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Abstract: This paper examines the problem of designing a robust fuzzy speed controller of Brushless DC (BLDC) motors which is
described by a Takagi-Sugeno (TS) fuzzy model. Based on a linear matrix inequality (LMI) approach, LMI-based sufficientconditions
for BLDC motor to have anH∞ performance are derived. The proposed approach can overcome the nonlinearity and disturbances
problems, while a conventional controller may suffer in controlling the motor speed due to some disturbance and nonlinearity of the
BLDC motor. Finally, the effectiveness of the designed approach is demonstrated that the proposed methodology is provided a high
performance robust control system for the BLDC motor through the simulation results.
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1 Introduction

The brushless direct current (BLDC) motors are normally
used in tuning a process and also have been extensively
used in many applications such as air condition, blower
fan within the respirator. Currently, BLDC motors
provide advantages in efficiency, compact, reliability and
performance [1,2,3,4]. However, it is the fact that BLDC
motor system involves a nonlinear model and complex
process including the parameters tuning A trial and error
is very time consuming which it may fail to optimize the
performance. These also bring some difficulties to
analysis and control. So far, there have been many
researchers seeking highly effective methods for such
systems in order to overcome the uncertain nonlinear
control problems such that neural network control system
has a strong ability to solve the structure uncertainty but it
requires more computing capacity and data storage space.
For genetic algorithms and ant-colony algorithms, this
techniques can help in improving performance but they
also need longer computation time and larger storage
capacity [5,6,7,8].

Although PID control design is widely used
approaches for brushless DC motor system, it is very
difficult to obtain the proper results by using PID
controller due the fact that in most situations, the systems

deal with the uncertainty of dynamic behavior of the
system and also nonlinear variation of parameters during
operation. In addition, PID control design may be
sufferred from larger overshoot, oscillation and slower
response [9,10]. According to the above reasons, the
conventional PID controller maybe not a good controller
since the PID controller sometimes shows an unsatisfied
performance in the applications of BLDC motor systems
that containing nonlinear variables [11].

Recently, the nonlinearH∞ control problems have
been extensively studied by many researchers; see [12,13,
14,15]. H∞-control method can involve with multi-input
and multi-output problems as well as disturbance and
model error problems. The nonlinearH∞-control problem
can be stated as follows: given a dynamic system with the
exogenous input noise and the measured output, find a
controller such that theL2-gain of the mapping from the
exogenous input noise to the regulated output is less than
or equal to a prescribed value. Presently, there are two
commonly used approaches for providing solutions to the
nonlinear H∞ control problems. The first approach is
based on the nonlinear version of classical Bounded Real
Lemma; see [14,15,16,17]. The second approach is based
on the dissipativity theory and the theory of differential
games; see [12,17,18]. Both approaches show that the
solution of the nonlinearH∞ control problem is fact
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related to the solvability of Hamilton-Jacobi inequalities
(HJIs). So far to our best knowledge, there is no easily
computation technique to solve those inequalities.

Very recently, the problems ofH∞ control theories
have been investigated; see [19,20,22,23,24,25,26]
where the desired controllers have been designed in terms
of the solution to linear matrix inequalities (LMI). LMI
techniques are valuable alternative to classical analytical
method and can be solved as efficient interior-point
optimization [27,28]. The main advantage of LMI
formulation is the ability to combine various design
objectives in a numerically tractable manner.

Over the past two decades, there has been rapidly
growing interest in applications of fuzzy logic to control
problem. Researches have been focused on its application
to industrial processes and a number of successful results
have been reported in the literature. In spite of these
successes, there are many basic issues remain to be
addressed. One of them is how to achieve a systematic
design that guarantees closed-loop stability and
performance. Recently, a great amount of effort has been
devoted to describing a nonlinear system using a
Takagi-Sugeno fuzzy model; see [29,30,31,32,33,34,35,
36,37,38,39,40,41,42,43,44,45]. Lately, the design of
fuzzy H∞ for a class of nonlinear systems which can be
represented by a Takagi-Sugeno (TS) fuzzy model has
been considered by many researchers; see [25,26,32,44].
TS fuzzy model has been attracted by a number of
researchers in great attentions to both theoretical
researches and application techniques which they can be
seen in a number of excellent and important results on a
plenty of papers; see [19,20,25,26,32,44].

Fuzzy system theory enables us to utilize qualitative,
linguistic information about a highly complex nonlinear
system to construct an mathematical model for it. In this
TS fuzzy model, local dynamics in different state space
regions are represented by local linear systems. The
overall model of the system is obtained by ‘blending’ of
these linear models through nonlinear membership
functions. Unlike conventional modelling where a single
model is used to describe the global behaviour of a
system, the fuzzy modelling is essentially a multi-model
approach in which simple sub-models (linear models) are
combined to describe the global behaviour of the systems.

Therefore, in this paper based on LMI approach, a
robustH∞ fuzzy speed controller for brushless DC motor
is presented. We develop a fuzzy controller of BLDC
motor such that theL2-gain of the mapping from the
exogenous input noise to the regulated output is less than
a prescribed value. This paper is organized as follows.
Section 2 shows the list of used symbols. Section 3
explains the mathematical modeling of BLDC motor. In
Section 4, TS fuzzy model is presented for nonlinear
systems. In Section 5, based on a LMI approach we
develop a technique for designing a fuzzyH∞ speed
controller of BLDC motor that guarantees theL2-gain of
the mapping from the exogenous input noise to the
regulated output is less than a prescribed value. The

validity of this approach is finally demonstrated through
simulation results in Section 6. Finally in Section 7, the
conclusion is given.

2 List of the used symbols

Va(t),Vb(t),Vc(t) stator voltages, V
ia(t), ib(t), ic(t) stator winding current, A
ea(t),eb(t),ec(t) stator back-emf, V
L stator self inductance, H
R stator resistance/phase,Ω
ωr(t) electrical rotor speed, rad/s
θr rotor position, rad
vq(t),vd(t) qd axis voltages, V
iq(t), id(t) qd axis current, A
Lq(t),Ld(t) qd axis inductance, H
λm mutual air gap flux linkages, V·s
T(iq,id)(t) electromagnetic torque, N·m
P number of poles
TL(t) load torque, N·m
J load inertia, kg·m2

B viscous friction, N·m/(rad/s)

3 Modeling of brushless DC motor

The coupled circuit equations of the three-phase BLDC
motor are [11]




Va(t)
Vb(t)
Vc(t)



 =





R 0 0
0 R 0
0 0 R









ia(t)
ib(t)
ic(t)



+





L 0 0
0 L 0
0 0 L





d
dt





ia(t)
ib(t)
ic(t)





+





ea(t)
eb(t)
ec(t)



 . (1)

In addition, the relationship between the back-emfs and
the function of rotor speed are as follows [4]





ea(t)
eb(t)
ec(t)



 = ωr(t)λm





sin(θr)
sin(θr − 2π

3 )
sin(θr +

2π
3 )



 . (2)

A simple three-phase brushless motor shows in Figure 1.
Theabc variable via the Park’s transform are applied such
that the rotor frameqd variable is obtained. A set of
voltage is obtained as [3]

vq(t) = Riq(t)+ d
dt λq(t)−ωr(t)λd(t)

vd(t) = Rid(t)+
d
dt λd(t)−ωr(t)λq(t)

λq(t) = Lqiq(t)
λd(t) = Ld id(t)+λm.

(3)

The electromagnetic torque of the motor is [3]

T(iq,id)(t) =
3
2

(

P(λmiq(t)+ (Lq −Ld)iq(t)id(t))
)

. (4)
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Fig. 1: Basic three-phase, 4 poles brushless motor.

Combining with equation of motion, one has the system
equation in terms of theqd variables.

ω̇r(t) = −B
J ωr(t)+ 3

2
P
J λmiq(t)− P

J TL(t)
i̇q(t) = − λm

Lq
ωr(t)− R

Lq
iq(t)− Ld

Lq
ωr(t)id(t)+

1
Lq

vq(t)

i̇d(t) =
Lq
Ld

ωr(t)iq(t)+ R
Ld

id(t)+
1

Ld
vd(t)

(5)
(5) can be rewritten as follows




ω̇r(t)
i̇q(t)
i̇d(t)



 =







−B
J

3
2

P
J λm 0

− λm
Lq

− R
Lq

− Ld
Lq

ωr(t)id(t)
Lq
Ld

ωr(t)iq(t) 0 − R
Ld











ωr(t)
iq(t)
id(t))





+







0 0
1
Lq

0

0 1
Ld







[

vq(t)
vd(t)

]

+





−P
J TL(t)

0
0



 . (6)

4 Nonlinear fuzzy model

First, we generalize the TS fuzzy system to represent a TS
fuzzy system with parametric uncertainties. In this paper,
we examine a TS fuzzy system with parametric
uncertainties as follows:

ẋ(t) = ∑r
i=1 µi(ν(t))

[

[Ai +∆Ai]x(t)+Bww(t)

+[Bi +∆Bi]u(t)
]

, x(0) = 0

z(t) = ∑r
i=1 µi(ν(t))

[

[Ci +∆Ci]x(t)+ [Di+∆Di]u(t)
]

(7)
where ν(t) = [ν1(t) · · · νϑ (t)] is the premise variable
vector that may depend on states in many cases,µi(ν(t))
denotes the normalized time-varying fuzzy weighting
functions for each rule (i.e.,µi(ν(t)) ≥ 0 and
∑r

i=1 µi(ν(t)) = 1), ϑ is the number of fuzzy sets,

x(t) ∈ ℜn is the state vector,u(t) ∈ ℜm is the input,
w(t) ∈ ℜp is the disturbance which belongs toL2[0,∞),
z(t) ∈ ℜs is the controlled output, the matricesAi, Bw, Bi,
Ci, and Di are of appropriate dimensions, andr is the
number of IF-THEN rules. The matrices∆Ai, ∆Bi, ∆Ci,
and ∆Di represent the uncertainties in the system and
satisfy the following assumption.

Assumption 1

∆Ai = F(x(t), t)H1i , ∆Bi = F(x(t), t)H2i ,

∆Ci = F(x(t), t)H3i , and ∆Di = F(x(t), t)H4i

where H ji , j = 1,2, · · · ,4 are known matrix functions
which characterize the structure of the uncertainties.
Furthermore, the following inequality holds:

‖F(x(t), t)‖ ≤ ρ (8)

for any known positive constant ρ .

Next, let us recall the following definition.

Definition 1.Suppose γ is a given positive number. A
system (7) is said to have an L2-gain less than or equal
to γ if
∫ Tf

0
zT (t)z(t)dt ≤ γ2

[

∫ Tf

0
wT (t)w(t)dt

]

, x(0) = 0 (9)

for all Tf ≥ 0 and w(t) ∈ L2[0,Tf ].

Note that for the symmetric block matrices, we use(∗) as
an ellipsis for terms that are induced by symmetry.

5 Main results

A robust H∞ fuzzy state-feedback controller is readily
established of the form

u(t) = ∑r
j=1 µ jK jx(t) (10)

whereK j is the controller gain such that the inequality (9)
holds. The state space form of the fuzzy system model (7)
with the controller (10) is given by

ẋ(t) = ∑r
i=1 ∑r

j=1 µiµ j

[

[(Ai +BiK j)

+(∆Ai +∆BiK j)]x(t)+Bww(t)
]

, x(0) = 0.

(11)
The following theorem provides sufficient conditions

for the existence of a robustH∞ fuzzy state-feedback
controller. These sufficient conditions can be derived by
the Lyapunov approach.
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Theorem 1.Consider the system (7). Given a prescribed
H∞ performance γ > 0 and a positive constant δ and α , if
there exist a matrix P=PT and matrices Yj, j = 1,2, · · · ,r,
satisfying the following linear matrix inequalities:

P > 0 (12)

Ξii < 0, i = 1,2, · · · ,r (13)

Ξi j +Ξ ji < 0, i < j ≤ r (14)

where

Ξi j =





























Ψ1i j (∗)T (∗)T (∗)T (∗)T (∗)T (∗)T (∗)T (∗)T

δ I −γI (∗)T (∗)T (∗)T (∗)T (∗)T (∗)T (∗)T

0 0 −γI (∗)T (∗)T (∗)T (∗)T (∗)T (∗)T

δ I 0 0 −γI (∗)T (∗)T (∗)T (∗)T (∗)T

Bw 0 0 0 −γI (∗)T (∗)T (∗)T (∗)T

Ψ2i j 0 0 0 0 −γI (∗)T (∗)T (∗)T

Ψ3i j 0 0 0 0 0 −γI (∗)T (∗)T

Ψ4i j 0 0 0 0 0 0 −γI (∗)T

Ψ5i j 0 0 0 0 0 0 0 −γI





























(15)

with
Ψ1i j = AiP+PAT

i +BiYj +Y T
j BT

i
Ψ2i j =

γρ
δ HT

1i
P

Ψ3i j =
γρ
δ HT

2i
Yj

Ψ4i j =
√

αρHT
3i

P+
√

αρHT
4i

Yj

Ψ5i j =
√

αCT
i P+

√
αDT

i Yj

then the inequality (9) holds. Furthermore, a suitable
choice of the fuzzy controller is

u(t) = ∑r
j=1 µ jK jx(t) (16)

where

K j = YjP−1
. (17)

Proof: Using Assumption 1, the closed-loop fuzzy system
(11) can be expressed as follows:

ẋ(t) = ∑r
i=1 ∑r

j=1 µiµ j

(

[Ai +BiK j]x(t)+ B̃ww̃(t)
)

(18)

where

B̃w =
[

δ I 0 δ I Bw
]

,

and the disturbance ˜w(t) is

w̃(t) =









1
δ F(x(t), t)H1ix(t)

0
1
δ F(x(t), t)H2iK jx(t)

w(t)









. (19)

Let consider a Lyapunov function

V (x(t)) = γxT (t)Qx(t)

whereQ = P−1. DifferentiateV (x(t)) along the closed-
loop system (18) yields
V̇ (x(t)) = γ ẋT (t)Qx(t)+ γxT (t)Qẋ(t)

=
r

∑
i=1

r

∑
j=1

µiµ j

(

γxT (t)(Ai +BiK j)
T Qx(t)

+γxT (t)Q(Ai +BiK j)x(t)

+γw̃T (t)B̃T
wQx(t)+ γxT (t)QB̃ww̃(t)

)

. (20)

Adding and subtracting −z̃T (t)z̃(t)
+γ2∑r

i=1∑r
j=1∑r

m=1 ∑r
n=1 µiµ jµmµn[w̃T (t)w̃(t)] to and

from (20), we get

V̇ (x(t)) = γ
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµ jµmµn

(

[

xT (t) w̃T (t)
]

×
















(Ai +BiK j)
T Q

+Q(Ai +BiK j)

+
(C̃i+D̃iK j)

T (C̃m+D̃mKn)
γ






(∗)T

B̃T
wQ −γI











×
[

x(t)
w̃(t)

]

)

− z̃T (t)z̃(t)

+γ2
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµ jµmµn[w̃
T (t)w̃(t)] (21)

where

z̃(t) =
r

∑
i=1

r

∑
j=1

µiµ j[C̃i + D̃iK j]x(t) (22)

with
C̃i =

[ γρ
δ HT

1i
0
√

αρHT
3i

√
αCT

i

]T

andD̃i =
[

0 γρ
δ HT

2i

√
αρHT

4i

√
αDT

i

]T
.

Note that (15) can be rewritten as








(

(AiP+BiYj)
T

+(AiP+BiYj)

)

(∗)T (∗)T

B̃T
w −γI (∗)T

C̃iP+ D̃iYj 0 −γI









< 0. (23)

Thus, pre and post multiply (13)-(14) by





Q 0 0
0 I 0
0 0 I



 yields









(

(Ai +BiKi)
T Q

+Q(Ai +BiKi)

)

(∗)T (∗)T

B̃T
wQ −γI (∗)T

C̃i + D̃iKi 0 −γI









< 0, (24)

i = 1,2, · · · ,r, and






















(

(Ai +BiK j)
T Q

+Q(Ai +BiK j)

)

(∗)T (∗)T

B̃T
wQ −γI (∗)T

C̃i + D̃iK j 0 −γI









+









(

(A j +B jKi)
T Q

+Q(A j +B jKi)

)

(∗)T (∗)T

B̃T
wQ −γI (∗)T

C̃ j + D̃ jKi 0 −γI























< 0, (25)
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i < j ≤ r, respectively. Applying the Schur complement on
(24)-(25) and rearranging them, then we have













(Ai +BiKi)
T Q

+Q(Ai +BiKi)

+ (C̃i+D̃iKi)
T (C̃i+D̃iKi)
γ



 (∗)T

B̃T
wQ −γI









< 0, (26)

i = 1,2, · · · ,r, and


































(Ai +BiK j)
T Q

+Q(Ai +BiK j)

+
(C̃i+D̃iK j)

T (C̃i+D̃iK j)
γ






(∗)T

B̃T
wQ −γI











+

















(A j +B jKi)
T Q

+Q(A j +B jKi)

+
(C̃ j+D̃ jKi)

T (C̃ j+D̃ jKi)
γ






(∗)T

B̃T
wQ −γI





























< 0, (27)

i < j ≤ r, respectively. Using (26)-(27) and the fact that

r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµ jµmµnMT
i jNmn

≤ 1
2

r

∑
i=1

r

∑
j=1

µiµ j[M
T
i jMi j +Ni jN

T
i j ], (28)

it is obvious that we have
















(Ai +BiK j)
T Q

+Q(Ai +BiK j)

+
(C̃i+D̃iK j)

T (C̃i+D̃iK j)
γ






(∗)T

B̃T
wQ −γI











< 0 (29)

wherei, j = 1,2, · · · ,r. Since (29) is less than zero and the
fact thatµi ≥ 0 and∑r

i=1 µi = 1, then (21) becomes

V̇ (x(t)) ≤ −z̃T (t)z̃(t)

+γ2
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµ jµmµn[w̃
T (t)w̃(t)].

(30)

Integrate both sides of (30) yields

∫ Tf

0
V̇ (x(t))dt ≤

∫ Tf

0

[

− z̃T (t)z̃(t)

+γ2
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµ jµmµn[w̃
T (t)w̃(t)]

]

dt

V (x(Tf ))−V(x(0))≤
∫ Tf

0

[

− z̃T (t)z̃(t)

+γ2
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµ jµmµn[w̃
T (t)w̃(t)]

]

dt.

Using the fact thatx(0) = 0 andV (x(Tf ))≥ 0 for all Tf 6=
0, we get
∫ Tf

0
z̃T (t)z̃(t)dt

≤ γ2

[

∫ Tf

0

r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµ jµmµn[w̃
T (t)w̃(t)]dt

]

.

(31)

Putting z̃(t) and w̃(t) respectively given in (22) and (19)
into (31) and using the fact that‖F(x(t), t)‖ ≤ ρ , and (28),
we have
∫ Tf

0

r

∑
i=1

r

∑
j=1

µiµ j

(

αxT (t)[Ci +DiK j ]
T [Ci +DiK j]x(t)

+αρ2xT (t)[H3i +H4iK j]
T [H3i +H4iK j ]x(t)

)

dt

≤ γ2
[

∫ Tf

0
wT (t)w(t) dt

]

. (32)

Adding and subtracting

zT (t)z(t) =
r

∑
i=1

r

∑
j=1

µiµ j ×
(

xT (t) [Ci +F(x(t), t)H3i +DiK j +F(x(t), t)H4iK j]
T

[Ci +F(x(t), t)H3i +DiK j +F(x(t), t)H4iK j]x(t)
)

to and from (32), one obtains
∫ Tf

0

{

zT (t)z(t)+
r

∑
i=1

r

∑
j=1

µiµ j ×
(

αxT (t)[Ci +DiK j]
T [Ci +DiK j ]x(t)

+αρ2xT (t)[H3i +H4iK j]
T [H3i +H4iK j ]x(t)

−xT (t)[Ci +F(x(t), t)H3i +DiK j +F(x(t), t)H4iK j]
T

[Ci +F(x(t), t)H3i +DiK j +F(x(t), t)H4iK j]x(t)
)}

dt

≤ γ2
[

∫ Tf

0
wT (t)w(t) dt

]

. (33)

Using the triangular inequality and the fact that
‖F(x(t), t)‖ ≤ ρ , we have

r

∑
i=1

r

∑
j=1

µiµ j

(

xT (t)×

[Ci +F(x(t), t)H3i +DiK j +F(x(t), t)H4iK j]
T

[Ci +F(x(t), t)H3i +DiK j +F(x(t), t)H4iK j]x(t)
)

≤
r

∑
i=1

r

∑
j=1

µiµ j

({

αxT (t) [Ci +DiK j]
T [Ci +DiK j ]x(t)

}

+αρ2xT (t) [H3i +H4iK j ]
T [H3i +H4iK j]x(t)

)

. (34)

Using (34) on (33), we obtain
∫ Tf

0 zT (t)z(t) dt ≤ γ2∫ Tf
0 wT (t)w(t) dt. (35)

Hence, the inequality (9) holds.
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6 Simulation results

The system from (5) can be described by the following
state equations:

ẋ1(t) = −B
J x1(t)+

3
2

P
J λmx2(t)− P

J w3(t)
ẋ2(t) = − λm

Lq
x1(t)− R

Lq
x2(t)− Ld

Lq
x1(t)x3(t)+0.1w2(t))

ẋ3(t) =
Lq
Ld

x1(t)x2(t)+
R
Ld

x3(t)+0.1w1(t)
z(t) = x1(t)

(36)
where x1(t) = ωr(t), x2(t) = iq(t), x3(t) = id(t), w1(t)
andw2(t) are the process noise,w3(t) is the disturbance
factor from torque load andz(t) is the controlled output.
It is found that currents and the speed in dynamic model
of BLDC motor from (5) and (36) are highly nonlinear.
Simultaneously, it deals with the load torque change.
Thus, the nonlinearity and various uncertainties including
external disturbances have to be taken into account [21].
The nonlinear system plant can be approximated by TS
fuzzy rules. Let us choose the membership functions of
the fuzzy sets as Figure 2. The membership function can
be write as

M1(x1(t)) =
−x1(t)+N2

N2−N1
and M2(x1(t)) =

x1(t)−N1

N2−N1
.

0

M

3000

0

1 1
(x )

1
M

2
(x )

1

x (t)
1 N

2
N

1

Fig. 2: Membership function for the two fuzzy set..

Knowing that x1(t) ∈ [N1 N2], the nonlinear system
(36) can be approximated by the following two rules TS
model:

Plant Rule 1: IF x1(t) is M1(x1(t)) THEN

ẋ(t) = [A1+∆A1]x(t)+Bww(t)+B1u(t), x(0) = 0,

z(t) = C1x(t).

Plant Rule 2: IF x1(t) is M2(x1(t)) THEN

ẋ(t) = [A2+∆A2]x(t)+Bww(t)+B2u(t), x(0) = 0,

z(t) = C2x(t),

where

A1 =







−B
J

3
2

P
J λm 0

− λm
Lq

− R
Lq

− Ld
Lq

N1

0 Lq
Ld

N1 − R
Ld






,

A2 =







−B
J

3
2

P
J λm 0

− λm
Lq

− R
Lq

− Ld
Lq

N2

0 Lq
Ld

N2 − R
Ld






,

B1 = B2 =





0 0
1

Lq
0

0 1
Ld



 , Bw =





0 0 −P
J

0 0.1 0
0.1 0 0



 ,

C1 =C2





1 0 0
0 0 0
0 0 0



 ,

∆A1 = F(x(t), t)H11, ∆A2 = F(x(t), t)H12,

x(t) = [xT
1 (t) xT

2 (t) xT
3 (t)]

T

and w(t) = [wT
1 (t) wT

2 (t) wT
3 (t)]

T
.

Let us choose the value of[N1 N2] in the membership
function as [0 3,000]. Now, by assuming that in (8),
‖F(x(t), t)‖ ≤ ρ = 1 and the values ofR are uncertain but
bounded within 10% of their nominal values given in
(36), we have

H11 = H12 =





0 0 0
0 − 0.1R

Lq
0

0 0 − 0.1R
Ld



 .

From the parameters in Table 1,

Table 1: Motor Parameters [21].
Symbol Quantity Units

P No. of pole pair 2
L = Lq = Ld Stator inductance 0.0018 H

R Stator resistance 0.5Ω
J Motor inertia 0.003 kg·m2

B Friction coefficient 0.0008 N·m/rad/sec
λm Magnetic flux 0.311 volts/rad/sec

the LMI optimization algorithm and Theorem1 with
assumingγ = 1, δ = 1 andα = 2, we obtain the results as
follows:

P =





0.2987 0.0041 0
0.0041 1.4933 0

0 0 1.4933



,

Y1 =

[

0.2019 0.0029−0.0157
0 0.0190 0.0054

]

,
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Y2 =

[

0.0180 12.2413 0.0053
0.2019 0.0029 0.8601

]

,

K1 =

[

0.9577 0.0001−0.0149
−0.0002 0.0180 0.0054

]

,

K2 =

[

−0.0722 11.6125 0.0050
0.9577 0.0001 0.8159

]

.

The resulting fuzzy controller is

u(t) = ∑2
j=1 µ jK jx(t)

where

µ1 = M1(x1(t)) and µ2 = M2(x1(t)).

Remark 1: To verify the validity of the proposed
controller, theH∞ fuzzy controller based on LMI is
compared with the conventional PID controller. Figure 3
shows the result of the rotate speed usingH∞ fuzzy
controller with no load while Figure 4 and Figure 5 show
the speed curve when the motor is with load by setting the
target speed at 2400 rpm. In Figure 4, the speed curve of
the proposedH∞ fuzzy controller is given. Figure 5 is the
result of the PID controller using Ziegler Nichols method
[46], the tuning parameters are determined asKp = 0.43,
Ki = 2.30 andKd = 0.28. The disturbance input signals
w1(t), w2(t) and w3(t) which were used during the
simulation are given in Figure 6. After 0.2 second, the
ratio of the regulated output energy to the disturbance
noise energy to a constant value which is about 0.096 as
shown in Figure 7. Thusγ =

√
0.0825= 0.2864 is less

than the possible value. The proposedH∞ fuzzy
controller provided the faster response speed and
completely eliminated the overshoot. Finally, Table 2
shows the performance result between the proposedH∞
fuzzy controller and PID controller. However, in the
simulated example, the fuzzy model is an approximated
model by the defined membership functions as shown in
Figure 2, thus the rotate speed may not be in agreement
with the reference value (2400rpm). However, it can be
solved this situations by examining the new membership
function as so to exactly represent the nonlinear dynamic
BLDC motor system.

Table 2: Performance Analysis of Fuzzy and PID Controller.
Controller Setting time (sec) % Overshoot

H∞ Fuzzy 0.04 -
PID 0.22 4.16

7 Conclusions

The performance analysis of a BLDC motor drive system
with two types of speed controllers namely PID andH∞

Fig. 3: Rotate speed simulation usingH∞ fuzzy controller based
on LMI with no load.

Fig. 4: Rotate speed simulation usingH∞ fuzzy controller based
on LMI with load change.

fuzzy controller based on LMI approach is presented. The
BLDC motor is subjected to uncertain nonlinearities,
transient and steady-state behaviour of the system. By
comparison with both controllers, it is observed thatH∞
fuzzy controller based on LMI approach gives much
better dynamic response for the system. It is found that
the system responds faster and no overshoot, including a
stability criterion in terms of Lyapunov method can
guarantee the stability of the nonlinear fuzzy system. As a
result, a better dynamic performance of the system is
obtained. Simulation results are also shown that the
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Fig. 5: Rotate speed simulation using PID controller with load
change.

Fig. 6: The disturbance input signals,w1(t), w2(t) andw3(t).

proposed methodology is provided a high performance
robust control system for the BLDC motor.
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