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Abstract: Several recent papers have discussed the digital version ofthe cohomology group for digital images, and some researchers
calculate digital cohomology groups of some special two or three-dimensional digital images. In this paper, we determine the simplicial
cohomology groups of some minimal simple closed curves and the digital surfaceMSS6. Also we give a general algorithm for
computing digital cohomology groups of finite dimensional digital images.
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1 Introduction

Homology and cohomology are both topological
invariants. But there are some differences between them;
one of the matter is by the multiplication, called cup
product, cohomology groups have also ring structure.
This makes cohomology stronger and more useful than
homology since cohomology can separate between some
certain algebraic objects that homology can not. Thus if
there are some spaces that have the same homology and
cohomology as groups, there can be differences on their
ring structure.

Digital topology [19, 23] has been used in different
image processing and computer graphics algorithms for
thirty years. It addresses the fundamental properties of
binary object connectivity in two dimensional (2D) and
three dimensional (3D) digital images. Concepts and
results of Digital Topology are used to specify and justify
some important low-level image processing algorithms
including algorithms for thinning, boundary extraction,
object counting and contour filling. The properties of
digital images with tools from Topology (including
Algebraic Topology) are required to characterize by many
researchers [1]- [9] [17, 21, 23, 25]. Simplicial homology
groups of digital images have been studied by several
researchers [1,8,10,12]. Boxer et al. extend results of [1]
about computing simplicial homology groups of digital
images.

Gonzalez-Diaz and Real [15] obtain the cohomology
ring of a three-dimensional digital binary-valued picture

by a simplicial complex topologically representing (up to
isomorphisms of pictures) the picture. Gonzalez-Diaz et
al. [14] exhibit cohomology in the context of structural
pattern recognition and introduce an algorithm to
compute representative cocycles in 2D.

Karaca and Ege [12] study on some results about the
simplicial homology of 2D digital images. They
investigate some fundamental properties of cubical
homology groups of digital images. They also calculate
cubical homology groups of certain 2-dimensional and
3-dimensional digital images [13].

Burak and Karaca [9] compute a simplicial homology
group of some specific digital images, they define ring
and algebra structures of digital cohomology with the cup
product, and they prove a special case of the
Borsuk-Ulam theorem for digital images.

Pilarczyk and Real [22] introduce algorithms to
compute homology, cohomology and related operations
on cubical cell complexes by using a technique based on a
chain contraction from the original chain complex to a
reduced one that represents its homology.

Demir and Karaca [10] compute simplicial homology
groups of the digital surfacesMSS18♯MSS18, MSS6, and
MSS6♯MSS6. They also presenti-regularity of two
ordered pair of digital simplices, give the definition of
cup-i product over digital images by using regularity
notion, and study some basic properties of the squaring
operations [11].
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This paper is organized as follows: First we recall
some basic notions on digital images. Then we determine
the simplicial cohomology groups of some certain
minimal simple closed curves and a surface. Finally, we
give a general algorithm for any finite dimensional digital
image that shows how we make those calculations.

2 Preliminaries

Let Zn be the set of lattice points in then-dimensional
Euclidean space whereZ is the set of integers. We say
that (X,κ) is a (binary) digital image whereX ⊂ Z

n and
κ is an adjacency relation for the members ofX. We use a
variety of adjacency relations in the study of digital
images.

For a positive integerl with 1≤ l ≤ n and two distinct
pointsp= (p1, p2, ..., pn), q= (q1,q2, ...,qn) ∈ Z

n, p and
q arecl -adjacent[6] if

(1) there are at mostl indicesi such that|pi−qi| = 1;
and

(2) for all other indicesi such that|pi−qi| 6= 1, pi = qi .
Another commonly using of the notationcl reflects

the number of neighborsq∈ Z
n that a given pointp∈ Z

n

may have under the adjacency. For example, ifn = 1 we
havec1 = 2-adjacency; ifn= 2 we havec1 = 4-adjacency
andc2 = 8-adjacency; ifn= 3 we havec1 = 6-adjacency,
c2 = 18-adjacency, andc3 = 26-adjacency [6]. Given a
natural numberl in conditions (1) and (2) with 1≤ l ≤ n,
l determines each of theκ-adjacency relations ofZn in
terms of (1) and (2) [16] as follows.

κ ∈
{

2n (n≥ 1), 3n−1 (n≥ 2),

3n−
r−2

∑
t=0

Cn
t 2n−t −1 (2≤ r ≤ n−1,n≥ 3)

}
(2.1)

The pair (X,κ) is considered in a digital picture
(Zn,κ ,κ ,X) for n ≥ 1 in [2, 3, 5, 17], which is called a
digital imagewhere(κ ,κ) ∈ {(κ ,2n),(2n,3n−1)}. Each
of κ and κ is one of the generalκ-adjacency relations.
We usually do not permit thatκ and κ both equal 2n
when n > 1, because of the digital connectivity
paradox [20]. For instance,(κ ,κ) ∈ {(4,8),(8,4)} and
{(6,18),(6,26),(26,6),(18,6)} are usually considered in
Z

2 andZ3, respectively [5,17,23,24].
A digital interval is a set of the form

[a,b]Z = {z∈ Z | a≤ z≤ b}

wherea,b∈ Z with a< b.
Let κ be an adjacency relation onZn. A κ-neighbor of

a lattice pointp is κ-adjacent top. A digital imageX ⊂Z
n

is κ-connected[18] if and only if for every pair of different
pointsx,y ∈ X, there is a set{x0,x1, ...,xr} of points of a
digital imageX such thatx= x0, y= xr andxi andxi+1 are
κ-neighbors wherei = 0,1, ..., r−1. A κ-componentof a
digital imageX is a maximalκ-connected subset ofX.

Let X⊂Z
n0 andY⊂Z

n1 be digital images withκ0 and
κ1-adjacency respectively. Then the functionf : X→Y is
called(κ0,κ1)-continuous[5,24] if for everyκ0-connected
subsetU of X, f (U) is aκ1-connected subset ofY. We say
that such a function is digitally continuous.

Let X be a digital image withκ-adjacency. If
f : [0,m]Z → X is a (2,κ)-continuous function such that
f (0) = x and f (m) = y, then f is called adigital path
from x to y in X. If f (0) = f (m) then theκ-path is said to
be closed, and the function is called aκ-loop. Let
f : [0,m− 1]Z → X be a(2,κ)-continuous function such
that f (i) and f ( j) are κ-adjacent if and only if
j = i ± 1 mod m. Then the setf ([0,m− 1]Z) is called a
simple closedκ-curve. A point x∈ X is called aκ-corner,
if x is κ-adjacent to two and only two pointsy,z∈ X such
that y and z are κ-adjacent to each other [3]. Moreover,
theκ-cornerx is calledsimpleif y,z are notκ-corners and
if x is the only pointκ-adjacent to bothy,z [2]. X is called
a generalized simple closedκ-curve if what is obtained
by removing all simpleκ-corners ofX is a simple closed
κ-curve [3]. If (X,κ) is a κ-connected digital image in
Z

3,
|X|x = N∗3(x)∩X,

whereN∗3(x) = {x
′ ∈ Z

3 : x andx′ are 26-adjacent} [2,3].
Generally, if(X,κ) is a κ-connected digital image inZn,
|X|x = N∗n(x)∩X, where

N∗n(x) = {x
′ ∈ Z

n : x andx′ arecn-adjacent} [17].

Let X ⊂ Z
n0 andY ⊂ Z

n1 be digital images withκ0
andκ1-adjacency respectively. A functionf : X→ Y is a
(κ0,κ1)-isomorphism [7] (called (κ0,κ1)-homeo-
morphism in [4]) if f is (κ0,κ1)-continuous, bijective and
f−1 : Y → X is (κ1,κ0)-continuous, in which case we
write X ≈(κ0,κ1) Y.

Definition 2.1. [17] Let c∗ := {x0,x1, ...,xn} be a closed
κ-curve inZ

2 where{κ ,κ} = {4,8}. A point x of the
complementc∗ of a closedκ-curvec∗ in Z

2 is said to be
in the interior of c∗ if it belongs to the bounded
κ-connected component ofc∗. The set of all interior
points ofc∗ is denoted byInt(c∗).

Definition 2.2. [17] Let (X,κ) be a digital image inZn,
n ≥ 3 and X = Z

n − X. Then X is called a closed
κ-surfaceif it satisfies the following.

(1) In case that(κ ,κ) ∈ {(κ ,2n),(2n,3n−1)}, where
the κ-adjacency is taken from Definition 2.1 with
κ 6= 3n−2n−1 andκ is the adjacency onX, then

(a) for each pointx ∈ X, |X|x has exactly one
κ-componentκ-adjacent tox;

(b) |X|x has exactly twoκ-componentsκ-adjacent
to x; we denote byCxx and Dxx these two components;
and

(c) for any pointy ∈ Nκ(x)∩X, Nκ (y)∩Cxx 6= /0
andNκ(y)∩Dxx 6= /0, whereNκ (x) means theκ-neighbors
of x.
Further, if a closedκ-surfaceX does not have a simple
κ-point, thenX is called simple.
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(2) In case that(κ ,κ) = (3n−2n−1,2n), then
(a) X is κ-connected,
(b) for each pointx ∈ X, |X|x is a generalized

simple closedκ-curve.
Further, if the image|X|x is a simple closedκ-curve, then
the closedκ-surfaceX is called simple.
Definition 2.3. [26] Let Sbe a set of nonempty subsets of
a digital image(X,κ). The members ofS are called
simplexes of(X,κ) if the following holds:

(i) If p andq are distinct points ofs∈ S, thenp andq
areκ-adjacent.

(ii) If s∈ Sand /06= t ⊂ s, thent ∈ S (note this implies
every point p that belongs to a simplex determines a
simplex{p}).
An m-simplex is a simplexSsuch that|S|= m+1.

LetP be a digitalm-simplex. IfP′ is a nonempty proper
subset ofP, thenP′ is called a face ofP.
Definition 2.4. [1] Let (X,κ) be a finite collection of
digital m-simplices, 0≤ m ≤ d for some nonnegative
integerd. If the following statements hold, then(X,κ) is
called a finite digital simplicial complex:

(1) If P belongs toX, then every face ofP also
belongs toX.

(2) If P,Q ∈ X, then P∩ Q is either empty or a
common face ofP andQ.
The dimension of a digital simplicial complexX is the
biggest integermsuch thatX has anm-simplex.

Cκ
q (X) is a free abelian group with basis all digital

(κ ,q)-simplices inX [1].
Corollary 2.5. [8] Let (X,κ) ⊂ Z

n be a digital simplicial
complex of dimensionm. Then for allq> m, Cκ

q (X) is a
trivial group.
Definition 2.6. [1] Let (X,κ)⊂ Z

n be a digital simplicial
complex of dimension m. The homomorphism
∂q : Cκ

q (X)→Cκ
q−1(X) defined by

is called a boundary homomorphism wherêpi means
deleting the pointpi . Then for all 1≤ q ≤ m, we have
∂q−1◦ ∂q = 0.
Theorem 2.7.[1] Let (X,κ) ⊂ Z

n be a digital simplicial
complex of dimensionm. Then

Cκ
∗ (X) : 0

∂m+1
// Cκ

m(X)
∂m

// ...
∂1

// Cκ
0 (X)

∂0
// 0

is a chain complex.

Definition 2.8. [1] Let (X,κ) be a digital simplicial
complex. The group of digital simplicialq-cycles is

Zκ
q (X) = Ker ∂q = {σ ∈Cκ

q (X)|∂q(σ) = 0}

and the group of digital simplicialq-boundaries is

Bκ
q(X) =Im ∂q+1

={τ ∈Cκ
q (X)|∂q+1(σ) = τ for σ ∈Cκ

q+1(X)}.

So theqth digital simplicial homology group is

Hκ
q (X) = Zκ

q (X)/Bκ
q(X).

Theorem 2.9. [1] If f : X → Y is a digital
(κ0,κ1)-isomorphism, then for allq≤m

Hκ0
q (X)∼= Hκ1

q (Y).

Theorem 2.10. [8] Let (X,κ) be a directed digital
simplicial complex of dimensionm.

(1) Hκ
q (X) is a finitely generated abelian group for

everyq≥ 0.
(2) Hκ

q (X) is a trivial group for allq> m.
(3) Hκ

q (X) is a free abelian group, possibly zero.

Definition 2.11.[21] Let (X,κ)⊂ Z
n be a digital simlicial

complex andCκ
q be an abelian group whose bases are all

(κ ,q)-simplexes inX. C∗,κ(X) = {Cq,κ(X),δq}q≥0 is the
digital cochain complex ofX where

Cq,κ(X) =Hom(Cκ
q (X),G)

={c : Cκ
q (X)→G|c is a homomorphism}.

Here δq : Cq,κ(X) → Cq+1,κ(X) is the digital cochain
homomorphismand defined asδq(c)(a) = c(∂q+1(a)) for
c ∈Cq,κ(X), a ∈Cκ

q+1(X). Zq,κ(X;G) is the kernel ofδq

and called group ofdigital cocycles of (X,κ) with
coefficients inG, Bq,κ(X;G) is the image ofδq−1 and
called group of digital coboundariesof (X,κ) with
coefficients inG, and (noting that since∂ 2 = 0, δ 2 = 0)

Hq,κ(X;G) = Zq,κ(X;G)/Bq,κ(X;G)

is called thedigital qth cohomology groupof (X,κ) with
coefficients inG.

We use the〈cq,cq〉 representation to denote the value
of cq on cq wherecq is theq-dimensional digital cochain
and cq is the q-dimensional digital chain. Using this
notation, we can state the cohomology operator

〈δcq,dq+1〉= 〈c
q,∂dq+1〉

such thatdq+1 ∈Cκ
q+1(X). Recall that the groupCκ

q (X) of
digital q-chains is free abelian; it has a standard basis
obtained by orienting the digitalq-simplices of X
arbitrarily and using the corresponding elementary chains
as a basis. Let{σα}α∈I be the collection of oriented
digital (κ ,q)-simplices. Under this circumstance the
elements of Cκ

q (X) are represented as finite linear
combinations∑nασα of the elementary digital chainsσα .

Let σ be the elementary digital cochain withZ
coefficients such that

〈σ∗α ,σα〉= 1 and〈σ∗α ,σβ 〉= 0 for all β 6= α.
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Then if g∈ G, we letgσ∗α denote the digital cochain such
that

〈gσ∗α ,σα 〉= g and〈gσ∗α ,σβ 〉= 0 for all β 6= α.

By using this notation, we write

cq = ∑gα σ∗α .

Then
δcq = ∑gα(δσ∗α )

whereδσ∗α =∑ε j τ∗j . In this representation, the summation
is taken over all digitalq+ 1-simplicesτ j havingσ as a
face andε j = ±1 is the sign with whichσ appears in the
expression for∂τ j where

∂τ j =
q+1

∑
i=0

εiσαi .

Theorem 2.13.[21] If (X,κ) is a singleton digital image,
then

Hq,κ(X;G) =

{
G, q= 0;
0, q> 0

whereG is an abelian group.

3 Simplicial Cohomology Groups of Some
Digital Images

By using the analogue argument in [21], simplicial
cohomology groups of several digital images have been
computed in following theorems.
Theorem 3.1.Let X be a digital image inZ2 with the
points{c0 = (0,0),c1 = (1,0),c2 = (1,1)} and adjacency
relation κ = 8 (see Figure 1). The digital simplicial
cohomology groups ofX are

Hq,8(X;Z) =

{
Z, q= 0;
0, q 6= 0.

Fig. 1: X = {c0 = (0,0),c1 = (1,0),c2 = (1,1)}

Proof. If we use the dictionary ordering, we can directX as
c0 < c1 < c2. Then we have the following simplicial chain

complexes:C8
0(X) has for a basis{〈c0〉,〈c1〉,〈c2〉}, C8

1(X)
has for a basis{e0 = 〈c0c1〉,e1 = 〈c0c2〉,e2 = 〈c1c2〉}, and
C8

2(X) has for a basis{σ = 〈c0c1c2〉}. Hence we get the
following short sequence

0
∂3

// C8
2(X)

∂2
// C8

1(X)
∂1

// C8
0(X)

∂0
// 0,

by using the sequence above and Definition 2.11 we get
the following short sequence

0 δ−1
// C0,8(X)

δ 0
// C1,8(X)

δ 1
// C2,8(X)

δ 2
// 0

whereCq,8(X) = Hom(C8
q(X),Z) andq∈ {0,1,2}. Since

Ker δ q∼= {0} for all q≥ 3, Hq,8(X) is a trivial group.

We first determine the kernel ofδ 0. Let’s take any

general 0-cochainp0 =
2

∑
i=0

nic
∗
i . p0 is a cocycle if and

only if δ 0(p0) = 0 if and only if n0 = n1 = n2 = n. So we

can write 0-cochain asp0 = n
2

∑
i=0

c∗i and this gives us

Z0,8(X) ∼= Z. And since Im δ−1 ∼= {0}, we get
H0,8(X) = Z.

Since

〈δ 1r1,σ〉= 〈r1,∂2σ〉= r1(e0+e2−e1) = 0

and

〈δ 1s1,σ〉= 〈s1,∂2σ〉= s1(e0+e2−e1) = 0

such thatr1 = e∗0 + e∗1 ands1 = e∗1 + e∗2, r1 ands1 are 1-
cocycles. So

Z1,8(X) = Span{r1,s1} ∼= Z
2.

We need to find the image ofδ 0. Let p0 =
2

∑
i=0

nic
∗
i be

any general 0-cochain. Since

〈δ 0c∗0,e0〉=−1 〈δ 0c∗0,e1〉=−1

〈δ 0c∗1,e0〉= 1 〈δ 0c∗1,e2〉=−1

〈δ 0c∗2,e1〉= 1 〈δ 0c∗2,e2〉= 1

we can writeδ 0c∗0 =−e∗0−e∗1, δ 0c∗1 = e∗0−e∗2 andδ 0c∗2 =
e∗1+e∗2. Accordingly, from the equation below

δ 0(p0) =
2

∑
i=0

niδ 0(c∗i )

=(−n0+n1)e
∗
0+(−n0+n2)e

∗
1+(−n1+n2)e

∗
2,

we find

B1,8(X) =Im δ 0

={n0e∗0+n1e∗1+(−n0+n1)e
∗
2 : n0,n1 ∈ Z} ∼= Z

2.
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ThusH1,8(X) = {0}.
Since

〈δ 1p1,σ〉= 〈p1,∂2σ〉= p1(e0−e1+e2) = 1,

δ 1(p1) = {σ∗} for any general 1-cochainp1 =
2

∑
i=0

nie
∗
i . So

B2,8(X) = Im δ 1 ∼= Z and sinceKer δ 2∼= Z, we can write
H2,8(X) = {0}. �

Theorem 3.2.If

MSC4 = {c0 = (−1,−1),c1 = (−1,0),c2 = (−1,1),

c3 = (0,1),c4 = (1,1),c5 = (1,0),

c6 = (1,−1),c7 = (0,−1)}

(see Figure 2), then the digital simplicial cohomology
groups ofMSC4 are

Hq,4(MSC4;Z) =

{
Z, q= 0,1;
0, q 6= 0,1.

Fig. 2: MSC4

Proof. By using the dictionary ordering, we can direct the
points ofMSC4 asc0 < c1 < c2 < c7 < c3 < c6 < c5 < c4.
Then we have the following simplicial chain complexes:
C4

0(MSC4) has for a basis

{〈c0〉,〈c1〉,〈c2〉,〈c3〉,〈c4〉,〈c5〉,〈c6〉,〈c7〉},

C4
1(MSC4) has for a basis

{e0 = 〈c0c1〉,e1 = 〈c1c2〉,e2 = 〈c2c3〉,e3 = 〈c3c4〉,

e4 = 〈c5c4〉,e5 = 〈c6c5〉,e6 = 〈c7c6〉,e7 = 〈c0c7〉},

andC4
q(MSC4) = {0} for all q≥ 2.

Thus, we obtain the following short sequence

0
∂2

// C4
1(MSC4)

∂1
// C4

0(MSC4)
∂0

// 0,

by using the sequence above and Definition 2.11 we obtain
the following short sequence

0
δ−1

// C0,4(MSC4)
δ 0

// C1,4(MSC4)
δ 1

// 0

whereCq,4(MSC4) = Hom(C4
q(MSC4),Z) andq∈ {0,1}.

SinceKer δ q ∼= {0} for all q≥ 2, Hq,4(MSC4) is a trivial
group.

Let’s p0 =
7

∑
i=0

nic
∗
i be any general 0-cochain. Since

〈δ 0c∗0,e0〉=−1 〈δ 0c∗3,e2〉= 1 〈δ 0c∗5,e5〉= 1

〈δ 0c∗0,e7〉=−1 〈δ 0c∗3,e3〉=−1 〈δ 0c∗6,e5〉=−1

〈δ 0c∗1,e0〉= 1 〈δ 0c∗4,e3〉= 1 〈δ 0c∗6,e6〉= 1

〈δ 0c∗1,e1〉=−1 〈δ 0c∗4,e4〉= 1 〈δ 0c∗7,e6〉=−1

〈δ 0c∗2,e1〉= 1 〈δ 0c∗5,e4〉=−1 〈δ 0c∗7,e7〉= 1

〈δ 0c∗2,e2〉=−1

we can write

δ 0c∗0 =−e∗0−e∗7 δ 0c∗4 = e∗3+e∗4

δ 0c∗1 = e∗0−e∗1 δ 0c∗5 =−e∗4+e∗5

δ 0c∗2 = e∗1−e∗2 δ 0c∗6 =−e∗5+e∗6

δ 0c∗3 = e∗2−e∗3 δ 0c∗7 =−e∗6+e∗7

p0 is a cocycle if and only if

δ 0(p0) =
7

∑
i=0

niδ 0(ci)

=(−n0+n1)e
∗
0+(−n1+n2)e

∗
1+(−n2+n3)e

∗
2

+(−n3+n4)e
∗
3+(n4−n5)e

∗
4+(n5−n6)e

∗
5

+(n6−n7)e
∗
6+(n7−n0)e

∗
7

=0 (3.1)

if and only if n0 = n1 = n2 = n3 = n4 = n5 = n6 = n7 = n.

Thus we can state 0-cochain asp0 = n
7

∑
i=0

c∗i and this

meansZ0,4(MSC4) ∼= Z. Since Im δ−1 ∼= {0}, we find
H0,4(MSC4) = Z.

We need to find the image ofδ 0. By the equation(3.1),
we get

B1,4(MSC4) =Im δ 0

={
3

∑
i=0

nie
∗
i +

6

∑
i=4

(−ni)e
∗
i +

7

∑
i=1

nie
∗
7 : ni ∈ Z}

∼=Z
7.

SinceKer δ 1∼= Z
8, we haveH1,4(MSC4) = Z. �

Theorem 3.3.Let

MSC8 = {c0 = (−1,−1),c1 = (−1,0),c2 = (0,1),

c3 = (1,0),c4 = (1,−1),c5 = (0,−2)}

(see Figure 3), then we have

Hq,8(MSC8;Z) =

{
Z, q= 0,1;
0, q 6= 0,1.
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Fig. 3: MSC8

Proof. By using the dictionary ordering, we can direct the
points ofMSC8 asc0 < c1 < c5 < c2 < c4 < c3. Then we
have the following simplicial chain complexes:
C8

0(MSC8) has for a basis

{〈c0〉,〈c1〉,〈c2〉,〈c3〉,〈c4〉,〈c5〉},

C8
1(MSC8) has for a basis

{e0 = 〈c0c1〉,e1 = 〈c1c2〉,e2 = 〈c2c3〉,e3 = 〈c4c3〉,

e4 = 〈c5c4〉,e5 = 〈c0c5〉},

andC8
q(MSC8) = {0} for all q≥ 2. Thus, we obtain the

following short sequence

0
∂2

// C8
1(MSC8)

∂1
// C8

0(MSC8)
∂0

// 0,

by using the sequence above and Definition 2.11 we have
the following short sequence

0 δ−1
// C0,8(MSC8)

δ 0
// C1,8(MSC8)

δ 1
// 0.

whereCq,8(MSC8) = Hom(C8
q(MSC8),Z) andq∈ {0,1}.

SinceKer δ q ∼= {0} for all q≥ 2, Hq,8(MSC8) is a trivial
group.

Let’s p0 =
5

∑
i=0

nic
∗
i be any general 0-cochain. Since

〈δ 0c∗0,e0〉=−1 〈δ 0c∗2,e1〉= 1 〈δ 0c∗4,e3〉=−1

〈δ 0c∗0,e5〉=−1 〈δ 0c∗2,e2〉=−1 〈δ 0c∗4,e4〉= 1

〈δ 0c∗1,e0〉= 1 〈δ 0c∗3,e2〉= 1 〈δ 0c∗5,e4〉=−1

〈δ 0c∗1,e1〉=−1 〈δ 0c∗3,e3〉= 1 〈δ 0c∗5,e5〉= 1

we can write

δ 0c∗0 =−e∗0−e∗5 δ 0c∗3 = e∗2+e∗3

δ 0c∗1 = e∗0−e∗1 δ 0c∗4 =−e∗3+e∗4

δ 0c∗2 = e∗1−e∗2 δ 0c∗5 =−e∗4+e∗5

p0 is a cocycle if and only if

δ 0(p0) =
5

∑
i=0

niδ 0(ci)

=(−n0+n1)e
∗
0+(−n1+n2)e

∗
1+(−n2+n3)e

∗
2

+(n3−n4)e
∗
3+(n4−n5)e

∗
4+(−n0+n5)e

∗
5

=0 (3.2)

if and only if n0 = n1 = n2 = n3 = n4 = n5 = n. Thus we

can state 0-cochain asp0 = n
5

∑
i=0

c∗i and this means

Z0,8(MSC8) ∼= Z. Since Im δ−1 ∼= {0}, we find
H0,8(MSC8) = Z.

By the equation(3.2), we have

B1,8(MSC8) =Im δ 0

={n1e∗0+n2e∗1+n3e
∗
2−n4e

∗
3−n5e∗4

+
5

∑
i=1

nie
∗
5 : ni ∈ Z}

∼=Z
5.

SinceKer δ 1∼= Z
6, we getH1,8(MSC8) = Z. �

Theorem 3.4.The digital simplicial cohomology groups
of MSS6 (see Figure 4) are

Hq,6(MSS6;Z) =





Z, q= 0;
Z

23, q= 1;
0, q 6= 0,1.

Fig. 4: MSS6

Proof. Here we direct MSS6 again with using the
dictionary ordering. We have the following simplicial
chain complexes:
C6

0(MSS6) has for a basis{〈c0〉,〈c1〉,〈c2〉, . . . ,〈c25〉},
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C6
1(MSS6) has for a basis

{e0 = 〈c0c1〉,e1 = 〈c0c5〉,e2 = 〈c0c16〉,e3 = 〈c1c2〉,

e4 = 〈c1c4〉,e5 = 〈c1c15〉,e6 = 〈c2c14〉,e7 = 〈c2c3〉,

e8 = 〈c4c3〉,e9 = 〈c3c8〉,e10 = 〈c3c13〉,e11 = 〈c5c4〉,

e12 = 〈c4c7〉,e13 = 〈c5c6〉,e14 = 〈c5c12〉,e15 = 〈c6c7〉,

e16 = 〈c6c11〉,e17 = 〈c7c8〉,e18 = 〈c7c10〉,e19 = 〈c8c9〉,

e20 = 〈c10c9〉,e21 = 〈c13c9〉,e22 = 〈c9c25〉,e23 = 〈c11c10〉,

e24 = 〈c10c24〉,e25 = 〈c12c11〉,e26 = 〈c11c23〉,

e27 = 〈c16c12〉,e28 = 〈c12c22〉,e29 = 〈c14c13〉,

e30 = 〈c13c20〉,e31 = 〈c15c14〉,e32 = 〈c14c19〉,

e33 = 〈c16c15〉,e34 = 〈c15c18〉,e35 = 〈c16c17〉,

e36 = 〈c17c18〉,e37 = 〈c17c22〉,e38 = 〈c18c19〉,

e39 = 〈c18c21〉,e40 = 〈c19c20〉,e41 = 〈c21c20〉,

e42 = 〈c20c25〉,e43 = 〈c22c21〉,e44 = 〈c21c24〉,

e45 = 〈c22c23〉,e46 = 〈c23c24〉,e47 = 〈c24c25〉},

and C6
q(MSS6) = 0 for all q ≥ 2. Hence, we get the

following short sequence

0
∂2

// C6
1(MSS6)

∂1
// C6

0(MSS6)
∂0

// 0,

and by using above we have the following short sequence

0 δ−1
// C0,6(MSS6)

δ 0
// C1,6(MSS6)

δ 1
// 0.

whereCq,6(MSS6) = Hom(C6
1(MSS6);Z) andq ∈ {0,1}.

SinceKer δ q ∼= {0} for all q≥ 2, Hq,6(MSS6) is a trivial
group.

From the definition

∂1e0 = c1−c0 ∂1e16 = c11−c6 ∂1e32 = c19−c14

∂1e1 = c5−c0 ∂1e17 = c8−c7 ∂1e33 = c15−c16

∂1e2 = c16−c0 ∂1e18 = c10−c7 ∂1e34 = c18−c15

∂1e3 = c2−c1 ∂1e19 = c9−c8 ∂1e35 = c17−c16

∂1e4 = c4−c1 ∂1e20 = c9−c10 ∂1e36 = c18−c17

∂1e5 = c15−c1 ∂1e21 = c9−c13 ∂1e37 = c22−c17

∂1e6 = c14−c2 ∂1e22 = c25−c9 ∂1e38 = c19−c18

∂1e7 = c3−c2 ∂1e23 = c10−c11 ∂1e39 = c21−c18

∂1e8 = c3−c4 ∂1e24 = c24−c10 ∂1e40 = c20−c19

∂1e9 = c8−c3 ∂1e25 = c11−c12 ∂1e41 = c20−c21

∂1e10 = c13−c3 ∂1e26 = c23−c11 ∂1e42 = c25−c20

∂1e11 = c4−c5 ∂1e27 = c12−c16 ∂1e43 = c21−c22

∂1e12 = c7−c4 ∂1e28 = c22−c12 ∂1e44 = c24−c21

∂1e13 = c6−c5 ∂1e29 = c13−c14 ∂1e45 = c23−c22

∂1e14 = c12−c5 ∂1e30 = c20−c13 ∂1e46 = c24−c23

∂1e15 = c7−c6 ∂1e31 = c14−c15 ∂1e47 = c25−c24

Thus we can write digital zero cochains as follows:

δ 0c∗0 =−e∗0−e∗1−e∗2 δ 0c∗13 = e∗10−e∗21+e∗29−e∗30

δ 0c∗1 = e∗0−e∗3−e∗4−e∗5 δ 0c∗14 = e∗6−e∗29+e∗31−e∗32

δ 0c∗2 = e∗3−e∗6−e∗7 δ 0c∗15 = e∗5−e∗31+e∗33−e∗34

δ 0c∗3 = e∗7+e∗8−e∗9−e∗10 δ 0c∗16 = e∗2−e∗27−e∗33−e∗35

δ 0c∗4 = e∗4−e∗8+e∗11−e∗12 δ 0c∗17 = e∗35−e∗36−e∗37

δ 0c∗5 = e∗1−e∗11−e∗13−e∗15 δ 0c∗18 = e∗34+e∗36−e∗38−e∗39

δ 0c∗6 = e∗13−e∗15−e∗16 δ 0c∗19 = e∗32+e∗38−e∗40

δ 0c∗7 =−e∗12+e∗15−e∗17−e∗18 δ 0c∗20 = e∗30+e∗40+e∗41−e∗42

δ 0c∗8 = e∗9+e∗17−e∗19 δ 0c∗21 = e∗39−e∗41−e∗43−e∗44

δ 0c∗9 = e∗19+e∗20+e∗21−e∗22 δ 0c∗22 = e∗28+e∗37−e∗43−e∗45

δ 0c∗10 = e∗18−e∗20+e∗23−e∗24 δ 0c∗23 = e∗26+e∗45−e∗46

δ 0c∗11 = e∗16−e∗23+e∗25−e∗26 δ 0c∗24 = e∗24+e∗44+e∗46−e∗47

δ 0c∗12 = e∗14−e∗25+e∗27−e∗28 δ 0c∗25 = e∗22+e∗42+e∗47

Let’s consider any general 0-cochainp0 =
25

∑
i=0

nic
∗
i . p0 is a

cocycle if and only ifδ 0p0 = 0 if and only if

n0 = n1 = · · ·= n25 = n.

By virtue of this, we can writep0 = n
25

∑
i=0

c∗i and we say

Z0,6(MSS6) = Ker δ 0 ∼= Z. Beside Im δ−1 ∼= {0}, we
haveH0,6(MSS6)∼= Z.

When we solve the equation system above, we get
B1,6(MSS6) ∼= Z

25 and since we haveKer δ 1 ∼= Z
48, we

getH1,6(MSS6)∼= Z
23. �

4 Conclusion

The purpose of this paper is to determine digital
cohomology groups of some special digital images such
as digital circleMSC4 and digital sphereMSS6, and to
give an algorithm for computing cohomology groups of
digital images. In this work, we first compute digital
cohomology groups of some certain digital closed curves
and a surface. Since these are minimal structures for
digital images, we hope that these computations and
especially the algorithm will be useful in the study of
digital cohomology groups.
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An Algorithm for Calculating Cohomology Group
of a Digital Image

Input: A digital simplicial complex
of dimension m, (X,κ)⊂ Z

n.
Output: Cohomology group of given

digital simplicial complex with
coefficients in Z.

BEGIN

Take the coordinates of p+1 points of
digital simplicial complex into an
integer array A[p+1][n].

(c0 = (c01,c02, . . . ,c0n),c1 = (c11,c12, . . . ,c1n),
c2 = (c21,c22, . . . ,c2n), · · · ,cp = (c(p)1,c(p)2, . . . ,c(p)n))

Order the points with respect to
dictionary order.

FOR i← 0 TO n DO
if (i <= m){

detect Cκ
i (X)

Ci,κ (X;Z) := Hom(Cκ
i (X),Z)

}
else {Cκ

i (X) = 0
Ci,κ (X;Z) = 0
}

REPEAT

//While constructing∂i , use Definition 2.6.

FOR i←m TO 1 DO
∂i : Cκ

i (X)→Cκ
i−1(X)

REPEAT

//Define∂m+1 as zero homomorphism and∂0 as trivial
homomorphism.

//While constructingδi , use Definition 2.11.

FOR i← 0 TO m−1 DO

δi : Ci,κ (X)→Ci+1,κ (X)
REPEAT

//Defineδ−1 as zero homomorphism andδm as trivial
homomorphism.

//While constructing Zi,κ(X,Z), Bi,κ (X,Z) and Hi,κ (X,Z), use
Definition 2.11.

FOR i← 0 TO m DO

detect Zi,κ(X,Z)

Bi,κ (X,Z)

H i,κ (X,Z) = Zi,κ(X,Z)/Bi,κ (X,Z)
REPEAT

END
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[13] O. Ege, anḋI. Karaca, Cubical homology in Digital Images,
International Journal of Information and Computer Science
1(7), 178-187(2012).

[14] R. Gonzalez-Diaz, A. Ion, M.I. Ham, W.G. Kropatsch,
Invariant representative cocycles of cohomology generators
using irregular graph pyramids, Computer Vision and Image
Understanding115(7), 1011-1022(2011).

[15] R. Gonzalez-Diaz, and P. Real, P., On the cohomology
of 3D digital images, Discrete Appl. Math.147(2-3), 245-
263(2005).

[16] S.E. Han, An extended digital(k0,k1)-continuity, Journal
of Applied Mathematics and Computing16(1-2), 445-
452(2004).

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 3, 1007-1025 (2016) /www.naturalspublishing.com/Journals.asp 1015

[17] S.E. Han, Connected sum of digital closed surfaces,
Information Sciences176, 332-348(2006).

[18] G.T.Herman, Oriented surfaces in digital spaces, CVGIP:
Graphical Models and Image Processing55, 381-396(1993).

[19] T.Y. Kong, A digital fundamental group, Computers and
Graphics13, 159-166(1989).

[20] T.Y. Kong, and A. Rosenfeld, Digital topology - A brief
introduction and bibliography, Topological Algorithms for
the Digital Image Processing, Elsevier Science, Amsterdam,
1996.

[21] J.R. Munkres,Elements of Algebraic Topology, Addison-
Wesley Publishing Company, 1984.

[22] P. Pilarczyk, P. Real, Computation of cubical homology,
cohomology, and (co)homological operations via chain
contraction, Adv. Comput. Math., published online, ISSN
1572-9044 (online), 2012.

[23] A. Rosenfeld, Digital topology, American Mathematical
Monthly 86, 76-87(1979).

[24] A. Rosenfeld, ’Continuous’ functions on digital pictures,
Pattern Recognition Letters4, 177-184(1986).

[25] P. Saha and B. Chaudhuri, A new approach to computing
Euler characteristics, Pattern Recognition28, 1955-
1963(1995).

[26] Edwin H. Spanier,Algebraic Topology, Springer-Verlag,
New York, 1966.
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İsmet Karaca received
a Bachelor’s degree in
Mathematics from Anadolu
University in Turkey,
a Master’s in Mathematics
from the university of Miami,
and a PhD in Mathematics
from Lehigh University. He
is a Professor of Mathematics
at Ege University in Izmir,

Turkey. Dr. Karaca’s research interests include homotopy
theory, Steenrod algebra, and digital topology. Prof.
Karaca is a member of American Mathematical Society.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Preliminaries
	Simplicial Cohomology Groups of Some Digital Images
	Conclusion

