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Abstract: An initial-boundary value problem for a system of decoupledtwo nonlinear time-dependent Joule heating equations is
studied. Instead of well-known standard techniques, we design a reliable scheme consisting of coupling the non-standard finite
difference (NSFD) method in time and finite element method (FEM) in space. We prove the rate of convergence for the fully-discrete
scheme in bothH1 as well as theL2-norms. Furthermore, we show that the above scheme preserves the properties of the exact solution.
Numerical experiments are provided to confirm our theoretical analysis.
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1 Introduction

Advances in electric and electronic technology have great
technological as well as economic impact on the electric
and electronic industries throughout the world. In
addition, the problem of electrical heating of conductors
is also a historical one. We refer in particular to [16] for
more details. Here we consider ‘Joule heating’
phenomena which is one of the main contributors to this
effect. The literature defines Joule heating as the process
by which the passage of an electric current through a
conductor releases heat, see for example [8] and [20] for
more details. It should however be noted that, there is a
vast work in the literature on finite element method for
nonlinear elliptic and parabolic problem such as the work
on porous media equations found in [17] and [18] which
are similar to the Joule heating problem. The only
difference in most cases is that, the termσ(u)|∇φ |2 is
replaced by∇φ ·∇u.

In this paper, we consider and study the rate of
convergence for the following model of the
time-dependent system of nonlinear Joule heating
equations

∂u
∂ t

−∆u = σ(u)|∇φ |2, x∈ Ω , t ∈ [0,T], (1)

−∇ · (σ(u)∇φ) = 0, (2)

whereΩ is a bounded smooth domain inR2. The smooth
boundary∂Ω and initial conditions of the above system
(1)-(2) are taken to be

u(x, t) = 0, φ(x, t) = 0, for, x∈ ∂Ω and t ∈ [0,T], (3)

and

u(x,0) = u0(x), x∈ Ω , (4)

respectively. In summary, the above nonlinear system (1)
– (4) describes the model of electric heating of a
conducting body, whereu represents the temperature,φ
the electric potential and σ(s) being the
temperature-dependent electric conductivity satisfying

k≤ σ(s) ≤ K and |σ ′(s)|+ |σ ′′(s)| ≤ K, (5)

for some positive constantsk andK andσ ∈C2(R).
There are so many numerical methods for studying

the nonlinear time-dependent Joule heating problems.
Among these methods is the linearly implicit finite
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element method found in [2] for many more, we refer to
[3,4,5] and [22]. For more on numerical analysis for this
problem we refer to [2,5,19,30,33] and [34].

Instead of the methods stated above, with all their
wonderful implementations, we exploit some of these
approaches and present in this paper, a reliable technique
consisting of coupling the nonstandard finite difference
(NSFD) method in time and the finite element (FEM)
method in the space variables. A similar approach was
used for the first time in addressing the diffusion as well
as the wave equation in [9] and [10] respectively. Since
these two problems were all linear, then our main
intention in this article is to extend the application of the
technique to handle system of time-dependent Joule
heating equations which is purely an example of a
nonlinear system of decoupled parabolic partial
differential equations. As regard the comparisons of the
standard finite difference and finite element method with
NSFD-FEM method we refer to [9]. For other
comparisons of the standard and Nonstandard finite
difference methods we refer to [26]. In this different
framework, we shall use the technique to prove the
optimal rate of convergence in both theH1 as well as the
L2-norms of the solution of this problem. The reliability
of our technique comes from the fact that the NSFD-FEM
method replicates the properties of the solution of the
decay equation. The NSFD method was initiated by
Mickens [26] and major contributions to the foundation of
the NSFD method could be seen in [6,7] and [28] for an
overview. The method since inception has been applied to
a variety of problems of physics, epidermeology,
engineering and business sciences to mention a few; we
refer to [24,25,27] for more details.

The rest of the paper is organized as follow: In Sect 2,
we specify the notations and the spaces we shall be
dealing with in this work. Followed by Sect 3, where we
introduce finite element method together with the
essential results that will be used in the paper. Sect 4, will
be devoted to the coupling of NSFD-FEM method and
furthermore, the main results with its prove. In Sect 5, we
propose a numerical example and do some numerical
experiments to confirm the theory presented in Sect 4.
Finally, Sect 6 will be the conclusion of the paper and
future remarks.

2 Preliminaries

We assemble under this section, some notations and facts
about linear elliptic and parabolic finite element problems
which will be needed in the paper. Throughout this paper
we use the Sobolev spaces of real-valued functions
defined onΩ and denoted forr ≥ 0 by Hr(Ω). The norm
on Hr(Ω) will be denoted by‖ · ‖r . See [23] for the
definitions and the relevant properties of these spaces. In
a particular case, wherer = 0 the spaceH0(Ω) = L2(Ω)
and its inner product together with the norm will be stated

and denoted by

(u,v) =
∫

Ω
uvdx, u,v∈ L2(Ω),

and

‖u‖L2(Ω) = {(u,u)}1/2, u∈ L2(Ω).

We will furthermore, denote the norm in the standard
Sobolev spaceWm

p ≡Wm
p (Ω) for 1≤ p< ∞ by

‖u‖m,p =

(

∑
|α |≤m

‖Dαu‖p
Lp(Ω)

)1/p

and writeHm = Wm
2 when p = 2. Following [23], for X

a Hilbert space, we will more generally use the Sobolev
spaceHr [(0,T);X], wherer ≥ 0 and in the case wherer =
0 we will haveH0[(0,T);X]≡ L2[(0,T);X] with norm

‖v‖L2[(0,T);X] =

(

∫ T

0
‖v(·, t)‖Xdt

)1/2

.

In practice,X will be the Sobolev spaceHm(Ω) orHm
0 (Ω).

Associated with (1) is the bilinear form

a(u,v) =
∫

Ω
∇u∇vdx, u,v∈ H1(Ω).

a(·, ·) will be symmetric and positive definite. i.e.

a(u,v) = a(v,u), a(u,u)≥ 0. (6)

3 Finite element method

Under this section, we proceed to gather essential tools
necessary to prove the main result of the paper. We begin
by stating the weak formulation of (1)-(2) which is; find
u(t), φ(t) ∈ H1

0(Ω) such that
(

∂u
∂ t

,v

)

+(∇u,∇v) =
(

σ(u)|∇φ |2,v
)

, (7)

(u(0),v) = (u0,v) (8)

and

(σ(u)∇φ ,∇v) = 0, ∀v∈ H1
0(Ω), t ∈ [0,T]. (9)

For the existence of the global weak solutions in two
dimensionsΩ ⊂ R

2, u(·, t) of (7)-(9), refer to [4,12,13,
14,15] and [32]. Even though the results for the regularity
of the solution of the problem are many in the literature,
see [19], [29] and [31], but we will assume and adopt the
regularity results in [19] for it is expressed in the form
suitable to the technique we are using in our problem.

The above continuous problem leads to the next
framework where we present the discrete version of
(7)-(9). To this end, we letTh be a regular family of
triangulation ofΩ̄ consisting of compatible trianglesT
of diameterhT ≤ h, see [11] for more details. For each
mesh sizeTh, we associate the finite element spaceVh of
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continuous piece-wise linear functions that are zero on
the boundary

Vh :=
{

vh ∈C0(Ω̄);vh|∂Ω = 0, vh|T ∈ P1, ∀ T ∈ Th
}

(10)
whereP1 is the space of polynomial of degree less than
or equal to 1 andVh is a finite dimensional subspace ofV
which is contained in the Sobolev spaceH1

0(Ω).
It is well known that,πh : V → Vh denotes a mapping

from V onto Vh where πh denotes the Lagrangian
interpolation operator. Since we are in a smooth domain,
in view of [11], the Laplacian∆ with its inverse∆−1 is an
isomorphism fromH2∩H1

0 ontoL2. With this, we let the
mapRh : H1

0 →Vh be defined by the equation

(∇Rhw,∇v) = (∇w,∇v) , ∀w∈ H1
0 , v∈Vh. (11)

In view of [11], the error analysis in the linear elliptic finite
element problems yield the estimate

‖(Rh− I)w‖+h‖(Rh− I)w‖1,2 ≤Ch2‖w‖2,2,

∀w∈ H2∩H1
0 . (12)

In this way, we also denote the discrete Dirichlet Laplacian
map by∆h : Vh →Vh and defined it by

(−∆hw,v) = (∇w,∇v) , ∀w,v∈Vh,

and if we let Eh(t) = et∆h be the analytic semigroup
generated by∆h andPh a map from the spaceL2(Ω) to Vh
which is an orthogonal projection, then in view of [19], it
is well known thatEh(t)Ph satisfies the following estimate

‖Eh(t)Phρ‖+ t1/2‖Eh(t)Phρ‖1,2 + t‖∆hEh(t)Phρ‖
≤ C‖ρ‖, t > 0, (13)

where ρ ∈ L2(Ω) and C is independent ofh and t,
reflecting the inform analyticity of the evolution operator.
In the same way, the discrete evolution operatorEn

∆ t,h

defined byEn
∆ t,h = (I −∆ t∆h)

−n and associated with the
backward Euler method has the estimate

‖En
∆ t,hPhρ‖+ t1/2

n ‖En
∆ t,hPhρ‖1,2 + tn‖∆hEn

∆ t,hPhρ‖
≤ C‖ρ‖, tn > 0. (14)

With the above discrete framework of the problem in
place, we are led to state the discrete version of (7)-(9) as
follows: finduh(t), φh(t) ∈Vh such that
(

∂uh

∂ t
,vh

)

+(∇uh,∇vh) =
(

σ(uh)|∇φh|
2,vh

)

, (15)

(uh(0),vh) = (u0
h,vh), (16)

and

(σ(uh)∇φh,∇vh) = 0, ∀vh ∈Vh, t ∈ [0,T], (17)

whereu0
h ∈ Vh is an appropriate approximation ofu0.

Under the above framework, we are led to the following
discrete version of the generalized Gronwall Lemma and
the Lemma that will boundφ(t)−φh(t):

Lemma 1Assume that the sequenceϕn satisfies

0≤ ϕn ≤ A1+A2∆ t
n−l

∑
l=0

t−1+β
n−l ϕl , for tn ∈ [0,T]

where A1, A2, T are positive numbers and0 < β < 1.
Then, there is a constant C=C(β ,A2,T) such that

ϕn ≤CA1 tn ∈ [0,T].

With the Lemma in place, we state without proof the
following important result which is key to the prove of the
main Theorem. For the proof of the said result, we refer
to [19].

Theorem 2Let u, φ and uh, φh be solutions of (7)-(9) and
(15)-(17) respectively, with

◦
uh chosen so that

‖
◦
u−

◦
uh‖ ≤ M1h2. (18)

Assume further that

sup
0<t≤T

(

‖u(t)‖2,2+ t‖
∂u(t)

∂ t
‖2,2

)

≤ M2 (19)

sup
0<t≤T

(

‖g(t)‖H2(∂Ω)+ ‖φ(t)‖2,2+ ‖φ(t)‖1,∞

)

≤ M3 (20)

for some positive numbers T and Mi , i = 1,2,3. Then there
is a constant
C=C(k,K,M1,M2,M3,T) such that

‖u(t)−uh(t)‖+ ‖φ(t)−φh(t)‖ ≤Ch2, t ∈ [0,T]. (21)

Lemma 3Under the assumptions of Theorem2 above, we
have

‖∇(φ(t)−φh(t))‖ ≤C(h+ ‖u(t)−uh(t)‖) (22)

and

‖φ(t)−φh(t)‖

≤ C(h2+ ‖u(t)−uh(t)‖+h−1/3‖u(t)−uh(t)‖
2). (23)

4 Coupled Non-standard finite difference and
finite element method

Unlike in other methods where the time variable was
discretized using the backward Euler, we exploit and
present under this section, a reliable scheme consisting of
coupling the Non-standard finite difference (NSFD)
method in the time step size and the finite element
method (FEM) in the space step size. We show that the
numerical solution obtained from this scheme
NSFD-FEM attained the optimal rate of convergence in
bothH1 as well asL2-norms. To achieve this we proceed
in this different framework, by letting the step size
tn−1 = (n− 1)∆ t for n = 1,2, · · · ,N. For a sufficiently
smooth functions, we find the NSFD-FEM approximation
{Un

h} such thatUn
h ≈ un

h at each discrete timetn−1. That
is, find a sequence{Un

h}
N
n=0 in Vh such that for
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n= 1,2, · · · ,N−1 the fully-discrete scheme NSFD-FEM
approximateun

h such thatUn
h ≈ un

h at discrete timetn. i.e,
find Un

h ,Φ
n
h ∈Vh such that

(δnU
n
h ,vh)+ (∇Un

h ,∇vh) =
(

σ(Un−1
h )|∇Φn−1

h |2,vh
)

, (24)

(U0,vh) = (u0
h,vh) (25)

and

(σ(Un
h )∇Φn

h ,∇vh) = 0 ∀vh ∈Vh, tn ∈ [0,T], (26)

where

δnU
n
h =

Un
h −Un−1

h

ψ(∆ t)
(27)

andψ(∆ t) = eλ∆t−1
λ is restricted between 0< ψ(∆ t)< 1.

If the nonlinear function on the right hand side of (24)
is zero, we will have in view of (24) the exact scheme
(

Un
h −Un−1

h
eλ∆t−1

λ

,vh

)

+(∇Un
h ,∇vh) = 0, (28)

which according to Mickens [26] replicates the positivity
and the decay to zero, which are the main features of the
exact solution of (1)-(2). The above framework leads to the
following main result of the paper.

Theorem 4Let u and φ be the solutions of the
time-dependent Joule heating equations (7)-(9) and its
respective fully-discrete NSFD-FEM solution in (24)-(26)
be Un

h andΦn
h given such that

‖
◦
u−

◦
uh‖ ≤ M1h2. (29)

Assume further that

sup
0<t≤T

(

‖u(t)‖2,2+
∥

∥

∥

∂u(t)
∂ t

∥

∥

∥
+
∥

∥

∥
∆−1 ∂ 2u

∂ t2

∥

∥

∥

+t
∥

∥

∥

∂u(t)
∂ t

∥

∥

∥

2,2
+ t
∥

∥

∥

∂ 2u
∂ t2

∥

∥

∥

)

≤ M2, (30)

sup
0<t≤T

(

‖φ(t)‖2,2+ ‖φ(t)‖1,∞+ ‖
∂φ
∂ t

‖1,2

)

≤ M3, (31)

and that∆ t ≤ M4h1/3 for some positive numbers T and
Mi , i = 1,2, · · · ,4. Then there is
C=C(k,K,M1,M2,M3,M4,T) such that

‖u(tn)−Un
h‖+ ‖φ(tn)−Φn

h‖ ≤C
(

h2+∆ t
)

,

tn ∈ [0,T]. (32)

Furthermore, the discrete solution replicates all the
properties of the nonlinear equations in the limiting case
of the space independent equation.

Proof.We begin the proof of this theorem with the error
decomposition equation

Un
h −un =Un

h −Ũn
h +Ũn

h −un (33)

whereŨn
h ∈Vh is uniquely defined by

(

δnŨ
n
h ,vh

)

+
(

∇Ũn
h ,∇vh

)

= (F(un,φn),vh) , (34)

(Ũ0
h ,vh) = (u0,vh),∀vh ∈Vh, tn ∈ [0,T] (35)

with un = u(tn), φn = φ(tn) and
F(un,φn) = σ(un)|∇φn|2. Applying the well known error
analysis for linear parabolic equation we obtain

‖Ũn
h −un‖ ≤C

(

h2+ψ(∆ t)
)

(36)

whereC depends onM1 andM2 we refer to [9] for more
details.

In view of the difference between (24)-(26) and (34)-
(35) we have forξn =Un

h −Ũn
h that

(

δn(U
n
h −Ũn

h ),vh
)

+
(

∇(Un
h −Ũn

h),∇vh
)

=
(

σ(Un−1
h )|∇Φn−1

h |2−σ(un−1)|∇φn−1|2,vh
)

which yield
(

δn(U
n
h −Ũn

h ),vh
)

+
(

∇(Un
h −Ũn

h),∇vh
)

=
(

F(Un−1
h ,Φn−1

h )−F(un,φn
),vh

)

and hence

∂ξn

∂ t
−∆hξn = Ph

(

F(Un−1
h ,Φn−1

h )−F(un,φn)
)

,

ξn(0) = 0, t ∈ [0,T].

When the variation of constant formula is applied, we have
using the discrete version of the Gronwall Lemma1

‖ξn‖

≤ ψ(∆ t)
n−l

∑
l=0

‖En−l
∆ t,hPh(F(U l

h,Φ
l
h)−F(ul+1,φ l+1))‖. (37)

Since in the NSFD-FEM method,∆ t was replaced by
ψ(∆ t) then, in view of the discrete evolution operator
denoted in the same way asEn

∆ t,h and associated with the
backward euler method, will surely share the same
estimate as in (14). With this, we proceed to bound (37)
using several bounds for the discrete evolution operator
En

∆ t,hPh. This will be done thanks to [21] Lemma 5.2 for
the bounds of the norm of the continuous operator
Eh(t)Ph considered as an operator fromL2 into L∞,
namely for anyε > 0 there is aCε > 0 such that

‖Eh(t)Phρ‖0,∞ ≤Cε t
−2
4−ε ‖ρ‖, t > 0. (38)

By duality, we have the same bound for the norm of
Eh(t)Ph : L1 → L2, i.e.

‖Eh(t)Phρ‖0,∞ ≤Cε t
−2
4−ε ‖ρ‖0,1, t > 0. (39)

In fact we have

‖Eh(t)Phρ‖ = sup
v∈L2,‖v‖L2 6=0

|(Eh(t)Phρ ,v)|
‖v‖L2

= sup
v∈L2,‖v‖L2 6=0

|(ρ ,Eh(t)Phv)|
‖v‖L2

. (40)

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 3, 997-1007 (2016) /www.naturalspublishing.com/Journals.asp 1001

since Eh(t)Ph is self-adjoint. In view of the above
continuous cases ofEh(t)Ph with the discrete NSFD-FEM
analogueEn

∆ t,hPh we have

‖En
∆ t,hPhρ‖ ≤Cε t

−2
4−ε
n ‖ρ‖, tn > 0, ε > 0 (41)

in view of (38) and seconded by

‖En
∆ t,hPhρ‖ ≤Cε t

−2
4−ε
n ‖ρ‖0,1, tn > 0, ε > 0 (42)

for anyCε > 0 in view of (39). Furthermore, in view of
(40) we can expand the norm of‖En

∆ t,hPhρ‖ as

‖En
∆ t,hPhρ‖ = sup

v∈L2,‖v‖L2 6=0

|(En
∆ t,hPhρ ,v)|
‖v‖L2

= sup
v∈L2,‖v‖L2 6=0

|(ρ ,En
∆ t,hPhρv)|

‖v‖L2
. (43)

In view of Lemma 3, we can apply it directly to the
equation forΦn

h to have

‖∇(Φn
h −φn)‖ ≤C(h+ ‖Un

h −un‖) (44)

‖Φn
h −φn‖ ≤C

(

h2+ ‖Un
h −un‖+h−1/3‖Un

h −un‖2
)

.(45)

Proceeding by deriving a preliminary low order
estimate of ‖ξn‖, we have by using the fact that
‖∇Φn

h‖+ ‖∇φn‖ ≤C and the hypothesis

‖F(Un−1
h ,Φn−1

h )−F(un−1,φn−1)‖0,1

≤ ‖σ(Un−1
h )|∇Φn−1

h |2−σ(un−1)|∇φn−1|2‖0,1

≤ ‖σ(Un−1
h )|∇(Φn−1

h +φn−1) ·∇(Φn−1
h −φn−1)‖0,1

+ ‖(σ(Un−1
h )−σ(un−1))|∇φn−1|2‖0,1

≤ C
(

‖∇Φn−1
h ‖+ ‖∇φn−1‖

)

‖∇(Φn−1
h −φn−1)‖

+ C‖Un−1
h −un−1‖‖φn−1‖1,∞

≤ C
(

h+ ‖Un−1
h −un−1‖

)

. (46)

If we continue in a similar manner forn, then in view
of (46) we have

‖F(un−1,φn−1)−F(un,φn)‖0,1

≤ ‖σ(un−1)|∇φn−1|2−σ(un)|∇φn|2‖0,1

≤ ‖σ(un−1)∇(φn−1+φn) ·∇(φn−1−φn)‖0,1

+ ‖σ(un−1−σ(un))|∇φn|2‖0,1

≤ C
(

‖∇φn−1‖+ ‖∇φn‖
)

‖φn−1−φn‖1,2

+ C‖un−1−un‖‖φn‖2
1,∞

≤ C
(

‖φn−1−φn‖1,2+ ‖un−1−un‖
)

≤ Cψ(∆ t) sup
0<t≤T

(

‖
∂φ
∂ t

‖+
∂u
∂ t

)

≤ Cψ(∆ t) by the linear NSFD-FEM in [9] (47)

and in view of (47) we therefore have using (46) that

‖F(Un−1
h ,Φn−1

h )−F(un−1,φn−1)‖0,1

≤ C
(

h+ψ(∆ t)+ ‖Un−1
h −un−1‖

)

. (48)

In view of (36), (37) and (41) we have using the error
decomposition equation

‖Un
h −un‖

≤ ‖Ũn
h −un‖+ ‖ξn‖

≤ C
(

h2+ψ(∆ t)
)

+ Cψ(∆ t)
n−1

∑
l=0

t−α
n−l‖F(U l

h,Φ
l
h)−F(ul+1,φ l+1)‖0,1

≤ C
(

h2+ψ(∆ t)
)

+ Cψ(∆ t)
n−1

∑
l=0

t−α
n−l

(

h+ψ(∆ t)+ ‖Un−1
h −un−1‖

)

≤ C
(

h2+ψ(∆ t)
)

+Cψ(∆ t)
n−1

∑
l=0

t−α
n−l‖U

l
h−ul‖ (49)

where we have chosenα ∈ (3/4,1). Hence by Lemma1
we have

‖Un
h −un‖ ≤C

(

h2+ψ(∆ t)
)

. (50)

Furthermore, this leads immediately to the following
equation:

‖Φn
h −φn‖1,2 ≤C

(

h2+ψ(∆ t)
)

, (51)

and which in view of Lemma3 we further deduced

‖Φn
h −φn‖ ≤C

(

h2+ψ(∆ t)+ ‖Un
h −un‖

)

. (52)

To obtain the optimal rate of convergence of the
solution of this problem, we expand more accurately
F(Un−1

h ,Φn−1
h )−F(un−1,φn−1) as follows:

F(Un−1
h ,Φn−1

h )−F(un−1,φn−1)

=
[

σ(Un−1
h )−σ(un−1)

]

|∇Φn−1
h |2

+ 2σ(un−1)∇φn−1 ·∇(Φn−1
h −φn−1)

+ 2
[

σ(Un−1
h )−σ(un−1)

]

∇φn−1 ·∇(Φn−1
h −φn−1)

+ σ(Un−1
h )|∇(Φn−1

h −φn−1)|2

:= R1+R2+R3+R4.

Using (14) and (42) we shall estimate each of the terms of
the norm‖En

∆ t,hPhRi‖, i = 1,2,3,4 and later combine the
result into the right hand side of (37) as follows:

‖En
∆ t,hPhR1‖

= ‖En
∆ t,hPh

([

σ(Un−1
h )−σ(un−1)

]

|∇Φn−1
h |2

)

‖

≤ C
(

‖Un−1
h −un−1‖‖Φn−1

h ‖1,∞
)

≤ C‖Un−1
h −un−1‖. (53)
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For R2(s) we use the stability argument by (43) for χ ∈
L2(Ω) and we have
(

En
∆ t,hPhR2(s),χ

)

= 2
(

∇(Φn−1
h −φn−1),σ(un−1)∇φn−1En

∆ t,hPhχ
)

= −2
(

Φn−1
h −φn−1,∇ ·

[

σ(un−1)∇φn−1En
∆ t,hPhχ

])

= −2
(

Φn−1
h −φn−1,σ(un−1)∇φn−1 ·∇

[

En
∆ t,hPhχ

])

.

Hence, in view of (14) we have

‖(En
∆ t,hPhR2(s),χ)‖

≤ 2‖Φn−1
h −φn−1‖‖φn−1‖1,∞‖En

∆ t,hPhχ‖1,2

≤ Ct−1/2
n ‖Φn−1

h −φn−1‖‖χ‖

and by the estimate (52) we have

‖En
∆ t,hPhR2(s)‖ ≤Ct−1/2

n
(

h2+ ‖Un−1
h −un−1‖

)

. (54)

By (42) there isα ∈ (3/4,1) such that

‖En
∆ t,hPhR3(s)‖

≤ Ct−α
n ‖

[

σ(Un−1
h )−σ(un−1)

]

∇φn−1 ·∇(Φn−1
h −φn−1)‖0,1

≤ Ct−α
n ‖Un−1

h −un−1‖0,1‖φn−1‖1,∞

(

‖∇Φn−1
h ‖+‖φn−1‖

)

≤ Ct−α
n ‖Un−1

h −un−1‖0,1. (55)

since‖∇Φn−1
h ‖+ ‖φn−1‖ ≤C.

Similarly, we have in view of (52) the next inequality

‖En
∆ t,hPhR4(s)‖ ≤ Ct−α

n ‖σ(Un−1
h )|∇(Φn−1

h −φn−1)|2‖0,1

≤ Ct−α
n ‖Φn−1

h −φn−1‖1,2

≤ Ct−α
n

(

h2+ψ(∆ t)+‖Un−1
h −un−1‖

)

. (56)

Combining all these inequalities (53), (54), (55) and (56)
in (37) then all these together with (36) yield

‖Un
h‖ ≤C

(

h2+ψ(∆ t)
)

+Cψ(∆ t)
n−1

∑
l=0

t−α
n ‖U l

h−ul‖ (57)

which finally yield

‖Un
h −un‖ ≤

(

h2+ψ(∆ t)
)

after using the discrete Gronwall Lemma1. We also have
in view of (45)

‖Φn
h −φn‖ ≤C

(

h2+ψ(∆ t)
)

.

Since in view of Mickens [26] the above scheme was
design for

ψ(∆ t) =
eλ ∆ t −1

λ
≈ ∆ t +0((∆ t)2)

then as∆ t → 0 this implies thatψ(∆ t) ≈ ∆ t thereby
yielding the first part of the result.

As for the second part of the proof which is the
preserving of the properties of the exact solution of the
above equations, we should first note that the convergence

in both L2 as well asH1-norms of the pair of discrete
solutions (Un

h ,Φ
n
h) to their respective exact solutions

(u,φ) in (32) implies that there exists a pair of
subsequence of(Un

h ,Φ
n
h) still denoted in the same way as

(Un
h ,Φ

n
h) that converge point-wise to(u,φ) ash→ 0 and

n → +∞. (See [1], Corollary 2.11) for more. In view of
this, if we assume that∆u= 0 near a pointa∈ Ω andvh
in (24) is chosen in such a way that its support containing
the pointa, is very small andvh = 1 neara, then we can
use the approximation
∫

Ω
(σ(Un−1

h )|∇Φn−1
h |2)vhdx= σ(Un−1

h (a))|∇Φn−1
h (a)|2K

whereK is the measure of the supp(vh). Using the above
approximation in (24), it follows that the pair(Un

h ,Φ
n
h)

are discrete solutions of (24)-(26) when we fixx = a. Of
course the discrete solutionsUn

h is the solution of the
exact scheme (28) if we also have

σ(Un−1
h (a, t))|∇Φn−1

h (a, t)|2 = 0

and hence the proof of the second part which complete the
proof of the Theorem.

5 Numerical experiments

Under this section, we present the numerical experiments
on problem (1)-(2) using the NSFD-FEM method. These
experiments are presented inΩ = (0,1)2 × (0,T) where
Ω is discretized into regular triangulationTh of Ω̄ . These
discretization are employed using uniformN×N meshes
of sizesh= 1/M in the space and∆ t = T/N in the time,
whereM denotes the number of nodes. We re-write the
time-dependent system of the Joule heating equations (1)-
(2) by

∂u
∂ t

−∆u = σ(u)|∇φ |2+ f1 (58)

−∇ · (σ(u)∇φ) = f2 (59)

with the electric conductivityσ(u) taken to be

σ(u) =
1

1+u
,

where the functions f1, f2 the initial and boundary
conditions are determined correspondingly by the exact
solution
{

u(x1,x2, t) = exp(−t)sin(πx1)sin(πx2)

φ(x1,x2, t) = x1(1− x1)sin2(x1+ x2− t).
(60)

Setting N = 10 and T = 1.0 our algorithm using the
above example (60) in problem (24)-(26) we have the
following figures from 1 to 10. These figures illustrate
pairs of exact and approximate solutionsu(x1,x2) and
φ(x1,x2) respectively at various timest = 0.1,0.3,0.6,0.9
and 1.0. Fort = 0.1 we have Fig1 and2 followed by Fig
3 and4 for t = 0.3 proceeded by Fig5 and6 for t = 0.6 in
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the same manner Fig7 and8 for t = 0.9 and finally Fig9
and10for t = 1.0.

With all these figures from Fig1 to 10, we could
exploit the data obtained from their computations to find
their respective errors forT = 1.0 with the mesh sizes
varying from 10,15,20 and 25. The results from these
computations are illustrated in Tables1 and2.

Making use of the error values of the solutionsu(x, t)
and φ(x, t) obtained from Tables1 and 2, we then
compute forT = 1.0 and using still the mesh sizes stated
above, the rate of convergence ofu(x, t) andφ(x, t) using
the formulae

Rate=
ln(e2/e1)

ln(h1/h2)
,

where h1 and h2 together with e1 and e2 are
successive triangle diameters and errors respectively.
Furthermore, the clarification of the convergence of the
above solutions to be more specific in theL2-norm can
best be illustrated in Figure11.

From Table1, we can observe that the solutionu has an
approximate rate of almost 2 forL2(Ω) and 1 forH1(Ω)-
rates. Similarly, forφ in Table2 the approximate rates for
L2(Ω) andH1(Ω) are 2 and 1 respectively.

These results are self explanatory and we could
conclude that the results as shown by these experiments
exhibit the desired results as expected from our
theoretical analysis.
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Fig. 9 Exact and Approximate Solutions ofu(x, t) at t = 1.0

Table 1 Error in L2 and H1-norms of u using NSFD-FEM
method

M L2-error L2-Rate H1-error H1-Rate
10 3.4350E-2 2.4151E-1
15 1.6258E-2 1.87 1.6575E-1 0.94
20 9.4743E-3 1.88 1.2611E-1 0.95
25 6.2511E-3 1.89 1.0188E-1 0.956
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Fig. 10 Exact and Approximate Solutions ofφ(x, t) at t = 1.0

Table 2 Error in L2 and H1-norms of φ using NSFD-FEM
method

M L2-error L2-Rate H1-error H1-Rate
10 3.1794E-2 2.0130E-1
15 1.5278E-2 1.83 1.4208E-1 0.87
20 8.9727E-3 1.85 1.1085E-1 0.88
25 5.9248E-3 1.86 9.0884E-2 0.89

10 15 20 25
0.005

0.01

0.015

0.02

0.025

0.03

0.035

M

L
2 −

E
rr

or
 o

f u

 

 
T = 0.1 T = 0.3 T = 0.6 T = 0.9

10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

0.03

M

L
2 −

E
rr

or
 o

f u

 

 
T = 0.1 T = 0.3 T = 0.6 T = 0.9

Fig. 11 2-D Unit Square

6 Conlusion

We presented a reliable scheme of the system of the
time-dependent Joule heating equations consisting of
coupling the non-standard finite difference in time and the
finite element method in the space variable (NSFD-FEM).
We proved theoretically that the numerical solution
obtained from this scheme attains the optimal rate of
convergence in both theH1 as well as theL2-norms.
Furthermore, we showed that the scheme under
investigation replicates the properties of the exact solution
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of the system of Joule heating equations. We proceeded
by the help of a numerical example and showed that the
optimal rate of convergence as proved theoretically is
guaranteed.

The method presented in this article could be
extended to other system of nonlinear equations of
parabolic form defined in either smooth or non-smooth
domain if at all these system of equations followed the
procedure as proposed by Mickens [26]. As regard the
comparison of the scheme with other schemes we will
open that as the next subject.
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