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Abstract: This paper discusses the properties of optimistic, pessimistic and basic approximations of rough sets in ordinary and variable
precise multi-granulation models and the ones produced by using union and intersection operations on multi-property relations deeply,
and analyzes the relationships between or among them. It explores the approximate accuracy formulas and finds several inequalities
to describe their relationships of those approximate accuracy formulas. It proves that approximation accuracy of incomplete variable
precision multi-granulation rough sets based on tolerancerelation is higher than the non-variable ones.
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1 Introduction

In 1982, Pawlak put forward rough set models [1], which
are widely used in many scientific and technological
application fields, especially in complete information
system. Kryszkiewicz proposed tolerance relation rough
set model [2]; Stefanowski proposed similar relation
rough set model [3]; Wang Guoyin proposed limited
tolerance relation rough set model [4]; Greco, etc.
proposed rough set model based on the advantage
relationship and so on [5]. Presently, the variable
precision rough set model has been suggested based on
tolerance relation [6,7]. In this model, a threshold
representing a bound on the conditional probability of a
proportion of objects, which are classified into the same
decision class, in a condition class, is given. It therefore
admits some level of uncertainty in the classification
process, leading to a deeper understanding and a better
utilization of properties of the data being analyzed. The
variable precision rough set model overcomes limitation
in traditional rough set model.

In the literature [8,9], Qian et al. pointed out that we
often need to describe concurrently a target concept
through multi binary relations (e.g. equivalence relation,
tolerance relation, reflexive relation and neighborhood

relation) on the universe according to a user’s
requirements or targets of problem solving. Therefore,
they proposed the concept of multi-granulation rough set
model, which includes optimistic multi-granulation rough
set and pessimistic multi-granulation rough set.
Furthermore, Qian et al. proposed several basic views for
establishing multi-granulation rough set model in
incomplete information systems [10]. The purpose of this
paper is to further generalize Ziarko’s variable precision
rough set and Qian’s multi-granulation rough set in
incomplete information system. From this point of view,
we will propose the concept of the variable precision
multi-granulation rough set model based on tolerance
relation in incomplete information system.

The rest of the paper is organized as follows. In
section 2, incomplete information system and
multi-granulation rough set base on tolerance relation are
briefly introduced. In section 3, Variable precision
multi-granulation rough sets based on tolerance relation
are explored. In section 4, the properties of variable
precision multi-granulation rough set in incomplete
information system base on tolerance relation are
researched. In section 5, relationships of variable
precision multi-granulation rough set including
incomplete variable precision optimistic, pessimistic
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multi-granulation rough set and approximations produced
by using union and intersection operations on
multi-property relations are proposed and explored
respectively. In section 6, the approximate accuracies of
variable precision multi-granulation rough sets are
analyzed. Section 7 gives the main conclusions according
to the former section researches.

2 Incomplete Information System and
Multi-Granulation Rough Set based on
Tolerance Relation

In the tolerance relation model, one of the most important
thought is in information table missing attribute values
are given ”*”. ”*” may be arbitrary value. Hence,
IS =< U,AT,D,V, f > is called an incomplete target
information system if values of some attributes inAT are
missing and those of all attributes inD are regular, where
AT is called the conditional attributes andD is called the
decision attribute set. For each attribute subsetA ⊆ AT , a
tolerance relation is defined as

T (A) = {(x,y) ∈U2 :

∀a ∈ A,a(x) = a(y)∨a(x) = ∗∨a(y) = ∗}. (1)

For A ⊆ AT and∀X ⊆U , the lower approximation is

AT (X) = {x ∈U : TA(x)⊆ X} (2)

and the upper approximation is

AT (X) = {x ∈U : TA(x)∩X 6= /0}. (3)

The ordered pair[AT (X),AT (X)] is called a rough set ofX
with respect toA.

T A(x) = y ∈U : (x,y) ∈ T (A). (4)

is(are) called tolerant class(es). Qian et al. in their
multi-granulation rough set model, proposed several basic
views for establishing multi-granulation rough set model
in incomplete information systems. Let
A1,A2, · · · ,Am ⊆ AT be m attribute subsets. Then for
∀X ⊆U ,

m

∑
i=1

Ai

o

(X) = {x ∈U : TA1(x)⊆ X ∨TA2(x)⊆ X ∨·· ·

∨TAm(x)⊆ X} (5)

and

m

∑
i=1

Ai

o

(X) = ∼
m

∑
i=1

Ai

o

(∼ X). (6)

are respectively the optimistic multi-granulation lower
and upper approximations ofX with respect to

A1,A2, · · · ,Am ⊆ AT . The optimistic multi-granulation
boundary region ofX is

BNo
∑m

i=1Ai
(X) =

m

∑
i=1

Ai

o

(X)−
m

∑
i=1

Ai

o

(X). (7)

Following results have been obtained:

m

∑
i=1

Ai

o

(X) =
m⋃

i=1

Ai(X). (8)

m

∑
i=1

Ai

o

(X) =
m⋂

i=1

Ai(X). (9)

m

∑
i=1

Ai

p

(X) = {x ∈U : TAi(x)⊆ X}. (10)

m

∑
i=1

Ai

p

(X) = ∼
m

∑
i=1

Ai

p

(∼ X). (11)

BN p
∑m

i=1Ai
(X) =

m

∑
i=1

Ai

p

(X)−
m

∑
i=1

Ai

p

(X). (12)

m

∑
i=1

Ai

p

(X) =
m⋂

i=1

Ai(X). (13)

m

∑
i=1

Ai

p

(X) =
m⋃

i=1

Ai
p
(X). (14)

3 Variable Precision Multi-Granulation
Rough Sets based on Tolerance Relation

To save the space, the following assumption description is
given: Let IS =< U,AT

⋃
d > be an incomplete

information system,A1,A2, · · · ,Am ⊆ AT be m attribute
subsets, 0≤ β < 0.5, X ,Y ⊆U .

Definition 1. Variable precision optimistic
multi-granulation lower and upper approximations
respectively are :

m

∑
i=1

Aiβ

o

(X) = {x ∈U : ∃i,e(TAi(x),X)≤ β}; (15)

m

∑
i=1

Aiβ

o

(X) = ∼
m

∑
i=1

Aiβ

o

(∼ X) (16)

Variable precision optimistic multi-granulation boundary
is

BNo
∑m

i=1Aiβ
(X) =

m

∑
i=1

Aiβ

o

(X)−
m

∑
i=1

Aiβ

o

(X). (17)
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Theorem 1.Under the condition given in the above,we
have

m

∑
i=1

Aiβ

o

(X) = {x ∈U : ∀i,e(TAi(x),X)< 1−β}. (18)

Proof. By Definition 1, we have

x ∈ ∑m
i=1 Aiβ

o
(X)⇔ x /∈ ∑m

i=1 Aiβ
o(∼ X)⇔∀i,e(TAi(x),X)< 1−β

(19)
Definition 2. Variable precision pessimistic
multi-granulation lower and upper approximations
respectively are :
m

∑
i=1

Aiβ

p

(X) = {x ∈U : ∀i,e(TAi(x),X)≤ β}; (20)

m

∑
i=1

Aiβ

p

(X) = ∼
m

∑
i=1

Aiβ

p

(∼ X) (21)

. Variable precision optimistic multi-granulation boundary
is

BN p
∑m

i=1Aiβ
(X) =

m

∑
i=1

Aiβ

p

(X)−
m

∑
i=1

Aiβ

p

(X). (22)

Theorem 2. Under the condition described in the
above,we have

m

∑
i=1

Aiβ

p

(X) = {x ∈U : ∃i,e(TAi(x),X)< 1−β}. (23)

Proof. By Definition 2, we have

4 Properties of Variable Precision
Multi-Granulation Rough Set

Theorem 3.The following results are held:

(1)
m

∑
i=1

Aiβ

o

(U) =
m

∑
i=1

Aiβ

o

(U) =U ; (24)

(2)
m

∑
i=1

Aiβ

o

(∅) =
m

∑
i=1

Aiβ

o

(∅) =∅. (25)

(3)
m

∑
i=1

Aiβ

o

(∼ X) =∼
m

∑
i=1

Aiβ

o

(X); (26)

(4)
m

∑
i=1

Aiβ

o

(∼ X) = ∼
m

∑
i=1

Aiβ

o

(X). (27)

(5)β1 ≥ β2 ⇒
m

∑
i=1

Aiβ1

o

(X)⊇
m

∑
i=1

Aiβ2

o

(X); (28)

(6)
m

∑
i=1

Aiβ1

o

(X)⊆
m

∑
i=1

Aiβ2

o

(X); . (29)

(7)
m

∑
i=1

Aiβ

o

(X ∩Y )⊆ (30)

(8)
m

∑
i=1

Aiβ

o

(X)∩
m

∑
i=1

Aiβ

o

(Y ). (31)

(9)
m

∑
i=1

Aiβ

o

(X ∪Y )⊇ (32)

(10)
m

∑
i=1

Aiβ

o

(X)∪
m

∑
i=1

Aiβ

o

(Y ). (33)

(11)
m

∑
i=1

Aiβ

o

(X ∩Y )⊆ (34)

(12)
m

∑
i=1

Aiβ

o

(X)∩
m

∑
i=1

Aiβ

o

(Y ). (35)

(13)
m

∑
i=1

Aiβ

o

(X ∪Y )⊇ (36)

(14)
m

∑
i=1

Aiβ

o

(X)∪
m

∑
i=1

Aiβ

o

(Y ). (37)

Proof. (1) and (2)∀x ∈ ∑m
i=1 Aiβ

o(U), by Definition 1,

∃Ai ∈ A1,A2, · · · ,Am such thate(TAi(x),U) ≤ β . Thus
x ∈ U . So ∑m

i=1 Aiβ
o(X) ⊆ U . For ∀x ∈ U , since

∑m
i=1 Aiβ

o(U) = U . For ∀x ∈ ∑m
i=1 Aiβ

o(∅),

∃Ai ∈ {A1,A2, · · · ,Am} such thate(TAi(x),∅) ≤ β . Then
x ∈ ∅, from which we can conclude that
∑m

i=1 Aiβ
o(∅)⊆∅. So∑m

i=1 Aiβ
o(∅) =∅.

(3) and (4) By Definition 1 we know
∑m

i=1 Aiβ
o
(X) =∼ ∑m

i=1 Aiβ
o(∼ X). Let ∼ X) replaceX ,

we have ∼ ∑m
i=1Aiβ

o
(∼ X) = ∑m

i=1Aiβ
o(X), i.e.

∑m
i=1 Aiβ

o
(∼ X) =∼ ∑m

i=1 Aiβ
o(X).

(5) and (6) For ∀x ∈ ∑m
i=1 Aiβ2

o(X),

∃Ai ∈ A1,A2, · · · ,Am such that e(TAi(x),X) ≤ β2.
Moreover, sinceβ1 ≥ β2, thene(TAi(x),X) ≤ β1, i.e. for
x ∈ ∑m

i=1 Aiβ1

o(X), we can conclude that

∑m
i=1 Aiβ1

o(X) ⊇ ∑m
i=1 Aiβ2

o(X). (7) For

∀x ∈ ∑m
i=1 Aiβ2

o(X ∩ Y ), by Definition 1,

∃Ai ∈ {A1,A2, · · · ,Am} such thate(TAi(x),X ∩Y )≤ β . By
the definition of the inclusion error, we have
e(TAi(x),X) ≤ β and e(TAi(x),Y ) ≤ β . So we have
x ∈ ∑m

i=1 Aiβ
o(X) and x ∈ ∑m

i=1 Aiβ
o(Y ), i.e.
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x ∈ ∑m
i=1 Aiβ

o(X) ∩ ∑m
i=1 Aiβ

o(Y ). Therefore, we obtain

∑m
i=1 Aiβ2

o(X ∩ Y ) ⊆ ∑m
i=1 Aiβ

o(X) ∩ ∑m
i=1 Aiβ

o(Y ).

Similarly, it is not difficult to prove formula (8)-(14).
Theorem 4.Let X1 ⊆ X2 ⊆ ·· · ⊆ Xn ⊆U .We have

(1)
m

∑
i=1

Aiβ

o

(X1)⊆
m

∑
i=1

Aiβ

o

(X2)⊆ ·· · ⊆
m

∑
i=1

Aiβ

o

(Xn); (38)

(2)
m

∑
i=1

Aiβ

o

(X1)⊆
m

∑
i=1

Aiβ

o

(X2)⊆ ·· · ⊆ ø
m

∑
i=1

Aiβ

o

(Xn). (39)

Proof. Suppose 1≤ i ≤ j ≤ n, thenXi ⊆ X j. (1) Clearly,
Xi ∩ X j = Xi. We have ∑m

i=1 Aiβ
o(Xi) =

∑m
i=1 Aiβ

o(Xi ∩X j) ⊆ ∑m
i=1 Aiβ

o(Xi)∩∑m
i=1 Aiβ

o(X j). Thus

∑m
i=1 Aiβ

o(Xi) = ∑m
i=1 Aiβ

o(Xi) ∩ ∑m
i=1 Aiβ

o(X j). So we

have
m

∑
i=1

Aiβ

o

(Xi)⊆
m

∑
i=1

Aiβ

o

(X j).

Therefore, it follows that

m

∑
i=1

Aiβ

o

(X1)⊆
m

∑
i=1

Aiβ

o

(X2)⊆ ·· · ⊆
m

∑
i=1

Aiβ

o

(Xn).

(2) Clearly, Xi ∪ X j = X j. we have ∑m
i=1 Aiβ

o
(X j) =

∑m
i=1 Aiβ

o
(Xi ∪X j) ⊇ ∑m

i=1 Aiβ
o
(Xi)∪∑m

i=1 Aiβ
o
(X j). Thus

∑m
i=1 Aiβ

o
(X j) ⊇ ∑m

i=1 Aiβ
o
(Xi) ∪ ∑m

i=1 Aiβ
o
(X j). So we

have
m

∑
i=1

Aiβ

o

(Xi)⊆
m

∑
i=1

Aiβ

o

(X j).

Therefore,

m

∑
i=1

Aiβ

o

(X1)⊆
m

∑
i=1

Aiβ

o

(X2)⊆ ·· · ⊆
m

∑
i=1

Aiβ

o

(Xn).

Theorem 5.Let A1∪A2∪·· ·∪Am 6=∅. Then

(1)∪m
i=1Aiβ

o(X)⊆
m

∑
i=1

Aiβ

o

(X) (40)

(2)∪m
i=1Aiβ

o
(X)⊇

m

∑
i=1

Aiβ

o

(X) (41)

Proof. First prove (2). For∀x ∈ ∑m
i=1 Aiβ

o
(X), from

Theorem 1, we have∀i,e(TAi(x),X) < 1 − β , thus
maxm

i=1 e(TAi(x),X) < 1 − β . Since for ∀x ∈ U ,
maxm

i=1 e(TAi(x),X) ≤ e(T∪m
i=1Ai(x),X), we have

e(T∪m
i=1Ai(x),X) < 1− β , i.e.x ∈ ∑m

i=1 Aiβ
o
(X). Therefore,

∪m
i=1Aiβ

o
(X) ⊇ ∑m

i=1 Aiβ
o
(X). By the definition of the

variable precision multi-granulation model based on
tolerance relation, we have

∪m
i=1Aiβ

o(X) =∼ ∪m
i=1Aiβ

o
(∼ X).

From the formula (2) in this theorem, we have

∼ ∪m
i=1Aiβ

o
(∼ X)⊆∼

m

∑
i=1

Aiβ

o

(∼ (X) =
m

∑
i=1

Aiβ

o

(X),

i.e.

∪m
i=1Aiβ

o(X)⊆
m

∑
i=1

Aiβ

o

(X).

So (1) is held.
Theorem 6.Let A1∩A2∩·· ·∩Am 6=∅. Then

(1)∩m
i=1Aiβ

o(X)⊇
m

∑
i=1

Aiβ

o

(X); (42)

(2)∩m
i=1Aiβ

o
(X)⊆

m

∑
i=1

Aiβ

o

(X). (43)

Proof. (1) For ∀x ∈ ∑m
i=1 Aiβ

o(X), it follows that

∃i,e(TAi(x),X) ≤ β from Definition 1. Thus
minm

i=1 e(TAi(x),X)≤ β . Since

m
min
i=1

e(TAi(x),X)≥ e(T∩m
i=1Ai(x),X),

e(T∩m
i=1Ai(x),X)≤ β

for ∀x ∈U , i.e.
x ∈ ∩m

i=1Aiβ
o(X).

Thus∩m
i=1Aiβ

o(X) ⊇ ∑m
i=1 Aiβ

o(X). (2) ∩m
i=1Aiβ

o
(X) =∼

∩m
i=1Aiβ

o(∼ X). From the formula (1),

∼ ∩m
i=1Aiβ

o(∼ (X)⊆∼
m

∑
i=1

Aiβ

o

(∼ X) =
m

∑
i=1

Aiβ

o

(X),

i.e.

∩m
i=1Aiβ

o
(X)⊆

m

∑
i=1

Aiβ

o

(X).

Theorem 7.It is held that

(1)
m

∑
i=1

Aiβ

p

(U) =
m

∑
i=1

Aiβ

p

(U) =U ; (44)

(2)
m

∑
i=1

Aiβ

p

(∅) =
m

∑
i=1

Aiβ

p

(∅) =∅. (45)

(3)
m

∑
i=1

Aiβ

p

(∼ X) = ∼
m

∑
i=1

Aiβ

p

(X); (46)

(4)
m

∑
i=1

Aiβ

p

(∼ X) = ∼
m

∑
i=1

Aiβ

p

(X). (47)
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(5)β1 ≥ β2 ⇒
m

∑
i=1

Aiβ1

p

(X)⊇
m

∑
i=1

Aiβ2

p

(X); (48)

(6)
m

∑
i=1

Aiβ1

p

(X)⊆
m

∑
i=1

Aiβ2

p

(X); . (49)

(7)
m

∑
i=1

Aiβ

p

(X ∩Y )⊆
m

∑
i=1

Aiβ

p

(X)∩
m

∑
i=1

Aiβ

p

(Y ). (50)

(8)
m

∑
i=1

Aiβ

p

(X ∪Y )⊇
m

∑
i=1

Aiβ

p

(X)∪
m

∑
i=1

Aiβ

p

(Y ). (51)

(9)
m

∑
i=1

Aiβ

p

(X ∩Y )⊆
m

∑
i=1

Aiβ

p

(X)∩
m

∑
i=1

Aiβ

p

(Y ). (52)

(10)
m

∑
i=1

Aiβ

p

(X ∪Y )⊇
m

∑
i=1

Aiβ

p

(X)∪
m

∑
i=1

Aiβ

p

(Y ). (53)

Proof. The proof of it is similar to Theorem 3.
Theorem 8.Let X1 ⊆ X2 ⊆ ·· · ⊆ Xn ⊆U . Then

(1)
m

∑
i=1

Aiβ

p

(X1)⊆
m

∑
i=1

Aiβ

p

(X2)⊆ ·· · ⊆
m

∑
i=1

Aiβ

p

(Xn); (54)

(2)
m

∑
i=1

Aiβ

p

(X1)⊆
m

∑
i=1

Aiβ

p

(X2)⊆ ·· · ⊆ ø
m

∑
i=1

Aiβ

p

(Xn). (55)

Proof. The proof of it is similar to Theorem 4.
Theorem 9.Let A1∪A2∪·· ·∪Am 6=∅. Then

(1)∪m
i=1Aiβ

p(X)⊇
m

∑
i=1

Aiβ

p

(X); (56)

(2)∪m
i=1Aiβ

p
(X)⊆

m

∑
i=1

Aiβ

p

(X) (57)

Theorem 10.Let A1∩A2∩·· ·∩Am 6=∅. Then

(1)∩m
i=1Aiβ

p(X)⊆
m

∑
i=1

Aiβ

p

(X); (58)

(2)∩m
i=1Aiβ

p
(X)⊇

m

∑
i=1

Aiβ

p

(X). (59)

5 The Relationships of Variable Precision
Multi-Granulation Rough Set

Theorem 11.The following two results are held:

(1)
m

∑
i=1

Aiβ

p

(X)⊆
m

∑
i=1

Aiβ

o

(X); (60)

(2)
m

∑
i=1

Aiβ

p

(X)⊇
m

∑
i=1

Aiβ

o

(X). (61)

Proof. (1) For∀x ∈ ∑m
i=1 Aiβ

p(X), ∃Ai ∈ {A1,A2, · · · ,Am}

such thate(TAi(x),X) ≤ β . Then we obviously havex ∈
∑m

i=1 Aiβ
o(X). Thus∑m

i=1 Aiβ
p(X)⊆ ∑m

i=1 Aiβ
o(X).

(2) Similar to the proof of (1), it is not difficult to prove
∑m

i=1 Aiβ
p
(X)⊇ ∑m

i=1 Aiβ
o
(X).

Theorem 11 reveals the relationships between variable
precision multi-granulation optimistic approximation and
variable precision multi-granulation pessimistic
approximation base on tolerance relation. We can
conclude that the variable precision multi-granulation
pessimistic lower approximation is included in the
variable precision multi-granulation optimistic lower
approximation; the variable precision multi-granulation
optimistic upper approximation is included in the variable
precision multi-granulation pessimistic upper
approximation.

Theorem 12.It is held that

(1)
m

∑
i=1

Ai

o

(X)⊆
m

∑
i=1

Aiβ

o

(X); (62)

(2)
m

∑
i=1

Ai

o

(X)⊇
m

∑
i=1

Aiβ

o

(X); (63)

(3)
m

∑
i=1

Ai

p

(X)⊆
m

∑
i=1

Aiβ

p

(X); (64)

(4)
m

∑
i=1

Ai

p

(X)⊇
m

∑
i=1

Aiβ

p

(X). (65)

Proof. For∀x ∈ ∑m
i=1 Ai

o(X), ∃Ai ∈ {A1,A2, · · · ,Am} such
that TAi(x) ⊆ X . So e(TAi(x),X) = 0 ≤ β , and
x ∈ ∑m

i=1 Aiβ
o(X). Thus ∑m

i=1 Ai
o(X) ⊆ ∑m

i=1 Aiβ
o(X).

Similarly, it is not difficult to prove other formulas.
Theorem 12 shows the relationships between variable
precision multi-granulation rough set base on tolerance
relation and the classical multi-granulation rough set. We
can conclude that the variable precision multi-granulation
lower approximation is included in the classical
multi-granulation lower approximation rough set; the
variable precision multi-granulation upper approximation
is included in the classical multi-granulation upper
approximation rough set.

6 The Approximate Accuracy of Variable
Precision Multi-Granulation Rough Set

The uncertainty of the rough set is due to the existence of
a borderline region. The bigger the borderline region of a
set is, the lower the accuracy of the set is. To more
precisely express this idea, we introduce measure to
incomplete variable precision multi-granulation rough set
as follows.
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Definition 3. Optimistic multi-granulation and
pessimistic multi-granulation, variable precision
optimistic multi-granulation and variable precision
optimistic multi-granulation approximation accuracy ofX
are denoted byαo,αp,αβ

o and αβ
p respectively, and

defined as

αo(
m

∑
i=1

Ai,X) = |
m

∑
i=1

Ai

o

(X)|/|
m

∑
i=1

Ai

o

(X)| (66)

αp(
m

∑
i=1

Ai,X) = |
m

∑
i=1

Ai

p

(X)|/|
m

∑
i=1

Ai

p

(X)| (67)

αβ
o (

m

∑
i=1

Ai,X) = |
m

∑
i=1

Aiβ

o

(X)|/|
m

∑
i=1

Aiβ

o

(X)| (68)

αβ
p (

m

∑
i=1

Ai,X) = |
m

∑
i=1

Aiβ

p

(X)|/|
m

∑
i=1

Aiβ

p

(X)| (69)

Definition 4. Variable precision optimistic
multi-granulation and variable precision optimistic
multi-granulation approximation accuracy of according to
∪m

i=1Ai and∩m
i=1Ai are denoted byµβ

o , µβ
p , ηβ

o and ηβ
p

respectively, and defined as

µβ
o (∪

m
i=1Ai,X) = |∪m

i=1Ai
o(X)|/|∪m

i=1Ai
o
(X)|; (70)

µβ
p (∪

m
i=1Ai,X) = |∪m

i=1Ai
p(X)|/|∪m

i=1Ai
p
(X)|; (71)

ηβ
o (∩

m
i=1Ai,X) = |∩m

i=1Aiβ
o(X)|/|∩m

i=1Aiβ
o
(X)|; (72)

ηβ
p (∩

m
i=1Ai,X) = |∩m

i=1Aiβ
p(X)|/|∩m

i=1Aiβ
p
(X)|. (73)

Theorem 13.It is held that

(1)αo(
m

∑
i=1

Ai,X)≤ αβ
o (

m

∑
i=1

Ai,X); (74)

(2)αp(
m

∑
i=1

Ai,X)≤ αβ
p (

m

∑
i=1

Ai,X). (75)

Proof. (1) By Theorem 12, we have

|
m

∑
i=1

Ai

o

(X)| ≤ |
m

∑
i=1

Aiβ

o

(X)|

and

|
m

∑
i=1

Ai

o

(X)| ≥ |
m

∑
i=1

Aiβ

o

(X)|.

Therefore,

αo(
m

∑
i=1

Ai,X) = |
m

∑
i=1

Ai

o

(X)|/|
m

∑
i=1

Ai

o

(X)|

≤ |
m

∑
i=1

Aiβ

o

(X)|/|
m

∑
i=1

Aiβ

o

(X)|.

Similarly, it is not difficult to prove (2) .
Theorem 13 shows the relationships between

incomplete variable precision multi-granulation rough set
base on tolerance relation and the classical
multi-granulation rough set. We can conclude that
incomplete variable precision Multi-granulation rough set
based on tolerance relation have a higher approximation.

7 Conclusion

The paper introduced variable precision multi-granulation
model based on tolerance relation in incomplete
information system and formed incomplete variable
precision multi-granulation model. Such model is the
combination of the incomplete variable precision rough
set and multi-granulation rough set. Because we use
variable precision, we improve the approximate
accuracies, and therefore get the result that incomplete
variable precision multi-granulation model rough set has
further bigger lower approximation and further smaller
upper approximation, through discussing relationships
among them. The next job for us is to mine learning rules
according to our model.
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