣

∣

∣

∣

q

< 1,

that is f ∈ ℓ∗p
∼= ℓq. Also, if λ ∈ Kp, then there exists

j ∈ N such that λ = a j 6= a,
∣

∣a j −a
∣

∣ = |b| and

∑∞
k=m

∣

∣

∣∏k
i=m

bi−1
a j−ai

∣

∣

∣

q
< ∞ for somem ∈ N. Then we can

take f ∈ l∗p ∼= ℓq, f 6= θ such that△ab ∗ f = a j f . Thus

E∪Kp ⊆ σp(△
ab ∗, ℓ∗p).

This completes the proof in the case for which 1< p< ∞.
Analogously, we can deal with the casep= 1.�

Theorem 5.For 1≤ p< ∞,

σr

(

△ab, ℓp

)

=∅.
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Proof. It is clear that, by Proposition1, σr
(

△ab, ℓp
)

=

σp
(

△ab ∗, ℓ∗p
)

\σp
(

△ab , ℓp
)

. Also, by Theorems3 and4,
we have

σp(△
ab ∗, ℓ∗p)⊆ {ak : k∈ N} ⊆ σp

(

△ab, ℓp

)

.

Thusσr
(

△ab, ℓp
)

=∅. This completes the proof.�

Theorem 6.For 1≤ p< ∞,

σc

(

△ab, ℓp

)

= {λ ∈C : |λ −a|= |b|}\H.

Proof. Sinceσ(△ab, ℓp) is the union of the disjoint sets
σp
(

△ab, ℓp
)

, σr(△
ab, ℓp) and σc

(

△ab, ℓp
)

, then
Theorems2, 3 and5 imply that

σc

(

△ab, ℓp

)

= {λ ∈C : |λ −a|= |b|}\H.�

Although the point spectrumσp(△
ab, ℓp) and the

continuous spectrumσc
(

△ab, ℓp
)

depend on the indexp,
the spectrum itself does not depend onp. Also, for all p,
where 1≤ p < ∞, the residual spectrumσr(△

ab, ℓp) is
empty.

3. Further Results

In this section, we investigate the fine structure of the
spectrum of the operator△ab, with respect to the other
classification schemes. Firstly, we give the following
lemma which is needed in the proof of the next theorem.

Lemma 1. [27] If T is a bounded linear operator on a
normed space X into a normed space Y, then T has a dense
range in Y if and only if(T∗)−1 exists.

We note that, for the operator△ab : ℓp → ℓp we have

III 1

(

△ab, ℓp

)

= III 2

(

△ab, ℓp

)

=∅,

since
σr

(

△ab, ℓp

)

=∅.

Also, I2
(

△ab, ℓp
)

= ∅, by the closed graph theorem.
Next, we calculate I3

(

△ab, ℓp
)

, II 2
(

△ab, ℓp
)

,

II 3
(

△ab, ℓp
)

andIII 3
(

△ab, ℓp
)

.

Theorem 7. For 1 ≤ p < ∞, the parts,
I3
(

△ab, ℓp
)

, II 2
(

△ab, ℓp
)

, II 3
(

△ab, ℓp
)

and
III 3

(

△ab, ℓp
)

are given as follows:
(i) I3

(

△ab, ℓp
)

∪ II 3
(

△ab, ℓp
)

= σp(△
ab, ℓp)\σp(△

ab ∗, ℓ∗p)

= {λ ∈C : |λ −a|< |b|}∪ (H\Kp),

(ii) III 3
(

△ab, ℓp
)

= σp(△
ab ∗, ℓ∗p) = E∪Kp,

(iii) II 2
(

△ab, ℓp
)

= σc
(

△ab, ℓp
)

= {λ ∈ C : |λ −a|= |b|}\H,

where E is given as in (6), and Kp and H are given in
Theorem4 and Remark2, respectively.

Proof. (i) Let λ ∈ σp(△
ab, ℓp)\σp(△

ab ∗, ℓ∗p). Then, the
operator△ab−λ I has no inverse and△ab ∗−λ I is one to

one. So, by Lemma1,
(

△ab−λ I
)−1

does not exist and
△ab − λ I has a dense range. Thus,
λ ∈ I3

(

△ab, ℓp
)

∪ II 3
(

△ab, ℓp
)

. The converse can be
proved analogously.
(ii) Let λ ∈ σp(△

ab ∗, ℓ∗p). Then,△ab ∗−λ I is not one to
one, and so, by Lemma1, △ab − λ I has not a dense
range. SinceIII 1

(

△ab, ℓp
)

= III 2
(

△ab, ℓp
)

= ∅, then
λ ∈ III 3

(

△ab, ℓp
)

. Conversely, forλ /∈ σp(△
ab ∗, ℓ∗p),

△ab ∗ − λ I is one to one, and so△ab− λ I has a dense
range. Then,λ /∈ III 1

(

△ab, ℓp
)

∪ III 2
(

△ab, ℓp
)

∪

III 3
(

△ab, ℓp
)

. Thus,λ /∈ III 3
(

△ab, ℓp
)

. This completes
the proof.
(iii) By definition, the continuous spectrum of the bounded
linear operator△ab on the Banach spaceℓp consists of
II 2
(

△ab, ℓp
)

. Then

II 2

(

△ab, ℓp

)

= σc

(

△ab, ℓp

)

= {λ ∈C : |λ −a|= |b|}\H.�

Although, the results in Theorem7(i)-(ii ) give a finer
subclassification of the point spectrum, the two parts
I3(△ab, ℓp) and II 3(△

ab, ℓp) cannot be determined
separately in general. In some special cases, one can
determine these parts separately.

Theorem 8.The following statements hold :
(i) σap

(

△ab, ℓp
)

= {λ ∈ C : |λ −a| ≤ |b|}∪E,
(ii) σco

(

△ab, ℓp
)

= E∪Kp,
(iii) σδ

(

△ab, ℓp
)

=

[{λ ∈ C : |λ −a| ≤ |b|}∪E] \I3
(

△ab, ℓp

)

,

where E is given as in (6), and Kp and H are given in
Theorem4 and Remark2, respectively.

Proof.(i) Since the equality

σap

(

△ab, ℓp

)

= σ
(

△ab, ℓp

)

\ III 1

(

△ab, ℓp

)

hold, and

III 1

(

△ab, ℓp

)

=∅,

then
σap

(

△ab, ℓp

)

= σ
(

△ab, ℓp

)

.

This completes the proof.
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(ii) Follows immediately from Proposition1 and Theorem
4.
(iii) Since

σδ

(

△ab, ℓp

)

= σ
(

△ab, ℓp

)

\ I3
(

△ab, ℓp

)

,

then, the required result follows from Theorem2. �

4. The eigenvalue problem associated with
the infinite matrix △ab

Consider a linear operatorT : X → X that maps a Banach
spaceX into itself. The standard eigenvalue problem
involves finding the nontrivial solutions of the equation

Tx= λx

with λ ∈C an eigenvalue,x∈ X andx 6= θ an eigenvector.
The standard eigenvalue problem can also be written as

(T −λ I)x= θ

with I the identity operator onX.
Now, consider the eigenvalue problem

△abx= λx,

whereλ ∈C andx= (xk) ∈ ℓp. Then

△ab(xk) = (akxk+bkxk+1) = λ (xk) . (7)

We obtain the following system of equations

a0x0+b0x1 = λx0,
a1x1+b1x2 = λx1,
a2x2+b2x3 = λx2

...
akxk+bkxk+1 = λxk

...

If λ is in the resolvent set of△ab, thenEq. (7) has only
the trivial solution, considered inℓp. If λ is in the point
spectrumσp(△

ab, ℓp), thenEq. (7) has nontrivial solution
x ∈ ℓp. The residual spectrumσr(△

ab, ℓp), is empty
(Theorem5). If λ ∈ σc(△

ab, ℓp), the continuous spectrum
of △ab, thenEq. (7) has no solutionx∈ ℓp, wherex 6= θ .
However in this case,Eq. (7) may have nonzero solutions
which are not inℓp.

It may be helpful to provide the following example.

Example 1. Let△ab = (ci j ), i, j = 0,1,2, ..., be an infinite
matrix defined by cii = ai, ci,i+1 = bi and ci j = 0 for all
i 6= j and j 6= i + 1, where a0 = 4,b0 = 1, ak = −1 and
bk = (k+ 1)/k, for all k≥ 1. Then limk→∞ ak = a = −1
and limk→∞ bk = b= 1. By using the results in Section 2
we can calculate, for1< p< ∞, that

σ
(

△ab, ℓp

)

= σp

(

△ab, ℓp

)

= {λ ∈ C : |λ +1| ≤ 1}∪{4} .

Also,
σr

(

△ab, ℓp

)

= σc

(

△ab, ℓp

)

=∅.

In this example, we observe that all spectral values are
eigenvalues. That is, the eigenvalue problem (7), where
λ ∈C and x∈ ℓp, has nontrivial solutions for allλ ∈ {λ ∈
C : |λ +1| ≤ 1}∪{4} and it has only the trivial solution
for all {λ ∈C : |λ +1|> 1}\{4}.

For p= 1, we can calculate that

σ(△ab, ℓ1) = {λ ∈ C : |λ +1| ≤ 1}∪{4},

σp(△
ab, ℓ1) = {λ ∈ C : |λ +1|< 1}∪{4},

σr(△
ab, ℓ1) = ∅,

σc(△
ab, ℓ1) = {λ ∈ C : |λ +1|= 1}.

In this case, Eq.(7) has nontrivial solutions for all
λ ∈ {λ ∈ C : |λ + 1| < 1}∪ {4}, it has only the trivial
solution for all λ ∈ {λ ∈ C : |λ + 1| > 1} \ {4} and it
has no solutions inℓ1 for all λ ∈ {λ ∈C : |λ +1|= 1}.

5. Conclusion and future work

The fine structure of spectra of the operator△ab over the
sequence spaceℓp, where 1≤ p < ∞, have been
investigated. Moreover, application to the eigenvalue
problem has been explained. There are other papers
devoted to this problem (see, for example, [24, 25]). But,
the new results in this paper cover a wider class of linear
operators which are represented by infinite upper
triangular double-band matrices over the sequence space
ℓp.

The fine structure of spectra of many other operators,
which are represented by matrices, remain to be studied.
For example, the fine structure of the spectrum of the
upper and lower triangular triple-band matrices have been
studied in some special cases [12,13]. We intend to study
such kind of operators in more general forms by using
new techniques.
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