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Abstract: In the present paper, we study the fine structure of spectifinfte upper triangular double-band matrices as opesator
on/p, where 1< p < . Three methods for classifying the spectrum are considéledeover, the obtained results are used to study
the eigenvalue problem associated with certain infiniterices. Our results improve and generalize many known reguthe current
literature.
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1. Introduction and preliminaries T* of T is a bounded linear operator on the dialof X
defined by(T*f)(x) = f(Tx), for all f € X* andx € X.
Several authors have studied the fine structure of spectr@vith T we associate the operatdi, = T — Al, whereA
of linear operators defined by some particular infinite js a complex number andis the identity operator with
matrices as operators over sequence spas@§][ domainD(T). All of the pointsA in the complex plan€
Karakaya and Altun41] have studied the fine spectra are divided into two mutually exclusive and
of upper triangular double-band matrices over thecomplementary sets: theesolvent setp (T,X) and the
sequences spaceg andc; see also22. Recently Fathi  spectrumo (T, X). The setp (T, X) consists of alA € C
and Lashkaripour43] have studied the fine structure of for which the following conditions are satisfied:
the spectra of upper triangular double-band matrices agR1) T exists
operators over the sequence spage Very recently "_1 , '
Karaisa P4, 25] have studied the fine structure of spectra (R2) T, ~ is bounded,
of the upper triangular double-band matrices as operatorgra) T[l is defined on a set which is denseXn
over the sequence spaég, where 1< p < . All the - -
results in P1-25] have been given under strong Igg;?eicéﬁ:a%-r’x) 's the complement 8 (T, X) in the
conditions that must be fulfilled for the matrices under . ! , e .
It is useful to make a finer classification of points by

consideration. - .
subdividingo (T, X) in some way. One such method of

In this paper, by omitting all the conditions on the LT X
matrices, we obtain new results in the general case. ougubdivision is well-known; the spectrum(T, X) can be

results not only improve and generalize the resultsanalyzed |r'1to three disjoint sets as fOHOWS_:

of [23-25], but also give results for some more operators. ~ The point(discret§ spectrumaoy (T,X) is the set of
Results are illustrated by considering the eigenvalueall A € C such thatT/\‘1 does not exist. Any such ¢
problem associated with certain infinite matrices. A o, (T,X) is called areigenvaluef T.

similar treatment can be given to generalize and improve  The continuous spectrum (T, X) is the set of alk €

the results of%1,22]. C such thafl, ! exists and satisfies (R3) but not (R2), that
Let X be a complex Banach space ahda bounded . T-1 G ded (R3) (R2),

linear operator with domai®(T) and rangeR(T) in X. 'S ') * 1S unbounded. _

By B(X), we denote the set of all bounded linear  The residual spectrurg; (T,X) is the setof alh € C

operators orX into itself. If T € B(X), then the adjoint such thafl'{l exists (and may be bounded or not) but does
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not satisfy (R3), that is, the domain Hifl isnotdense in  There is another subspectrum

Therefore, these three subspectra form a disjoint Oco(T,X)={A € C:R(AI —T) #£ X}, (4)
subdivision
which is often calledcompression spectrunin the
literature. The compression spectrum gives rise to another

0 (T, X) = op(T,X)Uae(T,X) UG (T, X). (1) (not necessarily disjoint) decomposition

This subdivision is the customary subdivision (see, for
example, StoneZ6], where the definitions are given in
the context of Hilbert spaces). An advantage of this
classification is the division of the spectrum into disjoint
sets. It is based on the consideratioof Al. Let us say
that some of the sets in the above definition may b
empty. For instance, we may have
o:(T.X) = o (T,X) = @ even if X is infinite
dimensional space (see Examfje

Another classification of the spectrum is also 0c (T X) = 0(T,X) \ [0p(T, X)UOeo (T, X)].

considered. Following Taylor and Halber@7 28|, a Next proposition is required in our study.
linear operatorT with domain and range in a normed

spaceX, is classified!, Il or Ill, according as its range, Proposition 1.[29] The following statements hold:
R(T), is all of X; is not all of X, but is dense iX; or is (@) o (T*,X*) = a(T,X),
not dense inX. In addition T is classified 1, 2 or 3 (b) 0c (T*,X*) C Gap(T, X
according asT ! exists and is continuous; exists, but is () aap(T*,X*)iz a5(T,X),

not continuous; or does not exist. The state of an operato d) 05 (T*,X*) = Gap(T, X),

is the combination of its Roman and Arabic numerical (€) 0p (T*,X*) = 0eo(T, X)),
classifications and is denoted by the Roman numeral with(f) 0:;( . X*) 2 0o (T ’X)

the Arabic numeral as a subscrigtf.([27], p.94, 2§, (g)o(T,X’) _ cr;p(%,%)u,ap (T*,X)

.235-236). £ \k
P For a b)ounded linear operaf®ron a complex Banach = Op(T:X)U Oap(T7, X7).
spaceX, we partition the complex plane into subsets gy e shall denote the space of all real or complex
corresponding to the states of the operafor Al. FOr  y51yed sequences. Any vector subspacevads called a
example, the subset consisting of thaséor which the  gequence space. Byand/, we denote the spaces of all
state of the operatof — Al is 113 will be denoted by absolutely summable sequences armabsolutely

I13(T, X). Thus the resolvent sgb(T, X), of the operator g mmahle sequences, which are the Banach spaces with
T consists of the union df (T, X) andll 1(T,X), the point o 1

spectrum consists of the union BT, X), 115(T,X) and  the norms||x| = 5 [xq and ||, = (3« [x")?, where

11 3(T,X), the residual spectrum consists of the union of 1 < P < @, respectively. Also we writé., ¢ andco for
1111(T,X) and Il »(T,X) and the continuous spectrum the spaces of all abounded, convergent and null

U(T,X) - Uap(T,X) U UCQ(T,X)
of the spectrum. Clearlygp(T,X) C 0ap(T,X) and
Oco(T,X) C 05(T,X). Moreover, comparing these
esubspectra with those i) we note that

0; (T,X) = 0co (T, X) \ 0p(T,X)

),
)

consists of 1 (T, X) (cf.[27], p.109, 8], p. 264). sequences, which are the Banach spaces with the
Following Appel et al. 29, three more subdivisions SUP-NOMM(X||., = SURey X/ , whereN = {0,1,2,--}.

of the spectrum can be defined; thpproximate point Let A and u be two sequence spaces ahe-= (ank)

spectrumdefect spectrurandcompression spectrum an infinite matrix of real or complex numbemgk, where
Given a bounded linear operaf®rin a Banach space " K € N. We say thaA defines a matrix mapping frorm

X, we call a sequencey() in X a Weyl sequenctor T if into u, and we denoteitbg: A — u, if for every sequence

[%¢|| = 1 and|| T ¢ || — O, ask — oo. X= (X) € A, the sequenc&x = {(AX),}, theA-transform
In what follows, we call the set of x,is in p1, where

Oap(T,X) :={A € C:3aWeyl sequence forl — T hd

ap( )i={ yl seq (}2) (AX),, = z ank , (NeN).

the approximate point spectruraf T. Moreover, the k=0

subspectrum Now, let(a,) and(b,) be two convergent sequences of

05(T,X) :={A € C:Al — T isnotsurjectivé ~ (3)  honzeroreal numbers with

is calleddefect spectrurof T. The two subspectra given lima, =a
by (2) and @) form a (not necessarily disjoint) subdivision ke
of the spectrum, that is and

0 (T,X) = Gap(T,X) UT5(T,X). lim b =b#0.
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We define the operatof\@ on the sequence spacg, Therefore, by Minkowski’s inequality, we have

where 1< p < o as follows: L
0 P 0
< |akxkp> +( |bxex +1p)
b (kZO KZO “

1 1

olk

HAabX

A% = A (x) = (@ X+ b X1 Do

Clearly, the operataf\2® can be represented by the upper °° b P ® b b
triangular double-band matri = A2, where < SURfa| KZ()'XK' +sup x| ,ZolXK'
aby O - = (supax| +supbl) [X], -
A 0ahb - Thus
=|00a-- ’
L | 2% < supda+sun by
P

. ] This completes the proof where<l p < . Analogously,
In this paper, the spectrum and the fine structure ofye can deal with the cage= 1. B

spectrum of A% on the sequence spad, where

1 < p < « are considered. In Section 2, the spectrum andRemark 1. One can prove that
the Stone’s classification of the spectrum are given. These

are the main results of the paper. Some additional results HAab
concerning other classifications of the spectrum are given

in Section 3. In Section 4, it may be helpful to provide

some illustrative examples to support the results. Wefor 1 < p <.

make use of the main results in Section 2 to study the If T:¢p — £p, where 1< p < o, is a bounded linear
eigenvalue problem operator with matrixA, then it is known that the adjoint

operatorT* : ¢f — ¢} is defined by the transpose of the
A8y = Ax, (5)  matrixA. Itis well-known that the dual spadg of £ is
isomorphic to/q with pl+gql=1,forl< p<o. Also,
whereA € C andx € /p. We can find, in general, all the dual spacé; of /1 is isomorphic t?/e,.
the values ofA for which Eq. (5) has nontrivial solutions. In [6], the spectrum of the lower triangular
Section 5 briefly concludes suggestions for future work. double-band matrix\ o, = (A2°)! has been studied, and
it is proved that

P P 3
> sup(fa|” + [bk-1|")P
lp k

2. Main results 0 (Aap,tp) = {A €C: A —al < |b[} UE,
In this section we focus on the spectrum and the ﬁneWhere
structure of spectrum of the oper[’j\tm'ﬁ‘ID on £ with E={ackeN,|a—a> |b[}. 6)
respect to the first classification of Stone. Also, the spectrum of the operatdk,, on ¢, equals
The following theorem is one of the main results, g(Aap,¢p ), which can be derived by analogy to that on
which giVGS the bounded Iinearity of the operazf&ﬁ*b on the spacegp_ Now, since Aab is a bounded linear
Cp. operator on the Banach spagginto itself, the spectra of
the operator\? and its adjointA?* = Ay @ lg — g,

b. :
Theorem 1.The operatorA®™ f, — (pis a bounded  4re equal (by Propositiori(a)). Then, we have the

linear operator satisfying the inequality following main result;
HAab , < sunc [a|+sup [byl, Theorem 2.For 1 < p < «,
P
for 1< p<eand U(Aabaép):{/\ €C :1]A —al < [b[}UE,
abl| _ where E is given as irgj.
|a%]|, = surlad +Ibeal).

The next theorem gives the point spectrum of the
Proof. Firstly, we consider the case for which<lp < . operator/A on lp.

The linearity of A2 s trivial and so is omitted. Let us take
anyx= (x) € {p. Then Theorem 3.For 1 < p < o,

P
< oo},

00

1 k
e P oo (A ) = {reC : A—a
W <kzo|akxk+bkxk+l|p> : p( p) { k;

b bi

H Aabx
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Proof. Consider the equation A%®x = Ax for for all k € N. Indeed, we have two cases:

X= (Xo,X1,X2, ...) # 6 in £p. Then, we obtain that Case(i): if the sequences) is a constant sequence, then
we obtain thatf = 6, and sogp(A%*, ¢3) = @. In this
—a K A—a casekE = Kp = @.
Xyl = Xk = Xo b K €N. Case(ii): if the sequences() is not a constant sequence,

= thenforallA ¢ {ax : kK € N}, we havef, =0 forallk € N.

HenceA ¢ gp(A%, p). As well as, ifA = a, we can

ForA = &, k € N, there exists a nonzero vector
& prove that ¢ o, (A2, ¢3) . Therefore

A— 1 A—3y k A—g
X = (X0, %052 X0 im0 "5 - X0 10 5 s 0; - )

with xg # 0, which presents an eigenvector corresponding
to the eigenvaluel = a, and in this case we have

ap (Aab*, e;) C{ac:k eN}\{a} .

) k A—g p
Ekzo‘ni:OTia" < o0. Also, for all A # ax, kK € N, we Now, if A € gp (A%*, ¢5), thenA = a; # afor some
obviously havel € (A, () if and only if there exists | € N and there exist$ € ¢, f # 0 such that\@0* f =
X# 8 in {p with A®x = )x, that is, if and only if ajf. So, we have
p q q

L WS tim | et || BTy

% T < 00, k—oo | T aj—a

k=0 |i= I

_ This implies thah =a; € E or |aj —a| =|b]. In the case

Thus, the required result followdl When|aj _ a| — |b| we have, for somen€ N
Remark 2. One can easily observe thate o, (Aab ,ép) be_1bk_2...bm_1

sz ( ) fm—l

if and only if the sequencéﬂ%‘:o%a‘) belongs tofp,. a; —a) (8 —a&-1)... (a8 —am

Also, the point spectrum can be given in the form K b,
= fm—l I_l ’ K Z m
i=m aj—a

Therefore "
where E is given as i(6) and %| fi|9 < o
K=

Gp(Aab, ep) —{AeC :|A—a < |b}UEUH,

P
< oo},

H={AeC:A-al=[p. ¥
k=0

k )\_ai
bi

k bi_
Zilm ’ [Mi=m ajlféq

The following theorem gives the point spectrum of the Then A
adjoint operator\a® *,

. q
1= < o, for somem < N.

= aj € Kp. So, A = aj € EUK,. Thus
Op (230, 11) CEUK,.

Theorem 4.Up(Aab*’ g;) =E UKy, where Conversely, lef € EUK,. If A € E, then there exists
i € Nsuchthatt = & # aand so we can také # 6 such
o |k b, q thatA2*f — g f and
Kp:{aj:JEN, aj—a‘:|b|7 z I_lajj <OO’ fk q b q
k=mji=m lim | <2 | = <1,
for some me N}, koo | fic a—g
for1< p < and that is f € £, = {4. Also, if A € Kp, then there exists
) j € N such thatA = a; # a, |aj—a| = |b| and
. b'f ] bi, q
Ki={aj:jeN,|aj—a|=b], supem [ a-l 1@ < o, Zkzm‘ﬂi‘;maj_; < o for somem € N. Then we can
i=m< —

takef € I} = (g, f # 6 such that\®"*f = a; f. Thus
for some me N}
o . EUKp C 0p(A%%,15).
and E is given as inqg). .
This completes the proof in the case for whick D < c.
Proof. We consider the case for whichdlp < . Suppose ~ Analogously, we can deal with the cage-1.H
A% f = Af for f € (52 (g with p~+q~' = 1. Then,

we obtain that Theorem 5.For 1 < p < oo,

ab _
(a—A)fo=0 andbyfy+ (a1 —A) fier =0, o (A ,gp)_@,

(@© 2016 NSP
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Proof. It is clear that, by Propositiof, o; (A%, ¢p) = (iii) Il 2 (A%, 4p) = 0c (A%, 4p)
op (L3, £5)\0p (A%, £p). Also, by Theorem8 and4,
we have ={AcC:A—al=|b]}\H,
0o (A (7)Y C {a ke NY C ap (A%, 4,) . where E is given as in6j, and K, and H are given in
pl p) < {3 b ( p) Theoren¥ and Remark, respectively.
Thuso; (A%, £p) = . This completes the prodll Proof. (i) Let A € op(A%, £p)\ap(A2*,¢5). Then, the
Theorem 6.For 1 < p < e, operatorA® — A1 has no inverse arluiab* —Alisoneto
one. So, by Lemmd, (A% —A1)"" does not exist and
Oc (Aab,ép) ={AeC:|A—al=|b[}\H. A Al has a dense range. Thus,

A € 13(A%,05) U5 (A%, ¢,). The converse can be

Proof. Since a(A®, £,) is the union of the disjoint sets Proved analogoust!y. ) .
a (Aab 0p) o (A% () and o (Aab 0p), then (i) Let A € op(A®*,£3). Then,A®* — Al is not one to

Theorem, 3 and5 imply that one, and so, by Lemma, A% — Al has not a dense
range. Sincelll 1 (A%, ¢) = 1115 (A%, ¢p) = @, then
Oc (Aab, gp) ={AeC:|]A—al=|b]}\H.W A € 13 (A%, ¢p). Conversely, forA ¢ ap(A2~ 13),

A3* _ )l is one to one, and s&\@ — A| has a dense
Although the point spectrunmy(A®, ¢,) and the  range. Thend ¢ 111 (A%, 5) UIT 2 (A, £5) U
continuous spectrura; (A2, £;) depend on the indeg, 13(A3, ¢p). Thus,A ¢ I3 (A%, ¢p). This completes

the spectrum itself does not dependmnAlso, for all p, the proof.
where 1< p < =, the residual spectrumr(Aab,ép) is (i) By definition, the continuous spectrum of the bounded

empty. linear operatorA on the Banach spacg, consists of
12 (A3, ¢p). Then

3. Further Results I, (Aab,ép) A (Aab, ép)

In this section, we investi%ate the fine structure of the ={AeC:]A-a=[b}\H.W
spectrum of the operatoh®®, with respect to the other . o )
classification schemes. Firstly, we give the following  Although, the results in Theorei(i)-(ii) give a finer

lemma which is needed in the proof of the next theorem. Subclassification of the point spectrum, the two parts
13(A3, £) and 113(A%, ¢p) cannot be determined

Lemma 1.[27] If T is a bounded linear operator on a separately in general. In some special cases, one can
normed space X into a normed space Y, then T has a densketermine these parts separately.

range in'Y if and only if T*) ! exists.
g yitTs) Theorem 8.The following statements hold :

We note that, for the operatdx®: /, — ¢, we have (i) Oap(A, £p) ={A € C:[A —a| < |b]} UE,
(") Uco (Aab, Zp) = EU Kp,
1 (2%,65) =111z (2%,05) = 2, (i) 05 (A%, 1) =

since AeC:A—al <|b]}UE] \Is(A%®, ¢,),
 (2%) . [{A € C: A —al < bl UE] \Is (A%, 4p)
where E is given as in6j, and K, and H are given in

Also, IZ(Aab’ ZP) = @, by the closed graph theorem. Theorend and Remarl2, respectively.

Next, we calculate I3(A%,0p),112(A%, ¢p),

13 (A3, £5) andlll 3 (A, £p). Proof. (i) Since the equality
Theorem7. For 1 < p < o, the parts, gun (A 7Y — g (p2d g M+ (A2
I3 (A%, 0p) 12 (A%, £p), 3 (A%, 2p) and ap( ’ p) ( ’ p) \ 1( ’ p)
3 (Aab,bép) are givenbas follows: hold, and
H ai ai
(i) 13(2%,05) Ull5 (A3, 2p) |||1(Aab7£p):®7
= O-D(Aabv ép)\o-p(Aab*véz) then
—{AeC:|A—al < [bl}U(H\Kp), aap(mb, ep) —0 (Aab, ep) :
(ii) 1 3 (A% £p) = 0p(A%P*, ) = EUKp, This completes the proof.
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(ii) Follows immediately from Propositioh and Theorem
4,
(i) Since

0 (Aab, zp) —0 (Aab, ép) \ I3 (Aab,ep) ,

then, the required result follows from Theor&rll

4. The eigenvalue problem associated with
the infinite matrix A2

Consider a linear operatdr: X — X that maps a Banach

spaceX into itself. The standard eigenvalue problem

involves finding the nontrivial solutions of the equation
TXx=AX

with A € C an eigenvalues € X andx # 6 an eigenvector.
The standard eigenvalue problem can also be written as

(T-AD)x=8

with | the identity operator oiX.
Now, consider the eigenvalue problem

Ay = ) x,
whereA € C andx = (x) € £p. Then
A (%) = (A + bioXier 1) = A (X) - )

We obtain the following system of equations

aoXo + box1 = AXo,
arxy +bixo = Axq,
arxXo + boXz = Axo

Xk + DX 1 = A Xk

If A is in the resolvent set of2®, thenEq. (7) has only
the trivial solution, considered ifi,. If A is in the point
spectrumop (A3, £,), thenEg. (7) has nontrivial solution
X € Lp. The residual spectrunw; (A ¢p), is empty
(Theorenmb). If A € ac(Aab,ép), the continuous spectrum
of A%, thenEq, (7) has no solutionx € Lp, wherex # 6.
However in this case;q. (7) may have nonzero solutions
which are not irvp.

It may be helpful to provide the following example.

Example 1. Le\® = (cjj), i, ] = 0,1,2,..., be an infinite
matrix defined byic= a;, Cjj+1=Dh and Gj = O for all
i#jand j#i+1 whereg=4by=1 a =—-1and
by = (k+1)/k, for all k> 1. Then limoax =a=—1
and lim_., by = b= 1. By using the results in Section 2
we can calculate, fol < p < o, that

o (£%,05) = ap (2%,0,)

={deC:]A+1<1}u{4}.

Also,
o (Aab,ep) — 0c (Aab,gp) _

In this example, we observe that all spectral values are
eigenvalues. That is, the eigenvalue probléf) (where
A € Cand xe ¢p, has nontrivial solutions for alh € {A €
C: A +1] <1}uU{4} and it has only the trivial solution
forall {A e C:|A +1] > 1}\{4}.

For p=1, we can calculate that

(A 1) = {A eC:|A+1] <1}U{4},
Op(A 01) = {AEC|A+H<1MHQ
0 (A%, 4y) =

Oo(A% 01) = {)\ eC:A+1] =11,

In this case, Eq.(7) has nontrivial solutions for all
Ae{AeC:|A+1 <1}u{4}, it has only the trivial
solution for allA € {A e C: A +1| > 1} \ {4} and it
has no solutions ifi; forall A € {A e C: |A +1| = 1}.

5. Conclusion and future work

The fine structure of spectra of the operate?® over the
sequence spacép, where 1< p < o, have been
investigated. Moreover, application to the eigenvalue
problem has been explained. There are other papers
devoted to this problem (see, for examp4,R5]). But,

the new results in this paper cover a wider class of linear
operators which are represented by infinite upper
triangular double-band matrices over the sequence space
Lp.

P The fine structure of spectra of many other operators,
which are represented by matrices, remain to be studied.
For example, the fine structure of the spectrum of the
upper and lower triangular triple-band matrices have been
studied in some special casd2[13]. We intend to study
such kind of operators in more general forms by using
new techniques.

Acknowledgements

The authors would like to acknowledge the tireless efforts
contributed by the editor and reviewers for their careful
reading and making some useful comments which
improved the presentation of the paper.

References

[1] A. M. Akhmedov, F. BasafThe fine spectra of the difference
operator A over the sequence space,byl < p < «), Acta
Math. Sin. (Engl. Ser.) 23 (10) (2007), 1757-1768.

[2] A. M. Akhmedoy, S. R. El-Shabrawypn the fine spectrum
of the operatorA 4, over the sequence space @omput.
Math. Appl. 61(10) (2011), 2994-3002.

(@© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 3, 1161-1167 (2016ww.naturalspublishing.com/Journals.asp

1167

N SS ¥

[8] A. M. Akhmedov, S. R. El-ShabrawyNotes on the fine
spectrum of the operatof\,, over the sequence spack
Fractional Calc. & Appl. 3 (14) (S) (2012), 1-7.

[4] A. M. Akhmedov, S. R. EI-ShabrawySome spectral
properties of the generalized difference operatdyy,
European J. Pure Appl. Math. 5 (1) (2012), 59-74.

[5] A. M. Akhmedov, S. R. EI-Shabrawijotes on the spectrum
of lower triangular double-band matrice$hai J. Math. 10
(2) (2012), 415-421.

[6] A. M. Akhmedov, S. R. El-ShabrawySpectra and fine
spectra of lower triangular double-band matrices as
operators on’p, (1 < p < ), Accepted manuscript, Math.
Slovaca.

[7] B. Altay, F. Basar,On the fine spectrum of the difference
operator A on ¢ and ¢ Inform. Sci. 168 (2004), 217-224.

[8] B. Altay, F. BasarOn the fine spectrum of the generalized
difference operator B,s) over the sequence spacgsand
¢, Int. J. Math. Math. Sci. 18 (2005), 3005-3013.

[9] M. Altun, Fine spectra of tridiagonal symmetric matrices
Int. J. Math. Math. Sci. 2011, Art. ID 161209, 10 pp.

[10] F. Basarsummability Theory and Its ApplicatiarBentham
Science Publishers, Istanbul (2012).

[11] H. Bilgi¢, H. Furkan,On the fine spectrum of the generalized
difference operator B,s) over the sequence spacgsand
bvp, (1 < p < =), Nonlinear Anal. 68 (2008), 499-506.

[12] H. Furkan, H. Bilgi¢, B. Altay,On the fine spectrum of the
operator Br,s,t) over ¢ and ¢ Comput. Math. Appl. 53
(2007), 989-998.

[13] H. Furkan, H. Bilgi¢, F. BasarOn the fine spectrum of
the operator Br,s,t) over the sequence spacgsand by,
(1< p< o), Comput. Math. Appl. 60 (2010), 2141-2152.

[14] S. R. EI-ShabrawyOn the spectrum of the operatdr, over
the spacép, (1 < p < »), Baku Univ. News J., Phys. Math.
Sci. Ser. 3 (2011) 55-64.

[15] S. R. EI-ShabramySpectra and fine spectra of certain lower
triangular double-band matrices as operators @i &. Ineq.
Appl. 241 (2014), 9 pp.

[16] P. D. Srivastava, S. Kumafn the fine spectrum of the
generalized difference operatdxy over the sequence space
Co. Commun. Math. Anal. 6 (1) (2009), 8-21.

[17] P. D. Srivastava, S. Kumdfjne spectrum of the generalized
difference operator\y on sequence spade, Thai J. Math.

8 (2) (2010), 221-233.

[18] B. E. Rhoades, M. YildirnrmSpectra and fine spectra for
factorable matricesintegr. Equ. Oper. Theory 53 (2005),
127-144.

[19] B. E. Rhoades, M. YildirinSpectra for factorable matrices
on/p, Integr. Equ. Oper. Theory 55 (2006), 111-126.

[20] M. Yildinm, On the spectrum and fine spectrum of the

compact Rhaly operatordndian J. Pure Appl. Math. 27
(1996), 779-784.

[21] V. Karakaya, M. Altun,Fine spectra of upper triangular
double-band matrices). Comput. Appl. Math. 234 (2010),
1387-1394.

[22] E. Dundar, F. BasarOn the fine spectrum of the upper
triangle double band matrix\™ on the sequence spacg ¢
Math. Commun. 18 (2013), 337-348.

[23]J. Fathi, R. LashkaripourOn the fine spectrum of
generalized upper double-band matricgs"’ over the
sequence spadg, Math. Vesnik 65 (1) (2013), 64-73.

[24] A. Karaisa,Fine spectra of upper triangular double-band
matrices over the sequence spdge(1 < p < «), Discrete
Dyn. Nat. Soc, 2012, Art. ID 381069, 19 pp.

[25] A. Karaisa, Spectrum and fine spectrum of generalized
difference operator over the sequence spéagceMath. Sci.
Lett. 3 (2014), 215-221.

[26] M. H. Stone,Linear Transformations in Hilbert Space and
Their Applications to AnalysjsAmerican Mathematical
Society, New York, 1932.

[27] A.E. Taylor, C. J. A. Halberg, JiGeneral theorems about a
bounded linear operator and its conjugatk Reine Angew.
Math. 198 (1957), 93-111.

[28] A. E. Taylor, Introduction to Functional AnalysjsJohn
Wiley & Sons, Inc., New York, 1958.

[29] J. Appell, E. De Pascale, A. VignolNonlinear Spectral
Theory de Gruyter Series in Nonlinear Analysis and
Applications 10, Walter de Gruyter, Berlin, 2004.

Saad R. El-Shabrawy

has obtained his B.Sc.
and M.Sc. from Mansoura
University (Damietta

Branch), Faculty of Science,
New Damietta, Egypt, in
2002 and 2007, respectively.
He has obtained his PhD
from Baku State University,
Mechanics and Mathematics
Faculty, Baku, Azerbaijan in 2012. His research interests
include Functional Analysis and Topology.

Suad H. Abu Janah

has obtained her B.Sc.
and M.Sc. from Al-Mergib
University, Faculty of

Science, Al-khoms, Libya in
1998 and 2006, respectively.
She is working toward the
Ph.D. at Damietta University,
New Damietta, Egypt.
Her research interests include

Functional Analysis.

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	Introduction and preliminaries
	Main results
	Further Results
	The eigenvalue problem associated with the infinite matrix ab
	Conclusion and future work

