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Abstract: An initial-boundary value problem for a system of decoupte® nonlinear time-dependent Joule heating equations is
studied. Instead of well-known standard techniques, wégdea reliable scheme consisting of coupling the non-stahdiaite
difference (NSFD) method in time and finite element methda\Fin space. We prove the rate of convergence for the fuligréte
scheme in botl® as well as thé.2-norms. Furthermore, we show that the above scheme pres@e/groperties of the exact solution.
Numerical experiments are provided to confirm our theoaétoalysis.
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1 Introduction

Advances in electric and electronic technology have greatd—u —Au=o(u)|0¢f x€Q, te[o,T], (1)
technological as well as economic impact on the electric

and electronic industries throughout the world. In

addition, the problem of electrical heating of conductors —1 - ((u)0@) = 0, (2)

more details. Here we consider “Joule heating’ houndarydQ and initial conditions of the above system
phenomena which is one of the main contributors to this(1).(2) are taken to be

effect. The literature defines Joule heating as the process

by which the passage of an electric current through al(%,t) =0, @(x,t)=0, for, x€ Q2 andt € [0,T], (3)
conductor releases heat, see for exam@Jehd [20] for and

more details. It should however be noted that, there is a

vast work in the literature on finite element method for U(x,0) = Up(x), x€ Q, 4)
nonlinear elliptic and parabolic problem such as the work

on porous media equations found 7] and [18 which "~y " qescribes the model of electric heating of a

are similar to the Joule heating problem. The only ;
: . . . conducting body, where represents the temperature,
difference in most cases is that, the teatu)|0¢|? is the electric potential and o(s) being the

replaced bylg- Ou. ) . - s
In this paper, we consider and study the rate Oftemperature dependent electric conductivity satisfying

convergence for the following model of the k<o(s)<K and |o'(s)|+|0"(s)| <K, (5)
time-dependent system of nonlinear Joule heatin
equations

respectively. In summary, the above nonlinear syst&m (

%or some positive constanksandK ando € C?(R).

There are so many numerical methods for studying
the nonlinear time-dependent Joule heating problems.
Among these methods is the linearly implicit finite
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element method found ir2] for many more, we refer to and denoted by
[3,4,5] and [22). For more on numerical analysis for this
problem we refer toZ,5,19,30,33] and [34]. (u,v)z/ uvdx u,veL?(Q),
Instead of the methods stated above, with all their Q
wonderful implementations, we exploit some of theseand
approaches and present in this paper, a reliable techniq _ 1/2 2
consisting of coupling the nonstandard finite diﬁerenceﬂﬁJHLz(Q) = {uwirs, uelQ).
(NSFD) method in time and the finite element (FEM) We will furthermore, denote the norm in the standard
method in the space variables. A similar approach wasSobolev spacé/)’ =W7'(Q) for 1 < p < e by
used for the first time in addressing the diffusion as well
as the wave equation ir9] and [LQ] respectively. Since <
mp —

these two problems were all linear, then our main (U]
intention in this article is to extend the application of the

technique to handle system of time-dependent Joulgyng writeH™ = WI" when p = 2. Following 23], for X
heating equations which is purely an example of aa Hilbert space, we will more generally use the Sobolev
nonlinear system of decoupled parabolic partial spaceH"[(0,T);X], wherer > 0 and in the case where=

differential equations. As regard the comparisons of theg we will haveH?[(0,T); X] = L2[(0,T); X] with norm
standard finite difference and finite element method with

NSFD-FEM method we refer to 9. For other T 12

comparisons of the standard and Nonstandard finite VllL2(0m)x) = (/o ||V("t)|xdt> :

difference methods we refer t®2€. In this different ) )

framework, we shall use the technique to prove theln practiceX will be the Sobolev spade™(€Q2) orHgy'(Q).
ogtimal rate of convergence in both thé as well as the ~Associated with1) is the bilinear form

L<-norms of the solution of this problem. The reliability :

of our technique comes from the fact that the NSFD-FEM&(U:V) = /Q Oulvdx u,ve HY(Q).

method replicates the properties of the solution of the . . . o

decay equation. The NSFD method was initiated bya(-,-) will be symmetric and positive definite. i.e.
Mickens [26] and major contributions to the foundation of a(u,v) = a(v,u), a(u,u) > 0. (6)
the NSFD method could be seen B ] and [28] for an

overview. The method since inception has been applied to

a \{ariety of problgms of' physics, epidermeology, 3 Finite element method

engineering and business sciences to mention a few; we

refer to P4,25,27] for more details.

1/p
Z ||Dau||Ep(Q)>

la]<m

Th fth ) ed as follow: In Sect 2 Under this section, we proceed to gather essential tools
e rest of the paper Is organized as follow: In Sect 2,0 ;e55ary to prove the main result of the paper. We begin

we specify the notations and the spaces we shall by, <iaiing th K f lati 1Y.(2) which is: find
dealing with in this work. Followed by Sect 3, where we uzlt)s ?D(Itn)ge H%(Vg)asugr:Thua? lon oflf:(2) which is; fin

introduce finite element method together with the

essential results that will be used in the paper. Sect 4, will/ du B 2

be devoted to the coupling of NSFD-FEM method and (E’V +(0u,0v) = (o(w)[0el*,v), (7)
furthermore, the main results with its prove. In Sect 5, we

propose a numerical example and do some numericaly(0), v) = (u,V) 8)

experiments to confirm the theory presented in Sect 4.
Finally, Sect 6 will be the conclusion of the paper and and

future remarks. (0(u)0e,0v) =0, We H(Q), te[0,T]. 9

For the existence of the global weak solutions in two
dimensionsQ c R?, u(-,t) of (7)-(9), refer to §,12,13,
14,15] and [32). Even though the results for the regularity
of the solution of the problem are many in the literature,
We assemble under this section, some notations and factee [L9], [29] and [31], but we will assume and adopt the
about linear elliptic and parabolic finite element problemsregularity results in 19] for it is expressed in the form
which will be needed in the paper. Throughout this papersuitable to the technique we are using in our problem.

we use the Sobolev spaces of real-valued functions The above continuous problem leads to the next
defined onQ and denoted for > 0 by H'(Q). The norm  framework where we present the discrete version of
on H"(Q) will be denoted by|| - |;. See R3] for the (7)-(9). To this end, we let%, be a regular family of
definitions and the relevant properties of these spaces. Itriangulation ofQ consisting of compatible triangleg

a particular case, where= 0 the spac¢i®(Q) = L?(Q) of diameterhs < h, see LL1] for more details. For each
and its inner product together with the norm will be statedmesh size%,, we associate the finite element sp&gef

2 Preliminaries
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continuous piece-wise linear functions that are zero onLemma 1Assume that the sequengesatisfies
the boundary

n—I

n—|
— 0< dn <AL +AALS t P g, for the [0, T
Vi = {Vh € C%(Q);Vh|go = O, W| 7 € P, V 7 € T} ShfAth l; ¢ n€[0.T]

(10) N
whereP; is the space of polynomial of degree less thanWhere A, A, T are positive numbers and < 8 < 1.
or equal to 1 an¥, is a finite dimensional subspace\sf ~ 1hen, there is a constant€ C(B, Az, T) such that
which is contained in the Sobolev spadg(Q). . $n<CA t,[0,T].
It is well known that,7s, : V — Vj, denotes a mapping , ) ,
interpolation operator. Since we are in a smooth domainfollowing important result which is key to the prove of the
in view of [11], the Laplaciamd with its inverseA—tisan ~ Main Theorem. For the proof of the said result, we refer

isomorphism fromH2 N HE onto L2, With this, we let the 10 [19]

mapRy : Hg — Vi be defined by the equation Theorem et u @ and W, @ be solutions of{)-(9) and
(ORywW, OV) = (Ow, Ov), Ywe HE, ve V. (11)  (19-(17) respectively, withu, chosen so that
In view of [11], the error analysis in the linear elliptic finite  [|U— Uy|| < M;h?. (18)

element problems yield the estimate Assume further that

I1(Ra—D)wil + il (Ra — ) Wil1.2 < CH[|wi22, au(t)
In this way, we also denote the discrete Dirichlet Laplacian
map byAn : i, — Vi, and defined it by sup (||g(t)|\Hz(5Q) +1|@t)|22+ H(p(t)||1,m) <Mz (20)

0<t<T

(—AhW,V) = (DW, DV), \V/W,VEVh, ..
for some positive numbers T ang,M= 1,2, 3. Then there
and if we let Ex(t) = €%n be the analytic semigroup is a constant

generated by, andR, a map from the spade?(Q) toV,, C= C(k,K,My1,M3,M3,T) such that
which is an orthogonal projection, then in view a, it
is well known thatEx(t)R, satisfies the following estimate  [U(t) — Un(t)[| + [ @(t) — n(t)| <CPP.t € [0,T].  (21)

| En(t)Pho]| +t1/2||Eh(t)PhP||1,2 + t[|AnEn(t)Php| Lemma 3Under the assumptions of Theor@mabove, we
have
<Cllp[l, t>0,  (13)

where p € L?(Q) and C is independent ofh and t, 10(e(t) = () | < C(h+ ju(®) — un(®)I) (22)
reflecting the inform analyticity of the evolution operator and
In the same way, the discrete evolution operaﬁgﬁh o(t) — an(t)|

defined byER, ., = (I —AtAp) ™" and associated with the _
backward Eaigr method has the estimate < C(h? +[Ju(t) — un(t) | +h~3[u(t) —un(t)[?).  (23)

|ER PO+t % ER wPholl1.2 + tallAnER, nPho | o
<cC|p|l, tv>0. (14) 4 Coupled Non-standard finite difference and

With the above discrete framework of the problem in finite element method

place, we are led to state the discrete versiorvi{9) as

follows: find un(t), g(t) € Vh such that Unlike in other methods where the time variable was

discretized using the backward Euler, we exploit and
dup 2 present under this section, a reliable scheme consisting of
<Wavh> + (Oun, Ovn) = (0/(un)|0¢h|*, Vi) , (15)  coupling the Non-standard finite difference (NSFD)
method in the time step size and the finite element
0 method (FEM) in the space step size. We show that the
(Un(0), Vi) = (Un, V), (1) numerical solution obtained from this scheme
and NSFD-lFEM attainezd the optimal rate of convergence in
bothH" as well asd_“-norms. To achieve this we proceed
(0(un)Oéh, Ovn) =0, Wun €Wy, t€[0,T], A7) in this different framework, by letting the step size
whereu? € \, is an appropriate approximation of.  t-1 = (n—1)At for n=1,2.---,N. For a sufficiently
Under the above framework, we are led to the following Smooth functions, we find the NSFD-FEM approximation
discrete version of the generalized Gronwall Lemma and{U} such thatU] ~ uj at each discrete timg_;. That
the Lemma that will boungp(t) — @ (t): is, find a sequence{U"}N ; in W, such that for
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n=12--- ,N-—1the fully-discrete scheme NSFD-FEM whereUQ € VW, is uniquely defined by
approximateuy such that);! ~ uj, at discrete time,. i.e,

(&UR vh) + (OU, D) = (0(Up™)[0PFH2 wh) (24) (GF.vh) = (u°, ), Yo € Vi, ta € (0.T] (35)
0 0 with o= uty), @ = ot and
(U™, vh) = (up,Vh) (25)  F(u", ") = o(u")|0¢" 2. Applying the well known error
and analysis for linear parabolic equation we obtain
5 2
(a(UM)OOD, Ovh) = 0 Wk € Vi, th € [0,T], 26) Un—ull<C(h"+y(an) (36)
where whereC depends omM; andM, we refer to P] for more
details.
Un — ur— Uﬁfl 7 In view of the difference betweer24)-(26) and @4)-
Uy = Y(At) (27) (35) we have forg, = U] — U/ that
n_(jn n_(jn
andy(At) = eMAt‘l is restricted between @ Y(At) < 1. (8n(UR = Up), vn) + (O(U7 —Up), Bvn)
If the nonlinear function on the right hand side @ = (o(Up4)|0@) 2 — a(u™ 1) |0¢™ 12, w)
is zero, we will have in view ofZ4) the exact scheme . .
which yield
n_jh-1 ~ ~
(U ) + o -0 o (BUR-00w)+ (U7 00w
A

— (Fup o - Fne) )
which according to Mickens2fg] replicates the positivity ndh
and the decay to zero, which are the main features of th&n¢d nénce

exact solution of{)-(2). The above framework leads to the 9¢én A = (F(Uﬁ‘l, cpg—l) B F(u“,qo”)),

following main result of the paper. ot
Theoremd4let u and ¢ be the solutions of the én(0) =0, t[0,T].
time-dependent Joule heating equatio$-(©) and its  When the variation of constant formula is applied, we have

respective fully-discrete NSFD-FEM solution @24§-(26) using the discrete version of the Gronwall Lemina
be U and @] given such that

[[€nll
[[U— Un|| < Myh?. (29) " | I g 1+1 41
< YAy [|ER pPh(F (Up, @) —F (U™ @ ). (37)
Assume further that |; Ath e
152 Since in the NSFD-FEM methodit was replaced by
Sup (||U(t)| e H (At) then, in view of the discrete evolution operator
<t<

denoted in the same way &, , and associated with the
(30) backward euler method, will surely share the same
estimate as in14). With this, we proceed to boun@7)
using several bounds for the discrete evolution operator
710 EAtnPh- This will be done thanks to2[l] Lemma 52 for
OitufT <|(p(t)||2,2+ 1o®)l1.00 + Hﬁ| 12) <Ms, (3D) the bounds of the norm of the continuous operator
- En(t)P, considered as an operator frob? into L®,
and thatAt < Mzh!/3 for some positive numbers T and namely for anye > 0 there is &, > 0 such that

au(t)
{ {|]) < e
+ 22+ ot2 2

M,i = 12,4 Then there is 2
C =C(k,K,Mz,M2,Ms, Mg, T) such that [[En(t) <Cet#|p||, t>0. (38)
u(ts) — U + [l @(tn) — 7| gC(h2+At), By dua.ht)& we 2h{.—;we the same bound for the norm of
En(t)P,: LY — L2 ie.
th € [0, T]. (32)

_2
Furthermore, the discrete solution replicates all the IEa(®)FPllow < Cet™=[[pllos, t>0. (39)

properties of the nonlinear equations in the limiting case In fact we have

of the space independent equation. En(t)Php,V
IEnRp] = sup ISR
ProofWe begin the proof of this theorem with the error veL2,||vl| 270 L2
decomposition equation (0, En(t)PV)| (40)
- = sup ———= 40
Ul —u"=UP -0+ G — " (33) verz 20 VIl
(@© 2016 NSP
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since En(t)R, is self-adjoint. In view of the above
continuous cases & (t)R, with the discrete NSFD-FEM
analoguety, P, we have

IEAtnPholl < Cetn e lpll th>0,£>0 (41)
in view of (38) and seconded by
|EAtnPholl < Cet SHP||01, th>0,€>0 (42)

for any C¢ > 0 in view of (39). Furthermore, in view of
(40) we can expand the norm ¢E%, \Po|| as

|(EAtnPho, V)|

IEAnPholl = sup
vel? o0 VI
LER Bypv
~ sup |(P: By nPhov) | 43)
veL?, V]|, 20 V][ 2

In view of Lemma3, we can apply it directly to the
equation for®]! to have

IB(Ph— ") || <C(h+[Ug—u)) (44)

|00 — ¢l <€ (P + lup — |+ h*3uf — o) ?) 45)

Proceeding by deriving a preliminary low order
we have by using the fact that

estimate of ||&n|,

|0@f|| +|/0¢"|| < C and the hypothesis
IFUyton ) —F ¢ Hlos

< [loUyHI0eR - o(u™ ) |0¢" 2 os

< [lo(UR (@R + @™ ) - (D) = @™ Y oa

+ (o) — o )I0¢" 2 os

< C(l|o@pH|+ (D™ H) [O(@f~t — g™ 1)

+ CUp —u @™

< C(h+[upt—u ).

If we continue in a similar manner for, then in view
of (46) we have

(46)

[FU™ ") —FUu, ¢")os
<o 1)|D<0n l|2 o(u")|0¢"?[lo1
< o™ 0@ +¢")- 0"~ ¢ os

+ o™~ ou")|0¢"os

<C(IDe™ Y+ 10¢") 19" * — ¢"ll12
+Cu w6

<C(¢"t—@"|12+]u

< cyian swp (1521+5; )
O<t<T
< CY(At) by the linear NSFD-FEM in9]

nfl_

u’))

(47)

and in view of é7) we therefore have using®) that
IFUE ™ op ) —Fu™ 0" Hllos
< C(h+y(At) + Uit —u™1)).

In view of (36), (37) and @1) we have using the error
decomposition equation

(48)

U=
< JUR = U+ [1nl
< C(h*+ y(at))

n-1
+ Cy(At) %t;ﬁIIF(Ur'MDL)—F(U'“ @ lloa
|=

C(h*+ y(At))
n-1

+ Cy(At) Z}

tod (h+ (At + [up = ™))

n—-1
< C(h?+y(At)) +Cy(At) %tn—_‘1|\u,'1—u'|| (49)
|=

where we have chosem € (3/4,1). Hence by Lemm4d
we have
IUf = ul| < C(h*+ w(aD). (50)

Furthermore, this leads immediately to the following
equation:

|®f — @"[|l12 < C (PP + y(At)),
and which in view of Lemma& we further deduced

10f — @] < C (h* -+ (at) + [Juf —u")).

(51)

(52)

To obtain the optimal rate of convergence of the
solution of this problem, we expand more accurately
FUR ol ) — F(u"2,¢" 1) as follows:

FU o) -
[o(Uf) -
+ 20(u"H0g" - O(ef - g

+ 2[oUM Y —o(u™h] D"t O(d~
+ o ot - g Y2
=Ri+R+R3+ Ry

Fu ")
O.(unfl)} ||:|®rr1171|2

1 (pn—l)

Using (L4) and @2) we shall estimate each of the terms of

the norm||E2t’thR;|\,i =1,2,3,4 and later combine the
result into the right hand side 087) as follows:

IEAnPhRu
= [IERnP ([o(UF ) —ou™ )] [Dap 1) |
< C(IUR = u" I PF )

<Clluft—uty. (53)
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For Ry(s) we use the stability argument b¢3) for x €
L?(Q) and we have

(EAcnPhR(s), X)
=2(0(ep =" ), o (U HDPER hPhX)
= —2(&)t—¢" 0 [0 0P  ER nPux])
==2(op =" o HOe" - O[ER PX]) -
Hence, in view of {4) we have
[ (EatnPaRa2(), X) |
< 2|08 — 0" Y[ " 1.0 ER X |12
< Ct 2 opt— o Y| x|
and by the estimaté&g) we have
|IES nPRo(9)]] < Cta ™2 (124 U=t — u™ 1))
By (42) there isa € (3/4,1) such that
I[EAtnPhRa(S) |
< o7 [oup™) — o) 0g" - D(@f ™~ " Y os
< O Ut = o 9" Yl (1095 + 19" )
< C Ul = o (55)

(54)

since||0®) | +[|¢" Y| < C.
Similarly, we have in view of%2) the next inequality

IERPhRa(9)]| < Cty o (U HID(@) = 0" ) los
<Copt—¢" 12
< o (M + @Ay + up —u" ). (56)
Combining all these inequalities3), (54), (55 and 66)
in (37) then all these together witl36) yield
n-1
[UR]l < C (W -+ w(ab)) +Cy(at) %tn’“HUﬁ ~u| (57
|=

which finally yield
lUg = "l < (h*+ w(at)

after using the discrete Gronwall LemrhaWe also have
in view of (45)

|®f — @"[| <C(h*+y(At)).

Since in view of Mickens 26] the above scheme was

design for

At
wian =222

then asAt — O this implies thaty/(At) ~ At thereby
yielding the first part of the result.

~ At +0((At)?)

in both L2 as well asH-norms of the pair of discrete
solutions (U, @) to their respective exact solutions
(u,@) in (32 implies that there exists a pair of
subsequence ¢, @) still denoted in the same way as
(U, @) that converge point-wise tu, ¢) ash — 0 and

n — 4o, (See L], Corollary 2.11) for more. In view of
this, if we assume thatu = 0 near a poina € Q andvy

in (24) is chosen in such a way that its support containing
the pointa, is very small ands, = 1 neara, then we can
use the approximation

| (U HI00p P wdx= o(Uf(@) Do) @)K

whereK is the measure of the supg]. Using the above
approximation in 24), it follows that the pair(U], @)
are discrete solutions 024)-(26) when we fixx = a. Of
course the discrete solutiond” is the solution of the
exact scheme2@) if we also have

o(Uf Hat)0ep Hat)? =0

and hence the proof of the second part which complete the
proof of the Theorem.

5 Numerical experiments

Under this section, we present the numerical experiments
on problem 1)-(2) using the NSFD-FEM method. These
experiments are presented @ = (0,1)? x (0,T) where

Q is discretized into regular triangulatioff, of Q. These
discretization are employed using unifoinx N meshes

of sizesh=1/M in the space andt = T/N in the time,
whereM denotes the number of nodes. We re-write the
time-dependent system of the Joule heating equatijns (

(2) by

%—Au: o(u)|0g®+ f, (58)
~0-(o(wig) = f2 (59)

with the electric conductivity (u) taken to be

W=ty

where the functionsfy, f, the initial and boundary
conditions are determined correspondingly by the exact
solution

{u(xl,xz,t) = exp(—t) sin(7xy) sin(70x)

O(X1,%2,t) = X1 (1—Xp) sin2(x1+xz—t). (60)

SettingN = 10 and T = 1.0 our algorithm using the
above example6Q) in problem @4)-(26) we have the
following figures from 1 to 10. These figures illustrate
pairs of exact and approximate solutiongq,xp) and

As for the second part of the proof which is the ¢@(x1,X2) respectively at various times=0.1,0.3,0.6,0.9
preserving of the properties of the exact solution of theand 10. Fort = 0.1 we have Figl and2 followed by Fig
above equations, we should first note that the convergenc@and4 for t = 0.3 proceeded by Fi§ and6 fort = 0.6 in
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the same manner Figand8 for t = 0.9 and finally Fig9 t=0.1 =01
andl10fort = 1.0.

With all these figures from Fidl to 10, we could
exploit the data obtained from their computations to find
their respective errors fof = 1.0 with the mesh sizes
varying from 1015,20 and 25. The results from these
computations are illustrated in Tablésnd?2.

Making use of the error values of the solutians,t)
and @(x,t) obtained from Tablesl and 2, we then
compute forT = 1.0 and using still the mesh sizes stated
above, the rate of convergenceugk,t) and @(x,t) using
the formulae

Rate= M

In(hy/hy)’

where h; and h, together with e; and e, are
successive triangle diameters and errors respectivelyig 2 Exact and Approximate Solutions @{x,t) att = 0.1
Furthermore, the clarification of the convergence of the
above solutions to be more specific in th&norm can
best be illustrated in FigurkL
From Tablel, we can observe that the solutiohas an 1=0.3 =03
approximate rate of almost 2 fa?(Q) and 1 forH(Q)-
rates. Similarly, forp in Table2 the approximate rates for
L?(Q) andH!(Q) are 2 and 1 respectively. 1
These results are self explanatory and we could
conclude that the results as shown by these experimen
exhibit the desired results as expected from our 06
theoretical analysis. ey

0.8

= o

t=0.1 t=0.1

Fig. 3 Exact and Approximate Solutions ofx,t) att = 0.3

Fig. 1 Exact and Approximate Solutions ofx,t) att = 0.1
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phiex

Fig. 5 Exact and Approximate Solutions ofx,t) att = 0.6 Fig. 7 Exact and Approximate Solutions ofx,t) att = 0.9
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t=0.9 t=0.9 t=1 t=1

0.12

0.1

0.08

= 0.06
[

0.04

0.02

Fig. 8 Exact and Approximate Solutions @fx,t) att = 0.9 Fig. 10 Exact and Approximate Solutions @fx,t) att = 1.0
t=1 =1 Table 2 Error in L2 and H1-norms of ¢ using NSFD-FEM
method
05 04 M | L%error | L?>-Rate | Hl-error | HI-Rate

10 | 3.1794E-2 2.0130E-1
15 | 1.5278E-2| 1.83 1.4208E-1| 0.87
20 | 8.9727E-3| 1.85 1.1085E-1| 0.88
25 | 5.9248E-3| 1.86 9.0884E-2| 0.89

[—=T=01—=T=03-T=06—T=09g —T=01+T=036T=06—T=09

L%-Error of u
L2-Error of u
et
o
2

0.0

Fig. 9 Exact and Approximate Solutions ofx,t) att = 1.0

Fig. 11 2-D Unit Square
Table 1 Error in L2 and H1-norms of u using NSFD-FEM

method
M | L%-error | L?%-Rate | Hl-error | HI-Rate
10 | 3.4350E-2 2.4151E-1 6 Conlusion
15 | 1.6258E-2 1.87 1.6575E-1 0.94
20 | 9.4743E-3| 1.88 | 1.2611E-1] 0.95 We presented a reliable scheme of the system of the
25| 6.2511E-3| 1.89 | 1.0188E-1| 0.956 time-dependent Joule heating equations consisting of

coupling the non-standard finite difference in time and the
finite element method in the space variable (NSFD-FEM).
We proved theoretically that the numerical solution
obtained from this scheme attains the optimal rate of
convergence in both thel! as well as thel2-norms.
Furthermore, we showed that the scheme under
investigation replicates the properties of the exact gmiut
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