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Abstract: In this paper, we introduce the notion of a partiallyα−contractive self mapping and prove the existence and uniqueness of
a fixed point for such mapping. Our results improve and generalize many results in S-metric spaces,
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1 Introduction

The existence and uniqueness of fixed point for a self
mapping was first introduced by Banach on a metric
space. That was the starting point for many research work
on this topic. Under different contraction principle and
different types of metric space, such as partial metric
space, and b-metric space,see [[3]-[19]]. In this article,
we work in partial S-metric space.

The existence and uniqueness of a fixed point for a
self mapping on different types of metric spaces were the
main topic for many research papers [[2]-[18]]. The
notion ofS-metric space was introduced by Sedghi [4]. A
generalization ofS-metric space was given by Nabil in
[1], where he introduced partialS-metric spaces.
Moreover, he proved the existence of a fixed point for a
self mapping in partialS-metric space. In this paper, we
generalize the results in [1] by adding a control function
to the contraction principle, which makes the results in
[1] a direct consequences of our theorems.

Before proceeding to the main results, we set forth
some definitions that will be used in the sequel.

Definition 1. [5] Let X be a nonempty set andp : X ×
X −→ [0,+∞). We say that(X, p) is apartial metric space
if for all x,y,z∈ X we have:

1.x= y if and only if p(x,y) = p(x,x) = p(y,y);
2.p(x,x) ≤ p(x,y);
3.p(x,y) = p(y,x);
4.p(x,z) ≤ p(x,y)+ p(y,z)− p(y,y).

Definition 2. [4] Let X be a nonempty set. AnS-metric
spaceon X is a functionS : X3 → [0,∞) that satisfies the
following conditions, for allx,y,z,a∈ X :

–S(x;y;z)≥ 0,

–S(x;y;z) = 0 if and only ifx= y= z,

–S(x;y;z)≤ S(x;x;a)+S(y;y;a)+S(z;z;a).

The pair(X;S) is called anS-metric space.

Next, we give the definition of partial S-metric space.

Definition 3. [1] Let X be a nonempty set. Apartial
S-metric spaceon X is a functionSp : X3 → [0,∞) that
satisfies the following conditions, for allx,y,z, t ∈ X :
(i) x= y if and only if Sp(x,x,x) = Sp(y,y,y) = Sp(x,x,y)
(ii)Sp(x,y,z) ≤
Sp(x,x, t)+Sp(y,y, t)+Sp(z,z, t)−Sp(t, t, t)
(iii) Sp(x,x,x) ≤ Sp(x,y,z)
(iv)Sp(x,x,y) = Sp(y,y,x).

The pair(X,Sp) is called a partial S-metric space.

Definition 4. A sequence{xn}∞
n=0 of elements in(X,Sp)

is called p-Cauchy if the limit limn,m→∞ Sp(xn,xn,xm)
exists and finite. The partial S-metric space(X,Sp) is
called completeif for each p-Cauchy sequence{xn}∞

n=0
there exists z ∈ X such that
Sp(z,z,z) = limnSp(z,z,xn) = limn,mSp(xn,xn,xm).
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Moreover,(X,Sp) is a complete partial S-metric space
if and only if (X,Ss

p) is a complete S-metric space. A
sequence{xn}n in a partial S-metric space(X,Sp) is
called 0-Cauchy if lim n,m→∞ Sp(xn,xn,xm) = 0. We say
that (X,Sp) is 0-complete if every 0-Cauchy in X
converges to a pointx∈ X such thatSp(x,x,x) = 0.

One can easily construct an example of a partial
S-metric space by using the ordinary partial metric space.

Example 1. [1] Let X = [0,∞) and p be the ordinary
partial metric space onX. Define the mapping onX3 to be
Sp(x,y,z) = p(x,z) + p(y,z). Then Sp defines a partial
S-metric space.

Definition 5. Let (X,Sp) be a partial S-metric space and
T : X −→ X be a given mapping. We say thatT is partially
α−contractiveif there exists a constantk ∈ [0,1) and a
function α : X ×X −→ [0,+∞) such that for allx,y ∈ X
we have

α(x,y)Sp(Tx,Tx,Ty)≤ max{kSp(x,x,y),Sp(x,x,x),Sp(y,y,y)}.
(1)

Definition 6. Let (X,Sp) be a partial S-metric space and
T : X −→ X be a given mapping. We say thatT is
Rα−admissible if x,y ∈ X, α(x,y) ≥ 1 implies that
α(x,Ty) ≥ 1. Also, we say thatT is α−admissibleif
x,y∈ X, α(x,y)≥ 1 implies thatα(Tx,Ty)≥ 1.

Example 2.Let X = [0,+∞). DefineT : X −→ X by Tx=√
x andα : X×X −→ X by

α(x,y) =

{
ex−y if x≥ y
0 if x< y.

It is easy to see thatT is α−admissible and
Rα−admissible.

Now, set

ρSp(α) := inf{Sp(x,x,y) | x,y∈X : α(x,y)≥ 1}= inf{Sp(x,x,x) | x∈X : α(x,x)≥ 1},

XSp(α) = {x∈ X | Sp(x,x,x) = ρSp(α)},

ZSp(α) = {x∈ XSp | α(x,x) ≥ 1}.

2 Main Result

In this section, we prove the existence of a fixed point in
partial S-metric space. We prove relevant corollary. This
next theorem is considered to be our main result.

Theorem 1.Let (X,Sp) be a complete partial S-metric
space, T be a self mapping on X and assume that T is
partially α−contractive. If T is α−admissible and
Rα−admissible and if XSp(α) is nonempty, then ZSp(α) is
nonempty. Also, assume that there exists x0 ∈ X such that
α(x0,x0)≥ 1 then:

1.The set ZSp(α) is nonempty;
2.There exists a∈ ZSp(α) such that Ta= a.

Moreover, if for all u,v in ZSp(α) with the property Tu= u
and Tv= v we haveα(u,v)≥ 1, then T has a unique fixed
point in ZSp(α).

Proof.Let x0 ∈ X such that α(x0,x0) ≥ 1. Define a
sequence {xn} for all n ≥ 0 in X such that
x1 = Tx0,x2 = Tx1, · · · ,xn+1 = Txn, · · · . Since T is
Rα−admissible and α−admissible, we have
α(x0,x1) = α(x0,Tx0) ≥ 1 and hence
α(x1,x2) = α(Tx0,Tx1) ≥ 1. So, by induction onn we
get

α(xn,xn+1)≥ 1,

for all n≥ 0. Also, sinceT is Rα−admissible;α(x0,x0)≥
1 impliesα(x0,x1) = α(x0,Tx0) ≥ 1. By induction onn,
we also conclude that

α(x0,xn)≥ 1

for all n ≥ 0. Also, given the fact thatT is α-admissible
andα(x0,x0) ≥ 1, it not difficult to see thatα(xn,xn) ≥ 1
for all n≥ 0. Hence,

Sp(x1,x1,x1) =Sp(Tx0,Tx0,Tx0)

≤α(x0,x0)Sp(Tx0,Tx0,Tx0)

≤max{kSp(x0,x0,x0),Sp(x0,x0,x0)}
=Sp(x0,x0,x0).

By induction we obtain:

Sp(xn+1,xn+1,xn+1)≤ Sp(xn,xn,xn).

Therefore, {Sp(xn,xn,xn)}{n≥0} is a nonincreasing
sequence. Define

r0 := lim
n

Sp(xn,xn,xn) = inf
n

Sp(xn,xn,xn)≥ 0

and

M0 :=
2

1− k
Sp(x0,x0,x1)+Sp(x0,x0,x0).

Next, we need to show thatSp(x0,x0,xn) ≤ M0, for
anyn≥ 0. If n= 0; the case is trivial. Forn= 1 and using
the fact that k ∈ [0,1) we deduce that

Sp(x0,x0,x1) ≤ 2
1− k

Sp(x0,x0,x1) ≤
2

1− k
Sp(x0,x0,x1) + Sp(x0,x0,x0) = M0. So, we may

assume that is true for alln ≤ n0 − 1 and prove it for
n= n0 ≥ 2.

Sp(x0,x0,xn0)

≤ Sp(x0,x0,x1)+Sp(x0,x0,x1)+Sp(xn0 ,xn0 ,x1)−Sp(x1,x1,x1)

≤ 2Sp(x0,x0,x1)+Sp(x1,x1,xn0)

≤ 2Sp(x0,x0,x1)+α(x0,xn0−1)Sp(Tx0,Tx0,Txn0−1)

≤ 2Sp(x0,x0,x1)+max{kSp(x0,x0,xn0−1),Sp(x0,x0,x0),Sp(xn0−1,xn0−1,xn0−1)}
≤ 2Sp(x0,x0,x1)+max{kSp(x0,x0,xn0−1),Sp(x0,x0,x0)}.
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Also, by induction assumption, we have
Sp(x0,x0,xn0−1) ≤ 2

1−kSp(x0,x0,x1) + Sp(x0,x0,x0). So,
we have

Sp(x0,x0,xn0)≤ 2Sp(x0,x0,x1)+

max{ 2k
1−k

Sp(x0,x0,x1)+kSp(x0,x0,x0),Sp(x0,x0,x0)}

≤ 2Sp(x0,x0,x1)+
2k

1−k
Sp(x0,x0,x1)+Sp(x0,x0,x0)

=
2

1−k
Sp(x0,x0,x1)+Sp(x0,x0,x0) = M0.

Hence, by induction we conclude thatSp(x0,x0,xn) ≤
M0. Next, we need to show that

lim
n,m

Sp(xn,xn,xm) = r0.

For alln,mwe haveSp(xn,xn,xm)≥Sp(xn,xn,xn)≥ r0. Let
ε > 0 find a natural numbern0 such thatSp(xn0,xn0,xn0)<
r0+ε and 2M0kn0 < r0+ε. Now for anyn,m≥ 2n0, since
T is Rα−admissible and using the fact thatα(xn,xn+1)≥ 1
we deduce thatα(xn,xm)≥ 1. Hence,

Sp(xn,xn,xm)

≤ α(xn,xm)Sp(xn,xn,xm)

≤ max{kSp(xn−1,xn−1,xm−1),Sp(xn−1,xn−1,xn−1),Sp(xm−1,xm−1,xm−1)}
≤ max{k2Sp(xn−2,xn−2,xm−2),Sp(xn−2,xn−2,xn−2),Sp(xm−2,xm−2,xm−2)}
≤ ·· · ≤ max{kn0Sp(xn−n0 ,xn−n0 ,xm−n0 ),Sp(xn−n0 ,xn−n0 ,xn−n0),

Sp(xm−n0 ,xm−n0 ,xm−n0)}
≤ r0+ ε .

Hence,
lim
n,m

Sp(xn,xn,xm) = r0.

Since (X, p) is a complete partial S-metric space; there
existsx̃∈ X such that

r0 = Sp(x̃, x̃, x̃) = lim
n

Sp(x̃, x̃,xn) = lim
n,m

Sp(xn,xn,xm).

Next, we show thatSp(x̃, x̃, x̃) = Sp(x̃, x̃,Tx̃). For each
natural numbern we have

Sp(x̃, x̃,Tx̃)≤ 2Sp(x̃, x̃,xn)−Sp(xn,xn,xn)+Sp(Tx̃,Tx̃,xn).

Using the property thatT is α−contractive we deduce that
there exists a subsequence of natural numbers{nl} such
that

Sp(Tx̃,Tx̃,xnl )

≤ α(x̃,xnl−1)Sp(Tx̃,Tx̃,xnl )

≤ max{kSp(x̃, x̃,xnl−1),Sp(x̃, x̃, x̃),Sp(xnl−1,xnl−1,xnl−1)}.

So, for l ≥ 1, we have either
Sp(Tx̃,Tx̃,xnl ) ≤ kSp(x̃, x̃,xnl−1) or less than or equal
Sp(x̃, x̃, x̃) or less than or equalSp(xnl−1,xnl−1,xnl−1).
In all of these three cases, if we take the limit asl goes
toward∞ we getSp(x̃, x̃,Tx̃) ≤ Sp(x̃, x̃, x̃). But, we know
by the property(ii) of the partial S-metric space definition
that Sp(x̃, x̃, x̃) ≤ Sp(x̃, x̃,Tx̃). Therefore,

Sp(x̃, x̃, x̃) = Sp(x̃, x̃,Tx̃).

Now, we show thatXSp(α) is nonempty. For each
natural numberl pick xl ∈ X with α(xl ,xl ) ≥ 1 and
Sp(xl ,xl ,xl )< ρSp(α)+ 1

l and show that

lim
n,m

Sp(x̃n, x̃n, x̃m) = ρSp(α).

Let ε > 0 put n0 := ( 3
ε(1−k) )+ 1 if l ≥ n0 then we have:

ρSp(α) ≤ Sp(x̃l , x̃l ,Tx̃l ) ≤ Sp(x̃l , x̃l ,Tx̃l ) ≤ rxl ≤
Sp(x̃l , x̃l ,Tx̃l ) < ρSp(α) + 1

l ≤ ρSp(α) + 1
n0

<

ρSp(α)+ ε(1−k)
3 . Hence, we deduce that:

Ul := Sp(x̃l , x̃l , x̃l )−Sp(Tx̃l ,Tx̃l ,Tx̃l )<
ε(1− k)

3
,

for i ≥ n0. Also, if l ≥ n0, then
Sp(x̃l , x̃l , x̃l ) = rxl ≤ Sp(xl ,xl ,xl ) < ρSp(α) + 1

n0
. Which

implies Sp(x̃l , x̃l , x̃l ) ≤ ρSp(α) + ε(1−k)
3 for all l ≥ n0.

Now, if n,m≥ n0, thenSp(x̃n, x̃n, x̃m)≤ 2Sp(x̃n, x̃n,Tx̃n)+
Sp(Tx̃n,Tx̃n,Tx̃m) + 2Sp(Tx̃m,Tx̃m, x̃m) −
Sp(Tx̃n,Tx̃n,Tx̃n)−Sp(Tx̃m,Tx̃m,Tx̃m).

We know thatSp(x̃, x̃, x̃) = Sp(x̃, x̃,Tx̃) which implies:

Sp(x̃n, x̃n, x̃m)

≤Un+Um+α(x̃n, x̃m)Sp(Tx̃n,Tx̃n,Tx̃m)

≤ Sp(x̃n, x̃n, x̃m)≤Un+Um+Sp(Tx̃n,Tx̃n,Tx̃m)

<Un+Um+max{kSp(x̃n, x̃n, x̃m),Sp(x̃n, x̃n, x̃n),Sp(x̃m, x̃m, x̃m)}.

Hence,
ρSp(α)≤ Sp(x̃n, x̃n, x̃m)

≤max{2
3

ε,
2
3

ε(1−k)+Sp(x̃n, x̃n, x̃n),
2
3

ε(1−k)+Sp(x̃m, x̃m, x̃m)}

≤ max{2
3

ε,ρSp(α)+ ε(1− k)}< ρSp(α)+ ε.

Thus,
lim
n,m

Sp(x̃n, x̃n, x̃m) = ρSp(α).

Since(X,Sp) is complete there existsa∈ X such that,

Sp(a,a,a) = lim
n

Sp(a,a, x̃n) = lim
n,m

Sp(x̃n, x̃n, x̃m) = ρSp(α).

Therefore, we conclude thata ∈ XSp(α) and thusXSp(α)
is nonempty. Therefore,ZSp(α) is nonempty.

Now, let x0 ∈ ZSp(α) be arbitrary. Then by the above
argument we have

ρSp(α)≤Sp(Tx̃,Tx̃,Tx̃)≤Sp(x̃, x̃,Tx̃)=Sp(x̃, x̃, x̃)= r0= ρSp(α).

Thus,Tx̃ = x̃, Now, assume thatT has two fixed points
in ZSp(α) sayu andv. By our hypothesis, we know that
α(u,v)≥ 1. Thus,

Sp(u,u,v) = Sp(Tu,Tu,Tv)≤ α(u,v)Sp(Tu,Tu,Tv)

≤ max{kSp(u,u,v),Sp(u,u,u),Sp(v,v,v)}.
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Now, if Sp(u,u,v) ≤ kSp(u,u,v) we deduce that
Sp(u,u,v) = 0 and in this case u = v, or
Sp(u,u,v) ≤ Sp(u,u,u) = Sp(v,v,v) and in this case by
condition (ii) of the definition of the partial S-metric
space we obtainSp(u,u,v) = Sp(u,u,u) = Sp(v,v,v) and
hence by condition(i) of the same definition we conclude
that u = v. Therefore, we obtain the uniqueness as
desired.

As a consequence of the above result, the following
corollary follows easily.

Corollary 1.Let (X,Sp) be a0-complete partial S-metric
space, k∈ [0,1) and consider the map T: X −→ X to be
α-admissible and Rα -admissible,and there exists x0 ∈ X
such thatα(x0,x0) ≥ 1, also for every x,y ∈ X we have
α(x,y)Sp(Tx,Tx,Ty) ≤ kSp(x,x,y). Then there exists̃x ∈
X such that T̃x= x̃.

Proof.Using the same technique and notation in the proof
of Theorem 1, we deduce that
Sp(xn,xn,xn) ≤ α(xn,xn)Sp(xn,xn,xn) ≤ knSp(x0,x0,x0).
Thus,

r0 =Sp(x̃, x̃, x̃)= limnSp(x̃, x̃,xn)= limn,mSp(xn,xn,xm)= 0.

This implies that Sp(x̃, x̃, x̃) = 0. Since
Sp(x̃, x̃, x̃) = Sp(x̃, x̃,Tx̃) = 0, we havẽx= Tx̃ as required.

In closing, we change the contraction principle in
Theorem1, to show that there exist a unique fixed point in
the whole spaceX.

Theorem 2.Let (X,Sp) be a complete partial S-metric
space, k∈ [0,1) and assume the there exists x0 ∈ X such
that α(x0,x0) ≥ 1. Consider the map T: X −→ X to be
α−admissible and Rα−admissible. Assume that for every
x,y∈ X we have

α(x,y)Sp(Tx,Tx,Ty)≤ max{kSp(x,x,y),
Sp(x,x,x)+Sp(y,y,y)

2
},

(2)
then there exists a unique u∈ X such that Tu= u.

Proof.Note that, for everyx,y∈ X we have:

α(x,y)Sp(Tx,Tx,Ty)≤ max{kSp(x,x,y),
Sp(x,x,x)+Sp(y,y,y)

2
}

≤ max{kSp(x,x,y),Sp(x,x,x),Sp(y,y,y)}.

Thus, all the conditions of Theorem1 are satisfied. Hence,
there existsu ∈ X such thatTu = u. Assume that there
exists two fixed pointsu,v∈X for T such thatα(u,v)≥ 1.
Hence,

Sp(u,u,v) = Sp(Tu,Tu,Tv)≤ α(u,v)Sp(Tu,Tu,Tv)

≤ max{kSp(u,u,v),
Sp(u,u,u)+Sp(v,v,v)

2
}.

Thus, we either haveSp(u,u,v) ≤ kSp(u,u,v) which
implies that Sp(u,u,v) = 0 and henceu = v, or
0 = 2Sp(u,u,v) − Sp(u,u,u) − Sp(v,v,v) which also
implies thatu= v as desired.

Example 3.Let (X,Sp) be a partial S-metric space, where
X = [0,1]∪ [2,3] and the partial S-metric spaceSp : X3 −→
[0,+∞) is defined by

Sp(x,y,z) =

{
‖max{x,y}− z‖ if {x,y,z}∩ [2,3] 6= /0
|x− y− z| if {x,y,z} ⊂ [0,1].

Define the functionsT : X −→ X andα : X×X −→ [0,∞)

as followsTx=
x+1

2
if 0 ≤ x≤1, T2= 1, andTx=

x+2
2

if 2 < x≤ 3,

α(x,y) =

{
ex−y if x≥ y
0 if x< y.

It is easy to see thatT is α−admissible and
Rα−admissible. Note that, we can always pick ourx, y
and z such that max{x,y} > z. Also T is an increasing
function. So, for everyx≥ y∈ X we have:

Sp(Tx,Tx,Ty)≤ α(x,y)Sp(Tx,Tx,Ty)≤ 1
2

Sp(x,x,y), if

x,y∈ [0,1],

and
Sp(Tx,Tx,Ty)≤ α(x,y)Sp(Tx,Tx,Ty)

≤ Sp(x,x,x)+Sp(y,y,y)
2

, {x,y}∩ [2,3] 6= /0.

One can verify that the functionT in this example
satisfies the conditions of Theorem2 and the unique fixed
point will be 1.

3 Conclusion

In closing, the author would like to bring to the reader’s
attention the possibility of obtaining the same result of
Theorem 2.1 by changing the hypothesis whereT is
partially α-contractive with the following contraction
principleα(x,y)Sp(Tx,Tx,Ty) ≤ ψ(Sp(x,x,y)), whereψ
is a self-function on(0,∞).
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