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Abstract: In this work, an estimation to study the reflection of p-wave,T-wave and SV-wave on the boundary of a fibre-reinforced
half-space of homogeneous, isotropic thermoelastic medium under effect of the relaxation times, magnetic field and rotation were taken
into our consideration the boundary was stress-free as wellas insulated.GL model of generalized thermoelasticity which was known as
the theory of thermoelasticity with two relaxation times, or the theory of temperature-rate dependent thermoelasticity has been applied
to obtain the amplitudes of the reflection coefficients. Lame’s potentials were used in the two dimensions oxz that tend toseparate the
governing equations into three equations that sought in harmonic travelling form. We estimated the equation of the velocities of p-wave,
T-wave and SV-wave. The boundary conditions for the mechanical and Maxwell’s stresses and the thermal insulated at the boundary
are applied to determine the reflection coefficients of the longitudinal p-wave and thermal T-wave as well as the transverse wave SV-
and conclude them some special cases. Will arrive at the results of the research proposal consistent with the classic results. The results
obtained are calculated numerically by taking an appropriate metal and presented graphically.

Keywords: Magnetic field, Rotation, Reflection, Half Space, p- wave, T-wave, SV- wave, Relaxation Times, Isothermal Boundaries,
Thermal insulated, fibre-reinforced.

Nomenclature

α, β , (µL − µT ) are reinforced anisotropic elastic,
α1, α2 are the coefficient of thermal expansion,
δi j is Kronecker delta,

γ = (2λ +3α +4µT +β)α1+(λ +α)α2

λ , µL, µT are elastic parameters,
µe is the magnetic permeability,
ρ is the density,
σi j are the components of the stress vector,
τ0 , τ1 are the thermal relaxation times,
τi j are the Maxwells stress tensor,
ω is the frequency,
ℓ is the standard length,
Ω is the angular velocity,
→
B is the magnetic induction vector,
Ce is the specific heat per unit mass,
ei j are the strain components,
→
F is the Lorens body forces, vector,

→
h is the perturbed magnetic field vector,
hi is the components of heat flux tensor,
→
H is the magnetic field vector,
H0 is the constant magnetic field,
→
J is the electric current density vector,
K is the thermal conductivity,
k is the wave number,
kT is the isothermal,
t is the time,
T is the absolute temperature of the medium,
T0 is the natural temperature of the medium,
ui are the components of the displacement vector,
υ is the phase speed.

1 Introduction

During the second half of twentieth century,
nonisothermal problems of the theory of elasticity
became increasingly impact. This is due mainly to their
many applications in widely diverse fields. First, in the
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nuclear field, the external high temperatures and
temperature gradients originating inside nuclear reactors
influence their design and operations. Secondly, the high
velocities of modern aircraft give rise to aerodynamic
heating, which produces intense thermal stresses,
reducing the strength of the aircraft structure. There is
also many of uses and applications in various fields, in
particular, structures, biology, geology, geophysics,
acoustics, physics, plasma, etc. The theory of elasticity
with nonuniform heat which was in half-space subjected
of thermal shock in this context which known as the
theory of uncoupled thermoelasticity and the temperature
is governed by a parabolic partial differential equation in
temperature term only has been discussed by [8]. [6]
introduced the theory of classical thermoelasticity. At
present, there are two different theories of the generalized
thermoelasticity, the first was developed by [19] who
obtained a wave-type heat conduction by postulating a
new law of heat conduction to replace the classical
Fourier’s law. This new law contains the heat flux vector
as well as its time derivative. It contains also a new
constant that acts as a relaxation time. The second
generalization to the coupled theory of thermoelasticity is
known as the theory of thermoelasticity with two
relaxation times or the theory of
temperature-rate-dependent thermoelasticity developed
by [12]. This theory contains two constants that act as
relaxation times and modifies all the equations of the
coupled theory not the heat conduction equation only. The
two theories both ensure finite speeds of propagation for
heat wave. [21] investigated the dynamic problems of
thermoelasticity. Theory of thermoelasticity with
applications was introduced by [22]. Among the
theoretical contributions to the subject are the proofs of
uniqueness theorems under different conditions has been
introduced by . Dhaliwal and Sherief [17,18]. [7] studied
the theory of generalized thermoelasticity with one
relaxation time for anisotropic media. In this theory a
modified law of heat conduction including both the heat
flux and its time derivative replaces the conventional
Fourier’s law. The heat equation associated with this
theory is a hyperbolic one and hence automatically
eliminates the paradox of infinite speeds of propagation
inherent in both the uncoupled and the coupled theories of
thermoelasticity. [13,14,15] proposed three new
thermoelastic theories based on entropy equality than the
usual entropy inequality. The constitutive assumption for
the heat flux vector are different in each theory. Thus they
obtained three theories which are called thermoelasticity
of type I, thermoelasticity of type II and thermoelasticity
of type III. When type I theory is linearized we obtain the
classical system of thermoelasticity. The type II theory (is
a limiting case of type III) does not admit energy
dissipation. For many problems involving steep heat
gradients and when short time effects are sought this
theory is indispensable. Due to the complexity of the
partial differential equations of this theory, the work done
in this field is unfortunately limited in number. [20]

investigated an isotropic linear thermoelasticity with
hydrostatic initial stress. A survey article of representative
theories in the range of generalized thermoelasticity is
due to [16]. Three-dimensional thermal shock problem of
generalized thermoelastic half-space was discussed by
[11]. [27] studied a three-dimensional thermoelastic
problem for a half-space without energy dissipation.
Investigation of the dynamic problem concerning the
interactions among electromagnetic field, temperature,
stress and strain in a thermoelastic solid is immensely
important because of its extensive uses in diverse fields.
The theory of magneto-thermoelasticity which deals the
interactions among strain, temperature and
electromagnetic fields has drawn the attention of many
researchers because of its extensive uses in diverse fields,
such as Geophysics for understanding the effect of the
Earth’s magnetic field on seismic waves, damping of
acoustic waves in a magnetic field, emission of
electromagnetic radiations from nuclear devices,
development of a highly sensitive superconducting
magnetometer, electrical power engineering, optics, etc.
Great attention has been devoted to the study of
electromagneto-thermoelastic coupled problems based on
the generalized thermoelastic theories. The generalized
magneto-thermoelasticity in a perfectly conducting
medium is investigated by [10]. Some researchers in past
have investigated different problem of rotating media.
[23] investigated plane waves in generalized
thermoelasticity with two relaxation time under the effect
of rotation. The effect of rotation on generalized
micropolarthermoelasticity for a half-space under five
theories was discussed by [24]. [4] discussed the effect of
rotation due to various sources at the interface of elastic
half space and generalized thermoelastic half space. [5]
presented the effect of rotation in a generalized
thermoelastic medium with two temperature under the
influence of gravity. [26] presented the effect of rotation
on 2-d thermal shock problems for a generalized
magneto-thermoelasticity half-space under three theories.
[3] studied the effect of hydrostatic initial stress and
rotation in Green-Naghdi (Type III) thermoelastic
half-space with two temperature. Such type of problems
in a rotating medium are very important in many
dynamical systems. [25] discussed the reflection of
magneto-thermoelastic waves with two relaxation times
and temperature dependent elastic [9] investigated the
reflection of generalized thermoelastic waves from
isothermal and insulated boundaries of a half space. [1]
pointed out the influence of magnetic field and
hydrostatic initial stress on reflection phenomena of P-
and SV-waves from a generalized thermoelastic solid
half-space. [2] investigated reflection of P and SV waves
from stress-free surface elastic half-space under influence
of magnetic field and hydrostatic initial stress without
energy dissipation. [39] studied propagation of Rayleigh
waves in a rotating orthotropic material elastic half-space
under initial stress and gravity. [40,41,42,43] studied the
fibre-reinforced in elastic media in the beginning. [44]
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investigated the propagation, reflection and transmission
of magnetoelastic shear waves in a selfreinforced media.
[45] and [46] discussed the problem of surface waves in a
fibre-reinforced anisotropic elastic media. [47] discussed
the reflection of plane waves at the free surface of a
fibre-reinforced elastic half-space. [48] discussed the
wave propagation in an incompressible transversely
isotropic fibre-reinforced elastic media. [49] pointed out a
model for spherical SH-wave propagation in
self-reinforced linearly elastic media. Magnetoelastic
surface waves in electrically conducting fibre-reinforced
is discussed by [50]. [51] studied the wave motion in an
anisotropic fiber-reinforced thermoelastic solid. [52]
discussed the problem of wave propagation in an
incompressible transversely isotropic fibre-reinforced
elastic media. [53] studied the effects of anisotropy on
reflection coefficients of plane waves in fibre-reinforced
thermoelastic solid. [54] investigated a source problem in
fibre-reinforced anisotropic generalized thermoelastic
solid under acoustic fluid layer. [55] discussed stresses
produced in a fibre- reinforced half-space due to a moving
load. Recently, [56] investigated LS model of the thermal
shock problem of generalized magneto-thermoelasticity
for an infinitely long annular cylinder with variable
thermal conductivity. [57] investigated the reflection of
thermoelastic boundary half space with the magnetic field
and rotation. [58] investigated the Stoneley waves
propagation in magneto-thermoplastic materials. [59]
studied the propagation of plane waves of rotating
microstretch elastic solid with temperature dependent
elastic properties under Green-Naghdi theory. [60]
investigated effects of magnetic field and initial stress on
plane waves propagation. The extensive literature on the
topic is now available and we can only mention a few
recent interesting investigations in Refs. ([28]-[38]). In
this paper, an estimation to study effects of the relaxation
times, magnetic field and rotation on the reflection of
p-waves and SV-waves on the boundary of a
fibre-reinforced half-space of homogeneous, isotropic
thermoelastic medium taking into our consideration the
boundary is stress-free as well as insulated. GL model of
generalized thermoelasticity which is known as the theory
of thermoelasticity with two relaxation times, or the
theory of temperature-rate dependent thermoelasticity has
been applied to obtain the amplitudes of the reflection
coefficients. Lame’s potentials are used in the two
dimensions oxz that tend to separate the governing
equations into three equations that sought in harmonic
travelling form. We will estimate the equation of the
velocities of p-wave, T-wave and SV-wave. The boundary
conditions for mechanical and Maxwell’s stresses and
thermal insulated will be applied to determine the
reflection coefficients for p-wave, T-wave and SV-wave.
Some new aspects are obtained of the reflection
coefficients and displayed graphically and the new
conclusions are presented. Effects of relaxation times and
magnetic field on the reflection of generalized

thermoelastic waves will be noticed and depicted
graphically.

2 Basic equations

The governing equations for a fiber-reinforced linearly
elastic an isotropic medium with generalized
thermoelastic at reference temperatureT0 with respect to
direction−→a are

(i) the constitutive equation

σi j =

[

λ ekk − γ
(

1+ τ1
∂
∂ t

)

T

]

δi j +2µT ei j

+α (akamekmδi j + ekkaia j)

+2(µL − µT )
(

aiakek j + a jakeki
)

+β (akamekmaia j) , (1)

ei j =
1
2

(

∂ui

∂x j
+

∂u j

∂xi

)

, (2)

where,ei j are components of strain,α, β , (µL − µT )
are reinforced anisotropic elastic parameters,
λ , µL, µT are elastic parameters

−→a = (a1, a2, a3) , a2
1+ a2

2+ a2
3 = 1 (3)

If −→a has components that are(1,0,0) so that the
preferred direction is the x-axis, simplifies, as given
below

σ11 = (λ +2α +4µL −2µT +β)
∂u
∂x

+(λ +α)
∂w
∂ z

− γ
(

1+ τ1
∂
∂ t

)

T (4)

σ33 = (λ +α)
∂u
∂x

+(λ +2µT )
∂w
∂ z

− γ
(

1+ τ1
∂
∂ t

)

T (5)

σ13 = µT

(

∂u
∂ z

+
∂w
∂x

)

(6)

and,

γ = (2λ +3α +4µT +β)α1+(λ +α)α2 (7)

(ii) Maxwell electromagnetic stressτi j is given by

τi j = µe[Hih j +H jhi −Hkhkδi j], (8)
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(iii) the equation of motion

σ ji, j +Fi =

ρ
[

ü+
(−→

Ω ×
−→
Ω ×−→u

)

+
(

2
−→
Ω ×

−→
u̇
)]

i
(9)

where,
−→
Ω ×

(−→
Ω ×−→u

)

is the centripetal acceleration

due to the time varying motion only and 2
−→
Ω ×

−→
u̇ is

the Coriolis acceleration. Eq. (9) tends to

(λ +2α +4µL−2µT +β)u1,11

+(λ +α + µT )u3,13+ µT u1,33

− γ
(

1+ τ1
∂
∂ t

)

T,1+F1 = ρ
(

ü1−Ω2u1+2Ω u̇3
)

(10)

(λ +2µT )u3,33+(λ +α + µT )u1,13+ µT u3,11

− γ
(

1+ τ1
∂
∂ t

)

T,3 = ρ
(

ü3−Ω2u3−2Ω u̇1
)

(11)

where,
−→
F =

−→
J ×

−→
B (12)

Consider that the medium is a perfect electric
conductor, we take the linearized Maxwell equations
governing the electromagnetic field, taking into
account absence of the displacement current(SI) as
the form:

curl
−→
h =

−→
J , curl

−→
E =−µe

∂
−→
h

∂ t ,

div
−→
h = 0,div

−→
E = 0.

}

(13)

where,
−→
h = curl(−→u ×

−→
H0) (14)

where we have used,

−→
H =

−→
H0+

−→
h (x,z, t) ,

−→
H0 = (0,H0,0)

the constant primary magnetic field
→
Ho acting ony

direction.
(iv) the equation of heat conduction

K∇2T = ρCv

(

1+ τ0
∂
∂ t

)

Ṫ + γTo
−→
∇ ·
(

1+ τ0δi j
∂
∂ t

)−→
u̇

(15)
which tends to

KT,kk = ρCv

(

1+ τ0
∂
∂ t

)

Ṫ

+ γTo

(

1+ τ0δ
∂
∂ t

)

ėkk (16)

For GL model, the relaxation timesτo andτ1 satisfy
the inequalityτ0 > τ1 > 0 , δ = 0 For two-dimensional
motion in (x− z) plane, Eqs. (10), (11) and (15) can be
written as:

(

λ +2α +4µL−2µT +β + µeH2)u1,11

+
(

λ +α + µT + µeH2)u3,13

+ µT u1,33− γ
(

1+ τ1
∂
∂ t

)

T,1

= ρ
(

ü1−Ω2u1+2Ω u̇3
)

(17)

(

λ +2µT + µeH2)u3,33+
(

λ +α + µT + µeH2)u1,13

+µT u3,11−γ
(

1+ τ1
∂
∂ t

)

T,3 = ρ
(

ü3−Ω2u3−2Ω u̇1
)

(18)

K (T,11+T,33)= ρCv

(

1+ τ0
∂
∂ t

)

Ṫ +γT0(u̇1,1+ u̇3,3)

(19)

To transform the equations (17)-(19) into
non-dimensional form, we take the following
dimensionless form

x
′
= x

ℓ , z
′
= z

ℓ , t
′
= v

ℓ t, τ ′

0 =
v
ℓ τ0, τ ′

1 =
v
ℓτ1,

Ω ′
= ℓ

v Ω , T
′
= T

T0
, u

′
= λ+2α+4µL−2µT+β+µeH2

ℓγT0
u ,

w
′
= λ+2α+4µL−2µT+β+µeH2

ℓγT0
w, σ ′

i j =
σi j
γT0

, τ ′

i j =
τi j
γT0
(20)

Substituting from equations (20) into equations (17)-
(19) and suppressing the primes, we obtain

C2
2

(

∂ 2u
∂x2 +

∂ 2u
∂ z2

)

+
(

C2
3 +C2

4

) ∂ 2w
∂x∂ z

+
(

C2
1 −C2

2

) ∂ 2u
∂x2

−C2
1

(

1+ τ1
∂
∂ t

)

∂T
∂x

=
∂ 2u
∂ t2 −Ω2u+2Ω

∂w
∂ t

(21)

C2
2

(

∂ 2w
∂x2 +

∂ 2w
∂ z2

)

+
(

C2
3 +C2

4

) ∂ 2u
∂x∂ z

+C2
3

∂ 2w
∂ z2

−C2
1

(

1+ τ1
∂
∂ t

)

∂T
∂ z

=
∂ 2w
∂ t2 −Ω2w−2Ω

∂u
∂ t

(22)

C2
5

(

∂ 2T
∂x2 +

∂ 2T
∂ z2

)

− ε

(

∂ 2 ·
u

∂x2 +
∂ 2 ·

w

∂ z2

)

=

(

1+ τ1
∂
∂ t

)

∂T
∂x

(23)
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Such that

C2
1 =

(λ+2α+4µL−2µT+β+µeH2)
ρv2 C2

2 = µT
ρv2 ,

C2
3 =

(λ+µT+µeH2)
ρv2 , C2

4 = α
ρv2 ,

C2
5 = K

ρCvvℓ , ε = γ2T0
ρCv(λ+2α+4µL−2µT+β+µeH2)

(24)

Let us consider the displacement vector of the form

−→u = gradφ + curlψ ,divψ = 0 (25)

which take the form

u =
∂φ
∂x

−
∂ψ
∂ z

,w =
∂φ
∂ z

+
∂ψ
∂x

(26)

and we let the absolute temperatureT = Θ . Substituting
from Eq. (26) into eqs. (21)-(23)

[

∇2+
1

C2
1

(

C2
6

∂ 2

∂ z2 −
∂ 2

∂ t2 +Ω2
)]

φ −
2Ω
C2

1

ψ̇

=

(

1+ τ1
∂
∂ t

)

Θ (27)

[

∇2+
1

(

C2
2 +C2

3

)

(

Ω2−
(

2C2
3 +C2

4

) ∂ 2

∂x2 −
∂ 2

∂ t2

)

]

ψ

+
2Ω

(

C2
2 +C2

3

) φ̇ = 0 (28)

and from Eq. (23) we get,

[

∇2−
1

C2
5

∂
∂ t

−
τ0

C2
5

∂ 2

∂ t2

]

Θ −
ε

C2
5

∇2φ̇ = 0 (29)

where,

C2
6 =C2

2 +C2
3 +C2

4 −C2
1,

C2
7 =C2

2 +C2
3, (30)

C2
8 = 2C2

3 +C2
4

3 Solution of the problem

For the analaytic solution of Eqs. (27)-(29) in the form
of the harmonic travelling wave, we suppose the solution
takes the form,

|φ ,Θ ,ψ |(x,z, t) = |φ1,Θ1,ψ1|exp[ik (xsinθ + zcosθ − vt)]
(31)

Fig. 1: Schematic of the problem.

whereφ1,Θ1 and ψ1 are arbitrary constants and the
pair (sinθ ,cosθ ) denotes the projection of the wave
normal ontoxz− plane.

Substitute from Eq. (31) into Eqs. (27)-(29) one may
obtain,

[

k2(v2−C2
9

)

+Ω2]φ1+2ikvΩψ1

−C2
1 (1− iτ1kv)Θ1 = 0 (32)

[

k2(v2−C2
10

)

+Ω2]ψ1−2ikvΩφ1 = 0 (33)
[

k2(v2τ0−C2
5

)

+1
]

Θ1− εik3vΩφ1 = 0 (34)

where,

C2
9 =C2

1 +C2
6cos2θ , C2

10 =C2
7 −C2

8sin2θ (35)

From Eqs. (32)-(33) we get,

L
(

v2)3
+M

(

v2)2
+Nv2+P = 0 (36)

where,

P =−ω6C2
5C2

9C2
10,

N = ετ1ω6ΩC2
1C2

10+ω6C2
5C2

9 +ω6C2
5C2

10+ τ0ω6C2
9C2

10
+ε ω5ΩC2

1C2
10+ω4Ω2C2

5C2
9 −2τ0ω4Ω2,

M =−ετ1ω6ΩC2
1 −ω6C2

5 − τ0ω6C2
9 − τ0ω6C2

10

−εiω5ΩC2
1 − εω4Ω3C2

1 +2ω4Ω2C2
5

−τ0ω4Ω2C2
9 − τ0ω4Ω2C2

10+ω4C2
9 +ω4C2

10 (37)

+ω4Ω2C2
5C2

10−ω2C2
9C2

10+ω2Ω2C2
9

+ω2Ω2C2
10− εiω3Ω3C2

1 −ω2Ω2C2
5

L = τ0ω2−ω4+ τ0ω2Ω4−Ω4+2ω2Ω2

then we take into consideration; if the wave normal of
the incident wave makes angleθ0 with the positive
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Fig. 2: Variations of the magnetic field and thermal relaxation times on the waves velocities(|v1| , |v2|and|v3|) with respect to the
rotationΩ .
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Fig. 3: Variations of the magnetic field, rotation and thermal relaxation times on the waves amplitudes(|A1/A0| , |A2/A0| and |A3/A0|)
with respect to the angle of incidenceθ .
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Fig. 4: A comparison between (a) Waves velocities(|vi|) with respect toΩ (b) Waves amplitudes(|Ai/A0| , i = 1,2,3) with respect to
θ .

direction of z-axis, and those as shown in Fig. 1 of
reflected p−, T− and SV -waves makeθ1,θ2,θ3 ; also
with thez−axis, the displacement potentialsφ andψ and
the temperatureΘ take the following forms

φ = A0exp[ik0 (xsinθ0+ zcosθ0− v0t)]

+
3

∑
n=1

An exp[ikn (xsinθn − zcosθn − vnt)] (38)

ψ = η0A0exp[ik0 (xsinθ0+ zcosθ0− v0t)]

+
3

∑
n=1

Anηn exp[ikn (xsinθn − zcosθn − vnt)] (39)

Θ = ζ0A0exp[ik0 (xsinθ0+ zcosθ0− v0t)]

+
3

∑
n=1

Anζn exp[ikn (xsinθn − zcosθn − vnt)] (40)

From Eqs, (33) and (33) we get

ηm =
2ikmvmΩ

k2
mv2

m − k2
mC2

10+Ω2
,

ζm =
ε2ik3

mvmΩ
k2

mv2
mτ0− k2

mC2
5 − km

,

m = 0,1,2,3

(41)

A0 is the amplitudes of the incident p-wave, andA1; A2
andA3 are the amplitudes of the reflectedP1 , P2 andP3
waves, respectively.

σzz + τzz = 0,

σzx + τzx = 0,

∂Θ
∂ z

= 0, atz = 0

(42)

For the reflected waves, the wave numbers and the
reflected angles may be written as:

k0sinθ0 = k1sinθ1 = k2sinθ2 = k3sinθ3 (43)

which take the equivalent form:

sinθ0

v0
=

sinθ1

v1
=

sinθ2

v2
=

sinθ3

v3
(44)

Substituting from Eqs. (38)-(40) into the boundary
conditions in Eq. (42), we obtain a system of three
algebraic equations takes the form

Σai jX j = b j, (i, j = 1,2,3) (45)

where,

a1 j = k2
j [λ + µeH2+2µT cos2θ j − µT η j sin2θ j

+αcos2θ j −
1
2αη j sin2θ j]

+
(

λ +2α +4µL−2µT+β + µeH2
)

(1− iτ1k jv j)ζ j,

a2 j = k2
j

[

sin2θ j +η j
(

cos2θ j − sin2θ j
)]

,
a3 j = ζ jk j cosθ j
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and,

X1 =
A1

A0
,X2 =

A2

A0
,X3 =

A3

A0
. (46)

b1 =−k2
0[λ + µeH2+2µT cos2θ0− µT η0sin2θ0

+αcos2θ0−
1
2αη0sin2θ0]

−
(

λ +2α +4µL−2µT +β + µeH2
)

(1− iτ1k0v0)ζ0,
b2 =−k2

0

[

sin2θ0+η0
(

cos2θ0− sin2θ0
)]

,
b3 =−ζ0k0cosθ0.

From the results obtained in Eq. (46), it is concluded
that the fibre-reinforced parameters play a significant role
on the waves velocities and the ratio of the reflection
coefficients, this indicated to the its important
applications in diverse filed, especially, in aircraft,
geophysics,...etc.

4 Special Case

If the fibre-reinforced is neglected, Eq. (36) tends to:

L
(

v2)3
+M

(

v2)2
+Nv2+P = 0 (47)

where

P =−C2
1C2

2C2
3ω6

N = ω4[C2
1C2

2ω [ω (τ0+2Ωετ1)+ i(1+2 Ωε)]
+C2

3

(

C2
1 +C2

2

) (

ω2+Ω2)]

M = ω2[−
(

ω2+Ω2) [
(

C2
1 +C2

2

) (

ω2τ0+ iω
)

+C2
3

(

ω2+Ω2)+2i ω ΩεC2
1 (1− i τ1ω)]+4ω2 Ω2C2

3]

L =
(

ω2τ0+ iω
)

[

(

ω2+Ω2)2
−4ω2 Ω2

]

where,

C2
1 =

(

λ +2µ + µeH2
)

ρv2 , C2
2 =

µ
ρv2 ,

C2
3 =

K
ρCvvℓ

, ε =
γ2T0

ρCv (λ +2µ + µeH2)

ηm =
2ikmvmΩ

k2
mv2

m − k2
mC2

2 +Ω2
,

ζm =
2i εk3

mvmΩ
k2

mv2
mτ0− k2

mC2
3 + ikmvm

,

m =0, 1, 2, 3.

Eq. (45) tends to:

ΣAi jX j = Bi, (i, j = 1, 2, 3)

where,

A1 j = k2
j [λ + µeH2+2µcos2θn − µη j sin2θ j]

+ ζ j(λ +2µ + µeH2)(1− iτ1k jv j),

A2 j = k2
j [sin2θ j +η j(cos2θ j − sin2θ j)]

A3 j = ζ jk j cosθ j

and,

X1 =
A1

A0
, X2 =

A2

A0
, X3 =

A3

A0

B1 =−k2
0

[

λ + µeH2+2µcos2θ0+ µη0sin2θ0
]

−ζ0
(

λ +2µ + µeH2
)

(1− i τ1k0v0) ,
B2 = k2

0

[

sin2θ0+η0
(

cos2θ0− sin2θ0
)]

,
B3 = ζ0k0cosθ0.

5 Numerical results and discussion

For computational work, the following material constants
at T0 = 300oC are considered a copper material for an
elastic solid with generalized thermoelastic solid taking
into consideration neglecting the fibre-reinforced property

λ = 8.2×1010N /m2, µ =4.2×1010N /m2,

ρ = 8.95×103Kg /m2, cv =3.845×102m2K−1s−2,

αt = 1.67×10−5/K, ω =102.

Fig. 2 displays the variation of the magnitudes of
p-wave velocity v1, T-wave velocity v2 and SV-wave
velocity v3 with respect to the rotationΩ , where the
magnitudes of T-wave velocity and SV-wave velocity
decrease with an increasing the rotation but increases
with the increased values of the magnetic fieldH while
the magnitudes of p-waves velocity increases with an
increasing ofΩ and H. Also, it is seen that there is no
effect of thermal relaxation time on p-wave velocity and
SV-wave velocity, as well the T-wave velocity decreases
with increasing the thermal relaxation times.

Fig. 3 shows the variation of the p-wave amplitude
∣

∣

∣

A1
A0

∣

∣

∣
, T-wave amplitude

∣

∣

∣

A2
A0

∣

∣

∣
and SV-wave amplitude

∣

∣

∣

A3
A0

∣

∣

∣

with respect to the angle of incidentθ , the waves
amplitudes increase arriving their maximum values nearly
at 12o < θ < 17o, and decrease with an increasing of the
angle of incident vanishing even whenθ = 90o, while it
decrease with an increase in the magnetic fieldH and
rotation Ω but the thermal relaxation timesτ0andτ1
affects increasing on the waves amplitudes nearly at
0o < θ < 12o, after that it decrease with an increasing of
the thermal relaxation times.

Physically, it is clear that the amplitudes ratios of the
waves arrive to their maximum values with small values
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of the angle of incidence, and tends to zero as the waves
incidence perpendicular to its primary incidence, this
indicate to the significant role on the waves reflection.

Fig. 4 plots a comparison between the magnitudes of
the waves velocities with respect to the rotationΩ (Fig.
4a) and the magnitudes of the reflection coefficients with
respect to the angle of incidenceθ From Fig. 4a, it is
obvious that |v1| > |v3| > |v2|, also, it is seen that
∣

∣

∣

A1
A0

∣

∣

∣
>
∣

∣

∣

A3
A0

∣

∣

∣
>
∣

∣

∣

A2
A0

∣

∣

∣
.

6 Conclusion

The main conclusions due to the influences of the fibre-
reinforced, magnetic field and thermal relaxation times on
the reflection of p-, T-, and SV-waves, can be pointed as
follow:

(i) The reflection coefficients are affected strongly by the
angle of incidenceθ fibre-reinforced, magnetic field
and thermal relaxation times.

(ii) The magnetic field affected strongly on the absolute
values of all reflection coefficients unless|B1/Ao| for
p-wave and|A1/Bo| for SV-wave at a stress-free
thermally insulated.

(iii) The thermal relaxation times affected strongly on all
values of the reflection coefficients, it is seen that the
angle of incidenceθ affects very strong on all values
of the reflection coefficients and 0o < θ < 12o,
displays a critical value for the reflection coefficients
in all waves.

(iv) It is concluded that,|v1|> |v3|> |v2| , also, it appears

that
∣

∣

∣

A1
A0

∣

∣

∣
>
∣

∣

∣

A3
A0

∣

∣

∣
>
∣

∣

∣

A2
A0

∣

∣

∣
.

(v) Finally, it is too clear that all operators are affected
on the amplitude ratios, which have a good influence
on Aircraft, Seismic waves, Earthquakes,
Geophysics, Volcanoes, Plasma, Geometrical
Geology, Nuclear fields, Geology and etc.
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