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Abstract: In this work, an estimation to study the reflection of p-walyave and SV-wave on the boundary of a fibre-reinforced
half-space of homogeneous, isotropic thermoelastic mediuder effect of the relaxation times, magnetic field andtioh were taken
into our consideration the boundary was stress-free asagdtisulatedGL model of generalized thermoelasticity which was known as
the theory of thermoelasticity with two relaxation timestlwe theory of temperature-rate dependent thermoelstias been applied
to obtain the amplitudes of the reflection coefficients. Lametentials were used in the two dimensions oxz that tersparate the
governing equations into three equations that sought imbaic travelling form. We estimated the equation of the giies of p-wave,
T-wave and SV-wave. The boundary conditions for the medadm@ind Maxwell’s stresses and the thermal insulated atdbadary
are applied to determine the reflection coefficients of tingitmidinal p-wave and thermal T-wave as well as the trasgverve SV-
and conclude them some special cases. Will arrive at thétsesfithe research proposal consistent with the classidteed he results
obtained are calculated numerically by taking an approprizetal and presented graphically.

Keywords: Magnetic field, Rotation, Reflection, Half Space, p- wavewdve, SV- wave, Relaxation Times, Isothermal Boundaries,
Thermal insulated, fibre-reinforced.

ﬁ is the perturbed magnetic field vector,
Nomenclature hi  is the components of heat flux tensor,
ﬁ is the magnetic field vector,
a,B, (u—pr)  are reinforced anisotropic elastic, Ho is the constant magnetic field,
ai, Az are the coefficient of thermal expansion, J is the electric current density vector,
gj is Kronecker delta, K is the thermal conductivity,
k is the wave number,
y=(2A +3a+4ur+B)ar+ A +a)az s the sothermal,
) T  isthe absolute temperature of the medium,
A, pr are elastic parameters, To is the natural temperature of the medium,
He IS the magnetic permeability, u;  are the components of the displacement vector,
p is the density, v isthe phase speed.
Gij are the components of the stress vector,
To, T are the thermal relaxation times,
Tij are the Maxwells stress tensor, .
13 is the frequency, 1 Introduction
14 is the standard length,
Q isth | locity, . .
3 S the angd a;_vé (;C'tyt_ . During the second half of twentieth century,
is the magnetic induction vector, - .
C is the specific heat per unit mass, nomsothgrmal problgms of thg 'theory of elast|C|ty
aj are the strain components, became increasingly impact. This is due mainly to their
F is the Lorens body forces, vector, many applications in widely diverse fields. First, in the
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nuclear field, the external high temperatures andinvestigated an isotropic linear thermoelasticity with
temperature gradients originating inside nuclear reactor hydrostatic initial stress. A survey article of represéaea
influence their design and operations. Secondly, the highiheories in the range of generalized thermoelasticity is
velocities of modern aircraft give rise to aerodynamic due to [L6]. Three-dimensional thermal shock problem of
heating, which produces intense thermal stressesgeneralized thermoelastic half-space was discussed by
reducing the strength of the aircraft structure. There is[11]. [27] studied a three-dimensional thermoelastic
also many of uses and applications in various fields, inproblem for a half-space without energy dissipation.
particular, structures, biology, geology, geophysics,Investigation of the dynamic problem concerning the
acoustics, physics, plasma, etc. The theory of elasticityinteractions among electromagnetic field, temperature,
with nonuniform heat which was in half-space subjectedstress and strain in a thermoelastic solid is immensely
of thermal shock in this context which known as the important because of its extensive uses in diverse fields.
theory of uncoupled thermoelasticity and the temperaturelhe theory of magneto-thermoelasticity which deals the
is governed by a parabolic partial differential equation ininteractions  among  strain,  temperature  and
temperature term only has been discussed &y [[6] electromagnetic fields has drawn the attention of many
introduced the theory of classical thermoelasticity. At researchers because of its extensive uses in diverse fields,
present, there are two different theories of the geneidlize such as Geophysics for understanding the effect of the
thermoelasticity, the first was developed biQ who Earth’s magnetic field on seismic waves, damping of
obtained a wave-type heat conduction by postulating aacoustic waves in a magnetic field, emission of
new law of heat conduction to replace the classicalelectromagnetic radiations from nuclear devices,
Fourier’s law. This new law contains the heat flux vector development of a highly sensitive superconducting
as well as its time derivative. It contains also a newmagnetometer, electrical power engineering, optics, etc.
constant that acts as a relaxation time. The secondreat attention has been devoted to the study of
generalization to the coupled theory of thermoelastigty i electromagneto-thermoelastic coupled problems based on
known as the theory of thermoelasticity with two the generalized thermoelastic theories. The generalized
relaxation times or the theory of magneto-thermoelasticity in a perfectly conducting
temperature-rate-dependent thermoelasticity developethedium is investigated bylP]. Some researchers in past
by [12]. This theory contains two constants that act ashave investigated different problem of rotating media.
relaxation times and modifies all the equations of the[23] investigated plane waves in generalized
coupled theory not the heat conduction equation only. Thehermoelasticity with two relaxation time under the effect
two theories both ensure finite speeds of propagation foof rotation. The effect of rotation on generalized
heat wave. 21] investigated the dynamic problems of micropolarthermoelasticity for a half-space under five
thermoelasticity. Theory of thermoelasticity with theories was discussed 4. [4] discussed the effect of
applications was introduced by23]. Among the rotation due to various sources at the interface of elastic
theoretical contributions to the subject are the proofs ofhalf space and generalized thermoelastic half spdgde. [
unigueness theorems under different conditions has beepresented the effect of rotation in a generalized
introduced by . Dhaliwal and Sherief7,18]. [7] studied thermoelastic medium with two temperature under the
the theory of generalized thermoelasticity with one influence of gravity. 26] presented the effect of rotation
relaxation time for anisotropic media. In this theory a on 2-d thermal shock problems for a generalized
modified law of heat conduction including both the heat magneto-thermoelasticity half-space under three thgorie
flux and its time derivative replaces the conventional[3] studied the effect of hydrostatic initial stress and
Fourier's law. The heat equation associated with thisrotation in Green-Naghdi (Type Ill) thermoelastic
theory is a hyperbolic one and hence automaticallyhalf-space with two temperature. Such type of problems
eliminates the paradox of infinite speeds of propagationin a rotating medium are very important in many
inherent in both the uncoupled and the coupled theories oflynamical systems. 2p discussed the reflection of
thermoelasticity. 13,14,15] proposed three new magneto-thermoelastic waves with two relaxation times
thermoelastic theories based on entropy equality than thand temperature dependent elast®} jnhvestigated the
usual entropy inequality. The constitutive assumption forreflection of generalized thermoelastic waves from
the heat flux vector are different in each theory. Thus theyisothermal and insulated boundaries of a half spatie. [
obtained three theories which are called thermoelasticitypointed out the influence of magnetic field and
of type |, thermoelasticity of type Il and thermoelasticity hydrostatic initial stress on reflection phenomena of P-
of type Ill. When type | theory is linearized we obtain the and SV-waves from a generalized thermoelastic solid
classical system of thermoelasticity. The type Il theosy (i half-space.?] investigated reflection of P and SV waves
a limiting case of type Ill) does not admit energy from stress-free surface elastic half-space under inflienc
dissipation. For many problems involving steep heatof magnetic field and hydrostatic initial stress without
gradients and when short time effects are sought thisnergy dissipation.39 studied propagation of Rayleigh
theory is indispensable. Due to the complexity of the waves in a rotating orthotropic material elastic half-spac
partial differential equations of this theory, the work éon under initial stress and gravity4(,41,42,43] studied the

in this field is unfortunately limited in number2(] fibre-reinforced in elastic media in the beginning4]

(@© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 3, 1129-1140 (2016)www.naturalspublishing.com/Journals.asp NS = 1131

investigated the propagation, reflection and transmissiothermoelastic waves will be noticed and depicted
of magnetoelastic shear waves in a selfreinforced mediagraphically.

[45] and [46] discussed the problem of surface waves in a

fibre-reinforced anisotropic elastic medid.7[ discussed
the reflection of plane waves at the free surface of a ; ;

fibre-reinforced elastic half-space4q discussed the 2 Basic equations

wave propagation in an incompressible transversely. . . . : :
isotropic fibre-reinforced elastic medi@d pointed outa 1€ governing equations for a fiber-reinforced linearly
model for spherical SH-wave propagation in elastic an isotropic medium wnh generalized
self-reinforced linearly elastic media. M(::lgnetoelc’;lstictherm.oems'[IC at reference temperatligenith respect to
surface waves in electrically conducting fibre-reinforcegdirectiond are

is discussed byd0]. [51] studied the wave motion in an  (j) the constitutive equation

anisotropic fiber-reinforced thermoelastic solid52]

discussed the problem of wave propagation in an

incompressible transversely isotropic fibre-reinforced 0ij = [)\ Exk — y<1+ rli> T} Gj+2Ur6;
elastic media. 3] studied the effects of anisotropy on ot
reflection coefficients of plane waves in fibre-reinforced + o (a@m&mdij + eka@ia;)

thermoelastic solid.54] investigated a source problem in _ _ Caaa.
fibre-reinforced anisotropic generalized thermoelastic +2(u— ) (@28 + ajaea)
solid under acoustic fluid layer5§] discussed stresses + B (akamexmaia;j), (1)
produced in a fibre- reinforced half-space due to a moving
load. Recently, 6] investigated LS model of the thermal
shock problem of generalized magneto-thermoelasticity R 1 (ﬂ ﬂ) 2)
for an infinitely long annular cylinder with variable 2 oxj 0% )’
thermal conductivity. $7] investigated the reflection of h . s of strai -
thermoelastic boundary half space with the magnetic field where.j fare Cgmpof‘eq Sofs ra;a,,tp, (KL “T)t
and rotation. %8 investigated the Stoneley waves ire rein orcel anisotropic  €lastic  parameters,
propagation in magneto-thermoplastic materialS9] [ » Hu, pir are elastic parameters
studied the propagation of plane waves of rotating
microstretch elastic solid with temperature dependent
elastic properties under Green-Naghdi theorgQ] [
investigated effects of magnetic field and initial stress on
plane waves propagation. The extensive literature on the
topic is now available and we can only mention a few
recent interesting investigations in Refs2g8F[38]). In
this paper, an estimation to study effects of the relaxation ou
times, magnetic field and rotation on the reflection of O11= (A + 20+ 4 — 2ur + B) =
p-waves and SV-waves on the boundary of a 5 ox 5
fibre-reinforced half-space of homogeneous, isotropic ow o
thermoelastic medium taking into our consideration the +@A+a) 0z V(1+T10t> T
boundary is stress-free as well as insulated. GL model of
generalized thermoelasticity which is known as the theory
of thermoelasticity with two relaxation times, or the au ow
theory of temperature-rate dependent thermoelasticiy ha Os3=(A+a) = +(A+2ur) -

, . . . X 0z
been applied to obtain the amplitudes of the reflection P
coefficients. Lame’s potentials are used in the two —y(1+ r1—> T (5
dimensions oxz that tend to separate the governing ot
equations into three equations that sought in harmonic
travelling form. We will estimate the equation of the r <du dw)

T

A =(ay, @, 8), &+ajt+ai=1 (3

If & has components that af&,0,0) so that the
preferred direction is the x-axis, simplifies, as given
below

velocities of p-wave, T-wave and SV-wave. The boundary 9z + X 6)
conditions for mechanical and Maxwell’s stresses and

thermal insulated will be applied to determine the and,

reflection coefficients for p-wave, T-wave and SV-wave.

Some new aspects are obtained of the reflection y=(2A +3a +4ur+p)ar+A+a)az  (7)
coefficients and displayed graphically and the new ) o
conclusions are presented. Effects of relaxation times and(ii) Maxwell electromagnetic stress; is given by

magnetic field on the reflection of generalized
Tij = He[Hihj + Hjhi — Hche &, (8)
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(iii) the equation of motion

gjij+F=

p{l’j—i—(axﬁxﬁ)—i—(ZBxﬁ)]i )

where,B X (3 X ﬁ) is the centripetal acceleration

due to the time varying motion only anﬁx T is
the Coriolis acceleration. E¢Q)tends to

(A +2a +4p —2pr +B) ur1a
+ (A + 0o+ pr)uz 13+ HrUs 33

0
—y(1+ 1

0,[) Ti+F=p (Ul—QZU1+ZQU3)

(10)

(A +2p7)uzzs+ (A + o+ pr)ur 13+ Hruzan
—y<1+ r1§t> Ts=p (Uz— Q%3 —2Qu;) (11)

where,

F —-JxB (12)

non-dimensional form, we take the

For GL model, the relaxation timeg, and 1; satisfy

the inequalitytg > 11 > 0 , d = 0 For two-dimensional
motion in (x—z) plane, Egs. 10), (11) and (5) can be
written as:

(A +2a +4p — 2ur + B+ HeH?) ug 11
+ ()\ +a+ ur+ HeHZ) Uz 13

7]
+ UrU133— V<1+ Tldt) T1

=p (Ul —Q? up + 2.QU3) (17)

(A +2ur + peH?) Uz za+ (A +a + pr + peH?) Uy 13

7] N X
—HJTU3,11—V<1+ Tldt) Tz=p(lUz— Q%uz— 2Quy)

(18)

0d
K(T11+T33) =pCy <1+ Toa—) T+yTo (U1 +Us3)
(19)

To transform the equations 17)-(19 into

following

Consider that the medium is a perfect electric dimensionless form

conductor, we take the linearized Maxwell equations | ,
governing the electromagnetic field, taking into X =7, z =%t =7t
account absence of the displacement cur(8ht as !

the form:
curlﬁ:? curlﬁ —Ue m , (13)
divF> = O,dIVE =
where, N .
h = curl(T x Ho) (14)

where we have used,

H =Ho+ h (x,zt),Ho = (0,Ho,0)

o
the constant primary magnetic field, acting ony
direction.

(iv) the equation of heat conduction

KOPT =Gy (1+ 0% ) T+ v - (14708, %) U
(15)
which tends to

0
KTk = pCy (1—|— TO(?t) T

+ yTo (1+ 00 0t) &k (16)

Q=ta T=

/ / v / Vv
o= 770, T =711,
A+20+4p — 2t + B+ peH

/ /
T u =

oo Y Vo u,

/ /\+20+4HL 21 +B+HeH ! Oij ! i

W= o W 0=y T T v
(20)

Substituting from equation() into equations 17)-

(19) and suppressing the primes, we obtain

d%u 9% ’w d%u
2 (07U o°u 2 2 20U
< (dx2 * (922> +(G5+C) %oz (-C) Ox2

d\ T d4
at) ox a2

ow

—-C? (1+ T — — Q% u+20— (21)

°w 9w ’w
2(0°W  O°W 2 2
< (dxz * (922> +(G +C4) z?xz?z G52 072

2
—c§(1+ 1;) O _9W_ g2y_2q%"

9z o2 ot
9°T  9°T °u  9%w
2 —_ —_ — —_ —_
C5(dx2+c922> £<0x2+022>

a\ aT
<1+r10t>(7 (23)

(22)
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Such that
A +2a+4p — 247 + B+ peH?
cz-={ A b))z,
AU+ peH?
cgz%, = 1, (24)

C% _ _K &= VZTO
pCuVe> 0Cy(A-+2a-+4p 247 +B+peH?)

Let us consider the displacement vector of the form

U = gradp+ curly,divy =0 (25)
which take the form

_99 oy 99 Jy
U=ox "oz~ dz+ X

and we let the absolute temperatdire= © . Substituting
from Eq. £6) into eqgs. 21)-(23)

1 02 92 20 .
2, 2Y v 2 _ =
g (g o) o 50

(26)

- <1+ r1%> o (27)

Pt £22—(2C§+C2)d—2—d—2 ]
(C2+C)) Yoxz ot

+( 20 p=0 (28)

C3+C3)
and from Eq. 23) we get,

10 To (92] & .
P 5= — =5 |0—-=0%0=0 (29)
{ CZot CZot? cz

CE=Ci+C5+Ci—Cl,
Ci=C3+C;, (30)
C2=2C%+C?

3 Solution of the problem

For the analaytic solution of Eqs27)-(29) in the form

of the harmonic travelling wave, we suppose the solution

takes the form,

\(P,@, "AU‘ (X7 Z',t) - |(pl7ela LI-’1| eXp[ik(XSine +2zcosf — Vt)]
(31)

*

z>0 vacuum

X
Magneto-thermoelastic half- /
space with fibre-reinforced \\
8,
N
,_j_—!?:—‘ / ey ™ Az
s
;_3 A
Ay Al

Fig. 1: Schematic of the problem.

where ¢,©, and Y, are arbitrary constants and the
pair (sin6,cosf) denotes the projection of the wave
normal ontoxz— plane.

Substitute from Eq.32) into Egs. 27)-(29) one may
obtain,

(K2 (v —C§) + Q7] g1 + 2ikvQyn
—C?(1—-itkv)@1 =0 (32)

(K2 (V —C&y) + Q% yn — 2ikvQepr =0 (33)
(K (VTo—C8) +1] o1 —eik’vQp =0 (34)

where,

C3=C2+C3co€h, C?,=CZ-Cisir’f (35)
From Egs. 82)-(33) we get,
L)’ +M()* + N2 +P=0 (36)
where,
P = —w°CiC3CE,,

N = e, wPQC2C%) + wPC2CE + wOCECZ,+ TowPC3CE,
+€ WPQC2CE, + w*Q?C2CE — 210w* Q2,

M = —eT1w?QC? — wBC2 — 1ow°C3 — 1ow®C3,

—€iwPQC? — ew*Q3C? + 2w Q%C2
—1ow?Q%C2 — 1ow*Q%C,+ W'Ci + wiC3,  (37)

+w*Q2C2C% ) — w’C3C%,+ w?Q%C3

+w?Q2C%) — eiw*Q3C? — w?Q%C2

L = Tow® — w*+ 1o’ Q% — Q% + 207 Q%

then we take into consideration; if the wave normal of
the incident wave makes angl& with the positive
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H=(1,3,5,7)(10%) b
5 | |
SR 0.5 1 15
Q
| I T
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Fig. 2: Variations of the magnetic field and thermal relaxation 8noa the waves velocitiegvi |, |vo| and|vs|) with respect to the
rotationQ.
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Fig. 4: A comparison between (a) Waves velocit{gg|) with respect ta2 (b) Waves amplitudegA; /Ao|,i = 1,2,3) with respect to

0.

direction of z-axis, and those as shown in Fig. 1 of

reflected p-, T— and SV-waves makeb, 6,,0; ; also
with the z—axis, the displacement potentiagsand ¢y and
the temperatur® take the following forms

@ = Agexpliko (xsinBy + zcoshy — Vot)]

3
+ z Anexplikn (xsinB, — zcosB, — vat)]  (38)
n=1

¥ = noAoexpliko (xsinBy + zcosy — Vot )]
3
+ z Annnexplikn (xsinBy, — zcost, — vint)]  (39)
n=1
O = {oAvexpliko (XsinBy + zcosBy — Vot)]

3
+ z Anlnexplika (xsinB, — zcosB, — vnt)]  (40)
n=1

From Egs, (33) and3@d) we get

2ikmvmQ
™= (a2 —ieCs, + 07
£2ik3vnQ (41)
=it KRCE Kk
m=0,1,2,3

Ao is the amplitudes of the incident p-wave, akd A,
and Az are the amplitudes of the reflect®d, P, andPs
waves, respectively.

Oz + Tz =0,
0—6 =0, atz=0
0z

For the reflected waves, the wave numbers and the
reflected angles may be written as:

kosinBy = k1 sinB; = kysinB, = k3 sinBs (43)
which take the equivalent form:
sinfp  sin6; _ sinf,  sinbs
Vo o Vi - Vo - V3

Substituting from Egs. 38)-(40) into the boundary
conditions in EqQ. 42), we obtain a system of three
algebraic equations takes the form

(44)

ZajX;=bj, (i,j=123) (45)

where,

a1j = KA + UeH? + 27 coS'6; — prn; sin 26

+acog6; — San;jsin26;]

+ (A 420+ 4p —2pr + B+ peH?) (L—iTakjv)) g,
agj = k¥ [sin 26; + n; (cos'6; —sir’;)] ,
agj = Zj kj COSQJ'
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and,

_ A

A
Xy = &

2 2 <in2B
AO’XZZ%’X?‘:A_O' (46) Agj = KZ[A + pteH? + 2ucoS 6 — pn; sin 26]]
+ (A +2u+ peH?) (1 iTkjvj),

K288 - si2p
by = —KZ[A + peH2 + 21470280 — L7 o Sin 26 Aoj = K2[sin 26; + nj(co$ 6 — sirf6;)]

+acog6y — 3angsin 26| Agj = {jkjcosb;
— (A + 20 + 4p —2pr + B+ peH?) (1 — iT1koVo) Lo,
bz = —K3 [sin 260 + o (co$ 6y — sirP ) | and,
b3 = —{oko cOSto. Ay Ao Az
Xl = N X2 = N >Q’> = N
From the results obtained in Eqt), it is concluded Ao Ao Ao

that the fibre-reinforced parameters play a significant role
on the waves velocities and the ratio of the reflection
coefficients, this indicated to the its important
applications in diverse filed, especially, in aircraft,
geophysics,...etc.

B1 = —k3 [A + peH? + 2ucos 6y + pnosin 26|
- (/\ +2Uu+ LleHz) (1—1i11koVo),

Bz = k3 [sin 260+ g (cos 6y — sirf6p) | ,

Bz = {okoCosbp.

4 Special Case . , .
5 Numerical results and discussion

If the fibre-reinforced is neglected, EQE) tends to:
For computational work, the following material constants
L(v2)3+ M(V2)2+ NV2+P=0 (47) at To = 300°C are considered a copper material for an
elastic solid with generalized thermoelastic solid taking
where into consideration neglecting the fibre-reinforced proper

P ~ciciiaf

N = w*[C2Ciw[w (1o +2Q¢eT) +i(1+2 Q¢))
+C3(C+CF) (?+ Q%)

M = @?[— (w?+ Q?) [(C} +C3) (’To +iw)

+C3 (0 + Q%) +2i w QeCE (1 - i nw)] + 4w? Q3C3]

L= (w’To+iw) [(w2+ 92)2 — 4 QZ]

A =82x10'N /n?, pu=42x10"N /n?,
p=895x 10°Kg /m?, ©, =3.845x 10°m?PK 1572,
oy =1.67x107°/K, w=10

Fig. 2 displays the variation of the magnitudes of
p-wave velocityv,, T-wave velocityv, and SV-wave
velocity vz with respect to the rotatiod2, where the
magnitudes of T-wave velocity and SV-wave velocity
decrease with an increasing the rotation but increases
with the increased values of the magnetic fieldwhile
the magnitudes of p-waves velocity increases with an
increasing ofQ andH. Also, it is seen that there is no
effect of thermal relaxation time on p-wave velocity and
SV-wave velocity, as well the T-wave velocity decreases
with increasing the thermal relaxation times.

Fig. 3 shows the variation of the p-wave amplitude

ﬁ—(l) . T-wave amplitudﬁl% and SV-wave amplitud%

where,

o (A+2u+pH?) L, op
Cl— pV2 ) C2_ )

2 K o _ V*To
pCVe’ PCy (A +2u + peH?2)

2ikmvmQ

"G 1GCE+ 07

= 2i ek vmQ
" K@V o — K3CS + kv
m=0, 1,2, 3.

Eq. @5) tends to:

ZAljxj:Bla (IaJ:17233)

where,

with respect to the angle of inciderfl, the waves
amplitudes increase arriving their maximum values nearly
at 122 < 6 < 17°, and decrease with an increasing of the
angle of incident vanishing even whéh= 90°, while it
decrease with an increase in the magnetic fidldand
rotation Q but the thermal relaxation timesgandr;
affects increasing on the waves amplitudes nearly at
0° < 6 < 120, after that it decrease with an increasing of
the thermal relaxation times.

Physically, it is clear that the amplitudes ratios of the
waves arrive to their maximum values with small values
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