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Abstract: Several recent papers have discussed the digital versithe @bhomology group for digital images, and some reseesche
calculate digital cohomology groups of some special twdog¢-dimensional digital images. In this paper, we deteerttie simplicial
cohomology groups of some minimal simple closed curves &eddigital surfaceMSS. Also we give a general algorithm for
computing digital cohomology groups of finite dimensionigiitél images.
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1 Introduction by a simplicial complex topologically representing (up to
isomorphisms of pictures) the picture. Gonzalez-Diaz et
Homology and cohomology are both topological al. [14] exhibit cohomology in the context of structural
invariants. But there are some differences between thenpattern recognition and introduce an algorithm to
one of the matter is by the multiplication, called cup compute representative cocycles in 2D.
product, cohomology groups have also ring structure.
This makes cohomology stronger and more useful than.. Kﬁlrgclta ﬁnd Elge1[2] Sthngonds.oTEi results abo#ththe
homology since cohomology can separate between som impiicial nomology o \gital - Images. ey

certain algebraic objects that homology can not. Thus jfinvestigate some fundamental properties of cubical
rtggmology groups of digital images. They also calculate

Ubical homology groups of certain 2-dimensional and

cohomology as groups, there can be differences on thei _dimensional digital imaged§.

ring structure.
Digital topology [19, 23] has been used in different Burak and Karacad] compute a simplicial homology
image processing and computer graphics algorithms fogroup of some specific digital images, they define ring
thirty years. It addresses the fundamental properties ofnd algebra structures of digital cohomology with the cup
binary object connectivity in two dimensional (2D) and product, and they prove a special case of the
three dimensional (3D) digital images. Concepts andBorsuk-Ulam theorem for digital images.
results of Digital Topology are used to specify and justify
some important low-level image processing algorithms
including algorithms for thinning, boundary extraction,
object counting and contour filling. The properties of
digital images with tools from Topology (including
Algebraic Topology) are required to characterize by many
researchersl]- [9] [17, 21, 23, 25]. Simplicial homology Demir and Karacall0] compute simplicial homology
groups of digital images have been studied by severagroups of the digital surfacdglSSgiMSSg, MSS, and
researchersl] 8,10, 12]. Boxer et al. extend results of] MSSiMSS. They also presenti-regularity of two
about computing simplicial homology groups of digital ordered pair of digital simplices, give the definition of
images. cupd4 product over digital images by using regularity
Gonzalez-Diaz and Real$] obtain the cohomology notion, and study some basic properties of the squaring
ring of a three-dimensional digital binary-valued picture operations11].

Pilarczyk and Real 72 introduce algorithms to
compute homology, cohomology and related operations
on cubical cell complexes by using a technique based on a
chain contraction from the original chain complex to a
reduced one that represents its homology.
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This paper is organized as follows: First we recall LetX C Z"™ andY C Z™ be digital images wittxg and
some basic notions on digital images. Then we determine;-adjacency respectively. Then the functibnX — Y is
the simplicial cohomology groups of some certain called(ko, k1)-continuoug5,24] if for every kp-connected
minimal simple closed curves and a surface. Finally, wesubset of X, f(U) is akj-connected subset §¥f We say

give a general algorithm for any finite dimensional digital that such a function is digitally continuous.

image that shows how we make those calculations.

2 Preliminaries

Let Z" be the set of lattice points in the-dimensional
Euclidean space wherg is the set of integers. We say
that (X, k) is a (binary) digital image wher¥ C Z" and
K is an adjacency relation for the membersofwe use a
variety of adjacency relations in the study of digital
images.

For a positive integerwith 1 <| < nand two distinct
pOintSp = (pla p2,..., pn)’ q= (CILQZa ---aQn) € an p and
g arec-adjacent 6] if

(1) there are at modtindicesi such thatp; — | = 1;
and

(2) for all other indices such thatp; — gi| # 1, pi = G-

Another commonly using of the notatian reflects
the number of neighborge Z" that a given poinp € Z"
may have under the adjacency. For example,# 1 we
havec; = 2-adjacency; ih = 2 we havec; = 4-adjacency
andc, = 8-adjacency; ih = 3 we havec; = 6-adjacency,
¢, = 18-adjacency, andz = 26-adjacencyf]. Given a
natural numbel in conditions (1) and (2) with X | <n,
| determines each of the-adjacency relations df" in
terms of (1) and (2)16] as follows.

Ke{Zn(nzl), 3 1(n>2),

r—2
3N Z)c{‘z”-t ~1(2<r<n-1,n> 3)} (2.1)
t=

The pair (X,K) is considered in a digital picture
(Z",k,k,X) for n > 1 in [2,3,5,17], which is called a
digital imagewhere(k,K) € {(k,2n),(2n,3"—1)}. Each
of Kk andK is one of the generat-adjacency relations.
We usually do not permit that and Kk both equal &
when n > 1, because of the digital connectivity
paradox R0]. For instance,(k,K) € {(4,8),(8,4)} and
{(6,18),(6,26),(26,6),(18,6)} are usually considered in
7.5 andZ>, respectively$, 17,23, 24].

A digital intervalis a set of the form

[a,blz ={zeZ|a<z<b}

wherea,b € Z witha < h.

Let k be an adjacency relation @'. A k-neighbor of
a lattice pointp is k-adjacent t. A digital imageX c Z"
is k-connected18] if and only if for every pair of different
pointsx,y € X, there is a se{xg, Xy, ...,X } of points of a
digital imageX such thak = xg, y = X, andx; andx; 1 are
k-neighbors wheré=0,1,...,r — 1. A k-componenbf a
digital imageX is a maximak-connected subset of.

Let X be a digital image withk-adjacency. If
f :[0,m]z — X is a(2,k)-continuous function such that
f(0) = x and f(m) =y, then f is called adigital path
fromxtoyin X. If f(0) = f(m) then thex-path is said to
be closed and the function is called &-loop. Let
f :[0,m— 1]z — X be a(2,«)-continuous function such
that f(i) and f(j) are k-adjacent if and only if
j =i+1 mod m Then the sef ([0,m—1]z) is called a
simple closed-curve A pointx € X is called ak-corner,
if Xis k-adjacent to two and only two poinysz € X such
thaty and z are k-adjacent to each otheB][ Moreover,
thek-cornerxis calledsimpleif y,z are notk-corners and
if Xis the only pointk-adjacent to botly, z[2]. X is called
a generalized simple closedt-curve if what is obtained
by removing all simple<-corners ofX is a simple closed
Kécurve Bl. If (X,k) is a k-connected digital image in
z,

X = N3 (x) X,

whereN;(x) = {X € Z3: x andx are 26-adjacept[2, 3].
Generally, if(X, k) is ak-connected digital image i&",
IX[*=N;(x)NX, where

Ni(x) = {X € Z" : xandx arec,-adjacen} [17].

Let X ¢ Z" andY C Z™ be digital images withkg
andki-adjacency respectively. A functioh: X — Y is a
(Ko, K1)-isomorphism [7] (called (Ko,K1)-homeo-
morphism in #]) if f is (Ko, k1)-continuous, bijective and
f=1:Y — X is (k1,Kp)-continuous, in which case we
write X %(K(LKl) Y.

Definition 2.1.[17] Let c* := {x0,X1,...,Xn} be a closed
K-curve inZ? where {k,K} = {4,8}. A point x of the
complement® of a closedk-curvec® in Z? is said to be
in the interior of c* if it belongs to the bounded
K-connected component aff. The set of all interior
points ofc* is denoted bynt(c*).

Definition 2.2. [17] Let (X,k) be a digital image irZ",
n>3 and X = Z" — X. Then X is called aclosed
k-surfaceif it satisfies the following.

(1) In case thatk,k) € {(k,2n),(2n,3"— 1)}, where
the k-adjacency is taken from Definition.2 with
Kk # 3" —2"— 1 andK is the adjacency oK, then

(a) for each pointx € X, [X[* has exactly one
K-componenk-adjacent tog;

(b) |X|* has exactly twa-component&-adjacent
to x; we denote byC* and D** these two components;
and

(c) for any pointy € N¢(X) N X, Ng(y) NC* #£ 0
andNg(y) N D** £ 0, whereN (X) means the-neighbors
of x.

Further, if a closed-surfaceX does not have a simple
K-point, thenX is called simple.
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(2) In case thatk, k) = (3"—2"—1,2n), then
(a) X is k-connected,
(b) for each pointx € X, |X* is a generalized
simple closed-curve.
Further, if the imagéX|* is a simple closed-curve, then
the closedk-surfaceX is called simple.

Definition 2.3.[26] Let Sbhe a set of nonempty subsets of

a digital image(X,k). The members ofS are called
simplexes of X, k) if the following holds:

(i) If pandqg are distinct points 0§ € S, thenp andq
arek-adjacent.

(i) If se Sand O£t C s, thent € S(note this implies

every pointp that belongs to a simplex determines a

simplex{p}).
An m-simplex is a simpleS such thaiS = m+ 1.

LetP be a digitaim-simplex. IfP’ is a nonempty proper
subset oP, thenP’ is called a face oP.

Definition 2.4. [1] Let (X,k) be a finite collection of
digital m-simplices, 0< m < d for some nonnegative
integerd. If the following statements hold, theiX, k) is
called a finite digital simplicial complex:

(1) If P belongs toX, then every face ofP also
belongs toX.

(2) If PQ € X, thenPNQ is either empty or a
common face oP andQ.
The dimension of a digital simplicial complex is the
biggest integem such thaX has amm-simplex.

Cj(X) is a free abelian group with basis all digital
(k,q)-simplices inX [1].
Corollary 2.5. [8] Let (X,k) C Z" be a digital simplicial
complex of dimensiom. Then for allg > m, C§(X) is a
trivial group.
Definition 2.6.[1] Let (X,k) C Z" be a digital simplicial
complex of dimension m. The homomorphism
dq : Cq (X) = Cg_1(X) defined by

q
Z{—Hf < PPy ey Piy ony Py =
i=0

0, 0> m

P q < m:
Fa(< PosPLy s Py =) =

is called a boundary homomorphism whepe means
deleting the pointp;. Then for all 1< g < m, we have
dqflo dq =0.

Theorem 2.7.[1] Let (X,k) C Z" be a digital simplicial
complex of dimensiom. Then

cx0) A o) 20

is a chain complex.

0,
CK(X):0 2

Definition 2.8. [1] Let (X,k) be a digital simplicial
complex. The group of digital simpliciaj-cycles is

Z5(X) = Ker 33 = {0 € C(X)|9q(0) = O}

and the group of digital simplicial-boundaries is

B (X) =Im dg1
={1€C§(X)|0g+1(0) = T for 0 €Cq1(X)}.

So theq" digital simplicial homology group is
Hq (X) = Zg(X)/Bq (X).

Theorem 2.9. [1] If f : X =Y
(Ko, K1)-isomorphism, then for atjf <m

Hg®(X) = Hg*(Y).

Theorem 2.10. [8] Let (X,k) be a directed digital
simplicial complex of dimensiom.

Q) HC’;(X) is a finitely generated abelian group for
everyq > 0.

(2) Hg (X) is a trivial group for alig > m.

(3) Hg (X) is a free abelian group, possibly zero.
Definition 2.11.[21] Let (X, k) C Z" be a digital simlicial
complex anccg be an abelian group whose bases are all
(k,q)-simplexes inX. C**(X) = {C%*(X), &} =0 is the
digital cochain complex oX where

CH¥ (X) =Hom(C§ (X), G)
={c:C§(X) — GJc is a homomorphisi

is a digital

Here & : C#¥(X) — Ct1K(X) is the digital cochain
homomorphisnand defined adqy(c)(a) = c(dq+-1(a)) for
¢ € CH(X), a€ C{1(X). Z9(X;G) is the kernel ofdq
and called group ofdigital cocyclesof (X,k) with
coefficients inG, B%*(X;G) is the image ofd,_; and
called group ofdigital coboundariesof (X,k) with
coefficients inG, and (noting that sincé? = 0, 6% = 0)

HI%(X; G) = Z% (X; G) /B (X; G)

is called thedigital ot cohomology groupf (X, k) with
coefficients inG.

We use the(ct, cq) representation to denote the value
of ¢4 on cq wherect is theg-dimensional digital cochain
and cq is the g-dimensional digital chain. Using this
notation, we can state the cohomology operator

(acd, dgr1) = (cq, 0dq+1)

such thatdq;1 € C, 4 (X). Recall that the grougy (X) of
digital g-chains is free abelian; it has a standard basis
obtained by orienting the digitabg-simplices of X
arbitrarily and using the corresponding elementary chains
as a basis. Lefog}qel be the collection of oriented
digital (k,q)-simplices. Under this circumstance the
elements of Cj(X) are represented as finite linear
combinationsy ny o of the elementary digital chains, .

Let o be the elementary digital cochain with
coefficients such that

(04,0q) =1and(g,,0p) =0forall B #a.
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Then ifg € G, we letgo,, denote the digital cochain such
that
(90g,0q) = gand(go,,gg) =0 forall B # a.

By using this notation, we write

= Zgaog.

Then

6ct =% 9a(00g)
wheredoy =3 & T} In this representation, the summation
is taken over all dlgltatqjL 1-simplicest; havingo as a
face andgj = 1 is the sign with whicto appears in the

expression fod t; where
g+l

ot = i; & 0g;.

Theorem 2.13[21] If (X,k) is a singleton digital image,
then

G, q=0;

g,k . _ P )

H (X,G)_{Q q>0

whereG is an abelian group.

3 Simplicial Cohomology Groups of Some
Digital Images

By using the analogue argument i21], simplicial

complexesC8(X) has for a basig(co), (c1), (C2) }, C3(X)
has for a basigey = (CoC1), €1 = (CoC2), €2 = (C1C2) }, and
C8(X) has for a basi§o = (coc1C2)}. Hence we get the
following short sequence

7 do

02 c8(x) — 2~ cB(x) C8(X) 0,

by using the sequence above and Definition 2.11 we get
the following short sequence

02 co8(x) 2 c18(x) 2 c28(x) — -0
whereC%8(X) = Hom(C§(X),Z) andq € {0,1,2}. Since

Ker 8922 {0} for all g > 3, H%®(X) is a trivial group.

We first determine the kernel af°. Let's take any
general 0-cochairp® = _inici*. p? is a cocycle if and
only if 5%(p°) =0 if andlznly ifnp =Ny = ny, = n. So we
can write 0-cochain ag® = n_ici* and this gives us

&

cohomology groups of several digital images have been

computed in following theorems.

Theorem 3.1.Let X be a digital image irnZ? with the
points{co = (0,0),c; = (1,0),c, = (1,1)} and adjacency
relation k = 8 (see Figure 1). The digital simplicial
cohomology groups oX are

Z,q=0;
q78 . . I 1
0
o "‘(1'.0'}'"}
Fig. 1: X = {co = (0,0),¢1 = (1,0),c2 = (1, 1)}

Proof. If we use the dictionary ordering, we can dirécas
Co < C1 < Cz. Then we have the following simplicial chain

Z°8(X) = Z. And since Im 51 = {0}, we get
HO8(X) = Z.
Since

(0t 0) = (r*,0,0) =r'(ep+ &2 —€1) =0
and

(8's!,0) = (sh,0,0) =s'(ep+ & —€1) =0
such thatr! = €} + €} ands' = € + €}, r* ands! are 1-
cocycles. So

748(X) = Spar{rt,s'} = 72

2
We need to find the image @. Let p°® = zonici* be
=

any general 0-cochain. Since

(8%, e0) = —1 (8%p,e) = —1
(6%, e0) =1 (6%, ) = —1
<5OC23 > = 1 <5OC23 > - 1

we can writed°c; = —ej— €}, 8°¢; = €} — & andd°ch =
€; +&5. Accordingly, from the equation below
0/ 0 2 0
5°(p°) =3 nid’(cf)
2

=(—no+Np)ej+ (—ng+ N2)€; + (—N1+ N2)es,
we find
B:8(X) =Im &°

={no€}+ M€} + (—Ng+ M) : no, Ny € Z} =2 72,
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ThusH8(X) = {0}. whereC%4(MSG,) = Hom(C4(MSG),Z) andq € {0,1}.
Since SinceKer 89 = {0} for all q > 2, H4(MSG,) is a trivial
group.
(8'p',0) = (p',0,0) = pl(ep—e1+ &) =1, 7

Let's p° = Eoni ¢’ be any general 0-cochain. Since
&1 (pt) = {o*} for any general 1-cochaip! = Z}n.a So .

5% 3%, e) =1 5%, e5) =1
B28(X) = Im &' = Z and sinceKer 52 = 7, we can write < 0 &) = < ch ) < 0 f )
H28(X) = {0}.0 (07cper)=—1 (d'cse3)=—-1 (dcge5)=-1
Theorem 3.2.If (8%, &) = (8%;,e3) =1 (8% e5) =1
0 ~x _ 0 ~x _
MSG = {co = (~1.~1).¢1 = (~1.0).c = (~1.1), (i, en) = 1 <5OC4’E4> =1 (0cne)=—1
C3:(0,1),C4:(1,1),C5:(1,0), <6 CZ’ > <5 CE,E4>:—1 <6 C*ve7>:1
Co = (1,-1),c7=(0,~1)} (0%, €2) =
(see Figure 2), then the digital simplicial cohomology We can write
ﬂ\/IS * * * * * o
groups ofMSG, are 80, = —ef— 8 — &+ €
HA4(MSG; Z) = {% Q201 Fci=e ¢ P =€+ e
o 8%; = €~ & 8% = —e5+ €
6% = €, — €5 8% = —e5+ €
by G ,(m) p? is a cocycle if and only if
: : 7 _
i 3°(p°%) = Eoni5°(0')
cro *o =
: ; =(—no+n1)€y+ (=M +M2)€f + (—N2+n3)e;
'i""'m!'l """ @ + (—N3+Nn4)€3 + (N4 — Ns)€j + (N5 — Ng ) €5
1-1) - 1,1) " .
( : ( + (Ne — n7)€5 + (N7 — No)€7
Fig. 2: MSG =0 (3.1)

ifandonlyifno:n1:n2:n3:n4:n5_ne_n7_n

Proof. By using the dictionary ordering, we can direct the Thus we can state 0-cochain @8 = n chu and this
points ofMSC, ascy < €1 < Cp < €7 < €3 < Cg < C5 < C4. 0.4 1
Then we have the following simplicial chain complexes: M&aNSZ™*(MSG) = Z. Sincelm 6™~ = {0}, we find

4(MSG,) has for a basis Ho4(MSG) = Z.
Co(MSG) We need to find the image &f. By the equatior3.1),
{(co), (c1),(c2),(Ca). (Ca),(C5), (Ce), (Cr) }, we get
C}H(MSG,) has for a basis BY4(MSG) =Im &°
3 6 7
{0 = (coC1), €1 = (C1C2), €2 = (C2C3), €3 = (C3Ca), :{_Zjnia* +5 (-m)e+ zinie’§ n €L}
€4 = (CsC4), 5 = (C6Cs), €5 = (C7Cs), €7 = (CoCr) }, Zf; =4 =
andCq(MSG,) = {0} forall > 2. , - s
Thus, e obtain the following short sequence SinceKer 6+ = Z°, we haveH~*(MSG) = Z. [
Theorem 3.3.Let
o p) a
0 — C{(MSG) —~ C3(MSG) ——0, MSG = {co=(~1,~1),c1 = (-1,0),.c; = (0, 1),

by using the sequence above and Definition 2.11 we obtain C3=(1,0),ca=(1,-1).cs=(0,~2)}

the following short sequence (see Figure 3), then we have
1 0 1 8 . _ Za q= 07 1
0% co4mse) — L cr4mse) —E -0 HY*(MSG;2) = { 0, q#£0.1.

(@© 2016 NSP
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. p? is a cocycle if and only if
(-wl'."‘ .00 0/ 10y _ & 1 50,
: ; () = y ne(e)
: =
(-1,-1}6‘ ‘.I(l,-l) :(—no + nl)eé + (—nl + nz)ei + (—n2 + n3)%*
L + (N3 — )65 + (N4 — Ns)e + (o + Ns)el
- =0 (3.2)
Fig. 3: MSG

if and only if np = ny = np = ng = ng = ns = n. Thus we
5

can state 0-cochain ag’ = n zoci* and this means
=

Z Since Im o~

Z°8(MSG) = 1~ {0}, we find

Proof. By using the dictionary ordering, we can direct the HO8(MSG) =

points ofMSG ascy < €1 < €5 < Cp < €4 < C3. Then we
have the following simplicial chain complexes:
C8(MSG) has for a basis

{<CO>7 <Cl>7 <C2>7 <C3>7 <C4>7 <C5>}7
C8(MSG) has for a basis
(cacs),

{eo = (coc1),e1 = (C1C2), & = (CoC3), 03 =

€4 = (CsCa), 85 = (CoCs) },

andC§(MSG) = {0} for all q > 2. Thus, we obtain the
followmg short sequence

0% c3MSG) — 2~ C3MSG) — 2~ 0,

by using the sequence above and Definition 2.11 we have

the following short sequence
5! ~o8 0 18 s
0 —— C’®¥(MSG) —— C*®¥(MSG) —— 0.

whereC*¥(MSG) = Hom(C§(MSG),Z) andq € {0,1}.
SinceKer 692 {0} for all g > 2, H*¥(MSG) is a trivial

group.
5
Let's p° = Z}nici* be any general 0-cochain. Since

By the equatlor(3.2), we have

B¥(MSG) =Im &°

={N1€5+ N2€] + N3E; — Nye; — Ns€;
5
+ Zni% N eZ}
=
~75.
SinceKer 6 = 7%, we getH8(MSG) = Z. O

Theorem 3.4.The digital simplicial cohomology groups
of MSS (see Figure 4) are

Z, q=0;
HIOMSS;Z) = { 2%, q=1;
0, qgq#0,1.

7 e

(8% e0)=-1 (8°%e)=1 (8% e3) =
(8%, &5 >= “1 (%) =1 (5°;e) = c )
<5 Cla > = <60C§7e2> =1 <5 C;:)? > =
(8%;,e1) = -1 (8%, &) = (8¢, es) Fig. 4: MSS
we can write
3%, = —eh—ek 3%c; =6 +e; Proof. Here we direct MSS again with using the
3% = e —e; 3% = —e5+ € dictionary ordering. We have the following simplicial
0 - 0. L, chain complexes:
S =6-6 O°Cg=—€;+6€ C8(MS$) has for a basi§(co), (C1), (C2), ..., (Co5)},
(@© 2016 NSP
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C8(MS$) has for a basis

{eo = (coc1), €1 = (CoCs), €2 = (CoC16), €3 = (C1Co),
€4 = (C1Ca), 85 = (C1C15), 85 = (C2C14),€7 = (CaC3),
€ = (C4C3),69 = (C3Cg), €10 = (C3C13),€11 = (C5C4),

€12 = (C4C7),€13 = (C5Cs), €14 = (C5C12), €15 = (C6C7),
e16 = (CsC11),€17 = (C7Cq), €18 = (C7C10), €19 = (CgCo),

€20 = (C10Ca), €21 = (C13Ca), €22 = (CyC25),€23 = (C11C10),

€24 = (C10C24), €25 = (C12C11), €26 = (C11C23),

Thus we can write digital zero cochains as follows:

5% = —e5—¢i &
57} — &~ &5 ¢~ &
5°; — & e~

0 *

cz=e;+e—e—¢€j
5%} = & — e +el1 —€ip
50‘% =€ —€;— €3~ €5
3% = ej3—€is—€is

%5 = —ej,+ejs—ej;—€efg

8% = e +ejs e

3%¢i5 = €10 — €51+ €59 — €30
3%y =5 — 59+ — 5
—e3+e3—6y
—€7— €33 €35
%7 = es5— €55 — €y

3%¢1g = €54+ €56 — €55 — €39
8%q = €3, + €55 — €l

%30 = €30+ €10+ €31 — €2

0 * * * *
0°Cr =€39— €41 —€13—€xy

€27 = (C16C12), €28 = (C12C22), €29 = (C14C13),
€30 = (C13C20),€31 = (C15C14), €32 = (C14C19),
€33 = (C16C15),€34 = (C15C18), €35 = (C16C17),
€36 = (C17C18),€37 = (C17C22), €38 = (C18C19);
€39 = (C18C21), €40 = (C19C20), €41 = (C21C20),
€42 = (C20C25), €43 = (C22C21), €44 = (C21C24),
€45 = (C22C23), €46 = (C23C24), €47 = (C24C25) },

and C§(MSS) = 0 for all g > 2. Hence, we get the

foIIowmg short sequence

0—2. c(MsS)

and by using above we have the following short sequenceBy virtue of this, we can writq’

% csmsg) -0,

02 cosmsg) — - cLo(Mss) —2 0.

whereC*(MSS) =
SinceKer 69 2 {0} for all g > 2, H¥5(MSS) is a trivial

group.

From the definition

Hom(C$(MSS);

016p=C—Cy O1€1=C11—Cs 01632 =C19—Ci4
016 =C5—Cy 01€17=Cg—C7 01833 =C15—C6
0180 =C1g—Cp 0O1€183=C10—C7 01634 = C18—Cy5
01€3=C2—C;  01€19=C9—Cg  O1€35=C17—C1p
0184=0C4—C1  O01€0=C9—Cip 01636 =C18—C17
0165 =C15—C 0161 =C9—C13 01637 =Cp2—C17
0165 =C14—Cp 01€2=Cp5—Cg 01638 =C19—Ci18

0167=C3—Cy  0183=C10—C11 01639 = Cp1—C18
0163 =C3—C4 01€4=Cp4—Cio 01640 = Co0—C19
0189 =Cg—C3 0185=C11—C12 01841 =Cyo—Cp1

01810 =C13—C3
01611 = C4—Cs
01812 =C7 —C4

016826 = C23—C11
01827 =C12—C16
01828 = C2—C12

01642 = Cp5—C20
01643 = C21—C22
01644 = Co4—C21

01€13=C5—C5  01€9=C13—C14 01645 =C3—Cp2
01€14=C12—C5 01830 =Cp0—C13 01646 = Co4—C23
01€615=C7—Cs 01831 =C14—C15 016847 = Co5—Cp4

Z) andq € {0,1}.

3%, = €35+ €57 — €13 — €5
%55 = €56+ €45 — €6
50034 = €4+ €1y+€Ejs— €7
%35 = €55+ €+ €3

25
Let’s consider any general 0-cochgih= Z}nici*. plis a

%5 = €lg+ &0+ 51 — €
%o = €lg— €0+ €3 —Ehs
8%, = €l — €3+ &35 — 6
8%Ci, = €14~ €5+ €37 — E3g

cocycle if and only if6°p° = 0 if and onlyﬁc
No=N1=---=Npysg=nN.

25
=n Z)Ci* and we say

1=
Z°6(MSSs) = Ker 8° = 7. Besidelm 6! = {0}, we
haveH%8(MSS) ~ 7

When we solve the equation system above, we get

BL6(MS$) = Z?° and since we havKer 6 = 748, we
getH6(MSS) = 723. 0

4 Conclusion

The purpose of this paper is to determine digital
cohomology groups of some special digital images such

as digital circleMSG, and digital spherdiSS, and to

give an algorithm for computing cohomology groups of
digital images. In this work, we first compute digital
cohomology groups of some certain digital closed curves
and a surface. Since these are minimal structures for
digital images, we hope that these computations and
especially the algorithm will be useful in the study of

digital cohomology groups.

(@© 2016 NSP
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An Algorithm for Calculating Cohomology Group
of a Digital Image

Input: A digital sinplicial conplex
of dinmension m, (X,k)cCZzZ".
Qut put: Cohonol ogy group of given
digital sinplicial conplex with
coefficients in Z.

BEG N

Take the coordinates of p+1 points of
digital sinplicial conplex into an
i nteger array A[p+1j[n].
(CO = (C0170027~ .. 7COn)7C1 = (C117C12>'~ ~>Cln)7
C2 = (€21,C22,---,C2n),*,Cp = (C(p)1,C(p)2: - -+ C(p)n))

Order the points with respect to
di ctionary order.

FOR i< 0 TO n DO
if (i<=m)
detect CK(X)
C'¥(X;Z) := Hom(CK (X), Z)

}
el se {CK(X)=0
CK(X;Z)=0

REPEAT
/[While constructingg;, use Definition 2.6

FOR i+ m TO 1 DO
a:Cf(X) = G4 (X)
REPEAT

/IDefinedm 1 as zero homomorphism ar as trivial
homomorphism

//While constructingy, use Definition 2.11

FOR i+ 0 TO m—1 DO
3 :Ci,K(x)_>Ci+l,K(X)
REPEAT

/IDefined_1 as zero homomorphism adg, as trivial
homomorphism

//While constructing #(X,Z), B (X,Z) and H"¥ (X, Z), use
Definition 2.11
FOR i+ 0 TO m DO
detect Z'K(X,Z)
B'"K(X,Z)
HK(X,2) = Z'K (X, Z) /B"¥(X,Z)
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