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Abstract: In this paper, we present a new analytical technique forioioiz the analytical approximate solutions for system of
Fredholm integral equations based on the use of the regiduadr series method (RPSM). The proposed method providesothtion

in terms of convergent series with easily computable corapts) as well as it possesses main advantage as compareeitexisted
methods; it can be applied without any limitation or lineation on the nature of the problem, type of classificatiod, the number of
mesh points. In this sense, some examples are given to daaterihie simplicity and efficiency of the proposed methduk Tesults
obtained by employing the RPSM are compared with exactisolito reveal that the method is easy to implement, strmghard
and convenient to handle a wide range of such system of alteguations.
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1 Introduction

basis and delta function3,[8], Chebyshev and Legendre
wavelet method9,10], and others]1,12,13,14,15,16].

Systems of Fredholm integral equations occur frequently In this paper, we apply the residual power-series
in applied mathematics, theoretical physics, engineeringmethod for system of Fredholm integral equations in the
biology, mathematical modeling of real world phenomenaform:

in which uncertainty or vagueness pervades and so on.
Unfortunately, investigation about system of integral
equations is scarce especially discussion on finding
solution. Indeed, it is usually difficult to obtain the
closed-form solutions to systems of Fredholm integral
equations met in practice, so these problems have been
attacked using numeric-analytic methods with great
interest by several authors. Therefore, a class of system of
integral equation takes a central seat in the mathematical
modeling literature.

The numerical solvability of such system has been
pursued by various approximate numerical methods. To
mention a few, the Adomian decomposition method

yl(x)_ K(th)gl(xﬂtvwo:))dt: fl(x)7

yZ(X)_ K(th)QZ(Xﬂtvwo:))dt: fZ(X)7

F Y~ o&F ~—o

Y(¥)— [ K(xt)gn(xt, ¥ (1)) dt = f,(x),

1)

(AMD) [1], Wavelet Galerkin method?], Taylor-series
expansion method3], Modified homotopy perturbation
method f], homotopy analysis method (HAM)5],
reproducing kernel Hilbert space method (RKHE]) hat

wherex € [Xo,b], K(x,t) is continuous known kernel such
that K(x,t) = [kj(xt)], i,j = 1,2,....n, fi(x),

i =12,...,n are analytical functions which satisfy all
necessary requirements of the existence of a unique
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solution,g; are linear or nonlinear function of depend  wherey; j(x),i = 1,2,...,n,j = 0,1,2,..., are terms of
on the problem discusseg (t) = (yy(t), ¥2(t), -, Yn(t)),  approximations such thgt; (x) = G | (X— Xo)!.

andy;(x), i =1,2,...,n are unknown analytical functions . S .
on the given interval to be determined. By truncating the series in EqR), we obtain thekth
%runcated series solutions as

The RPS method is an effective and easy to construc

power series solutions for strongly linear and nonlinear k _
differential equations without linearization, perturibat YE(x) = Z)ci,j (x—x0),i=1,2,....n. 3)
or discretization17,18,19,20,21]. This method provides i=

the solution in terms of convergent power series with )

easily computable components, were computed by chain. T0_apply the RPS technique, systerf),(for a
of linear equations of one or more variables. It is different Simplification, will be rewritten in the form

from the classical Taylor series method that
computationally expensive for large orders and suited for b

the linear problems, which is an alternative procedure for Vi (X)—/K ()@ (xt, Y (1) dt—fi(x) =0, @)
obtaining analytical Taylor series solution for system of %o

Fredholm integral equations. Consequently, the solutions i=1,2,....n,

and all of its derivatives are applicable for each arbitrary

point in the given interval. On the other aspect as well, thewherey = (1,5, ...,Yp) -

RPSM does not require any conversion while switching  Now, by substituting th&th-truncated serie;#(x) into
from the low-order to the higher-order, so it can be Eq. @), we obtain thenth-residual functions system as
applied directly to given problem by choosing an

appropriate initial guess approximation. However, b

different applications with other versions of linear and  Res™(x) :yr(x)—/K(x,t)gi (%,t, Yk (1)) dt — fi (x),
nonlinear problems can be found 22 23,24,25,26,27] %

and references therein. i=1,2,..,n,

In this paper, the extension of the RPS scheme and (5)
differential of it are used to approximate the solution wherey;= (V5. 5, ...,¥&) , and thewoth residual function is
functions for system of Fredholm integral equation based,; — i -
on Taylor series expansion. The organization of th:glven byReﬁ“(x)_nlqmcReﬁ“(x)J_1,2,...,n.
remainder of this paper is as follows. In Section 2, we  Here, it is worth mentioning that
present the formulation of the residual power-seriesRes"(x) = 0,i = 1,2, ..., for eachx € [xo,Xo+b]. This
method for systeml)). The error analysis technique based show thatRes" (x) are infinitely differentiable functions
on the residual function is also developed for the presengt x — x, such that 4-R — d"p -0
method. In Section 3, the RPSM is applied and extendedn_ o, 1.2, This (Stion 5 fundamenal e in the
to provide symbolic approximate series solutions for RPSM and its applications.

SyStem n.) and to illustrate the Capablllty of the proposed As a consequence, we have the fo||owing
method. Results reveal that only few terms are required to

deduce the approximate solutions which are found to be b
accurate and efficient. Finally, a brief discussion and Res™ ()= 5K ¢ i (x—x0) — [ K(xt
conclusion are presented in Section 4. e () Zj=06i ) a (6t)

Oi (th’ zlj(=0017j (t _tO)J s (6)

zlj(:oCZ,j (t —to)J yenes

zlj(:ocn,j (t —tO)j dt — i (x),
i=12..,n,

2 Theresidual power-series method

In this section, we review some elementary knowledge

and some properties about residual power-series functiongnich containea equations inj variables.

which are useful of the remainder of this analysis. Then, the unknown coefficients Gji = 12..n

we employ the RPSM to find out a series solution for j _ o1~y in Eq. () can be obtained ’by

system of Fredholm integral equatiof) (by formulate  gyaightforward steps using the following procedure,

and analyze the proposed method. ~ which leads to algebraic systemsrok (k+ 1) equations
For initial pointx = xo, we suppose that the expression that solved directly using Mathematica software package.

given by Res’(xo) =0fori=1,2,...,n, leads to system of algebraic
- equations in the form
Yi(X) = Y'/ Xai:1727"'7n7 (2) .
¥ = i cio—Gi(xo, Vi,j) = fi(x), i =1,2,...,n, (7)
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where

GI(X077I‘J):/K(XOat)g| (X07t7yl,j7y2,j7"'7yn,j)dt7

YIJ—EJ 0Ci,j (t

to)j i=12..nj=01..k
Now, differentiate both S|des of Ecg)(with respect to

X, and then setn = 1, we get that

& Rest (x)

—d%[/K(x,t)gi(x,t,z,iocm (t—to),

=5 (x—x0)
b

YK oCjt—to),...,
s OCnJ( to))dt] - f/ (%),
i=12,.

Following relatlon 8) and using the fact that
(SResl (%)) =0 for i =12,...,

system of algebraic equations in the form
Gl(%0,Vij) = f{(x), i =1,2,....,n,

where

d

Gl(x0, Vij) = &

%o
i=12...,n,j=0,1,...
Similarly, differentiate both sides of E¢p)(twice with

e

[/K(Xo,t)gi (X0,t, Y1}, Y2,j, s Yn,j ) dt],

respect tx, and set = 2, we obtain that

21 21(]

x2 Regz

—i)Gj (x—x0)) 72

—& /K X106t T4 ocrj (t— o)

vzj OCHJ( ))dt]

X0
S G2 (t— to)’,
— fi// (X) 5 | - 1,2, ...7
Consequently, by

(sRest 0

using the fact
) —0fori=12...

other system of algebraic equations in the form

2Cio—

b
2 " .
LK (%0,) G (Xo,t, Y1, Y2, Ynj) dt], | =
X0

i=0,1,....k

Correspondingly, by continuing with this technique till
tom=1, we get that

& Res(x)

)= 35 ilei ) (x—x0)'

G/(x0, Vij) = f{'(%), i=1,2,...,n,
whereG/ (xo, Vi j) =

j—k

diR/K (x 1) Gi(xt,T* g1 (t—to)!,

Z;:o CZ,J (t—to)!

7"'721:007171 (t _to) )dt]
=12,

'7n7

n, we obtain other

,n, we also obtain

1,2,...

and by using the fact that(dd—;R@(xo)) =0 for

i =12,...,n, thekth algebraic system can be generated
as follows

Kicik—GY (%0, Vij) = £ (%), i=1,2,..,n, (L1)
whereG (%0, Vij) =

&E[]K(XO7t)gl (X07t7y1,j7y2,j7"'7yn,j) dt]7 I = 1,2,...,”,
X0

j=01,....k

Hence, by solving these package of algebraic systems
(7), (9), (10) up to (11), the kth approximate solutions,
yE(x),i=1,2,...,n, of Eq. (7) can be obtained.

However, higher accuracy can be achieved by
evaluating more components of the solution. It will be
convenient to have a notation for the error in the
approxmatlony.( ) ~ YK(x). Accordingly, let Rem(x)

i = 1,2,...n, be the kth remainder for the RPS
apprOX|mat|on, which is the difference betweg(x) and
its kth Taylor polynomial obtained by RPSM; that is,

Re'”ff X) = VYi(X ))((X)
-3 Lo () (x— 30!
J +

11!
In fact, it often happens that the remainddam¥(x)
become smaller and smaller, approaching zerd gsts
large. The concept of accuracy refers to how closely a
computed or measured value agrees with the truth value.
Taylor's theorem allows us to represent fairly general
functions exactly in terms of polynomials with a known,
specified, and bounded error. To show the accuracy of the
RPSM for some tested problems, we report four types of
error; The residual erroResdf(x), the absolute error
Absk(x), the relative erroRel¥(x), and the consecutive
errorCon}‘(x), which are defined respectively by

Resd!(x) =

b
—/K(x,t)gi (%t ¥k(0)) dt — 5 (x)]
X0

Ab(x) = |yi() —3k(9] = |Remt (0.

el %100 =00

SX) = 7’

' 1yi (x)]

Conk(x ‘yk“ ¥l i=12,.

whereyi(x), i =12..n, are the exact solutions, and

yik(x), are thekth-order approximation obtained by the
RPSM.

Next, we present a convergence theorem of the RPS
technique to capture the behavior of solutions.
Theorem 1. [28] Supposethat yi(x), i =1,2,...,n, arethe
exact solutions for Eq. (1). Then, the approximate
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solutions obtained by the RPS technique are in fact the i=123,...,k inEqg. 13):
Taylor expansion of y;(x) for i =1,2,....n.

k .
Theorem 2. [28] Let yi(x), i =1,2,...,n, beapolynomial Resl'(x) = ¥ cp %!
for some i, then the RPS technique will obtain the exact =0
solution. 1
The reader is referred t02§,29,30,31] and the _/ (x—t)3 % cpitiH(x—t)2 g co it | dt
references therein in order to know more details and i=o . j=o0 .
principles about the RPS technique, including their 0
applications in various kinds of differential equations. — o+ Hx— 2324+ 18,
k .
Resf(x) = 3 co ¥
=
3 Ilustrative problems 1 ) )
—/ ((x—t)“_g it +(x—1)% 3 cz,jti> dt
In order to assess the accuracy and the performance of the 0 =0 =0
new adaption of the RPSM, we apply this approach to 414y 3.2 23,3 14
some examples. Results obtained by the method are S0 60T 20m 2m s (14)

compared with the analytical solution of each example Consequently, the expression forms of algebraic
and are found to be in good agreement with each otherSystems with respect iy j,C,j, j = 1,2,3,....,k, can be
We highlight the significant features of the developedsqy,ng through the folldwiné steps: Firstly, by setting
adaption in reducing the size of required computational 0inE 2 and using the fact&e2(0) — 0 and
work. Through this paper, all of the symbolic and m=0 in Eq. @4) and using the fac e@( ) =0 an
numerical computations are performed by usingReS(0) =0, we get that
Mathematica software package.

Cio+ (Clvtha—Cz,thZ) dt = 30

]

M =

Example 1. [3] Consider the system of Fredholm integral 0

equations in the form
(et ezt %) dt = o3,

M =

C20—

j=0

which implies

0
= fl(x)v k
1 (12) Cl,o+jzo(j%101,j—j71302,j) = %
yz(x)—/((x—t)“yl(t)—i—(x—t)3y2(t))dt ] (15)
1 1 1
_ f2(X)o C20— _ZO(H—Scl,j—FmCz,j) =—3
Secondly, differentiate both sides of EdL4( with
where fi(x) = A& — Hx 4 52 _ L3  and respect toc and sein = 1 in order to obtain
- 20 30 3 3
k .
fo(X) = 38 — Eax+ 2%2 + 23x3 — Ix4, x € [0,1]. (dxResi(x)) = ,lecl,jx“l
According to the proposed method, tkih-truncated =
series solutioyX(x), i = 1,2, aboutxg = 0 for system {2) ! K _ K _
is given by —/ 3x—1)2y cyjt!+2(x—1) T cpt) | dt
o j=o0 j=o0
k .
Yi(x) = 3 oL} = Craxt 12X+ ..+ Cppd, + 35— xR
J:
k .
o 09 (gResin) = 3 jor 0
ylé(X) =5 Cz,jXJ = Cp1X+ 02,2X2+ +Cz7ka. j=1
j=o

Using the RPS procedure, we first construc the =

y k _ k .
—/ (4(x—t)3 S e jti+3(x—t)? 3 czvjt1> dt
j=0 j=0
0

following mth-residual functionsRes™(x), i = 1,2, in
order to find out the values of the coefficiers;,c; j, + g_(l) — %x— 273x2+ %)@,
(@© 2016 NSP
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as well as use the facts(LResi(0)) = 0 and and thus use the fact(dd—;Reﬁ(O)) = 0 and
d _
(&Res3(0)) =0 leads to (dx3 Res3(0 ) — 0 leads also to

k
3 . 2 ) 11
Cii— > (j-i-_3clv1_j+2czvl) = T30 _ K Ao =1
j=o0 C13 Z j+1Cl7J_ 3
K (16) =0 (18)
C1+ Y (i 1j— —-33021')——2—%
) +4 + ) - : ) 23
j=0 J Co3+ Z ( =201 — J+1C2’J) =5

Thirdly, differentiate both sides of Eql4) twice with

respect tocand sem = 2 in order to obtain Finally, differentiate both sides of Eql4) again and

setm= 4 to obtain that

k
($2Res) = 3G~ Va2 (dResi) = 3, i1~ D1 -2) ~ ey 0~
! K Sk . ‘
‘4 <6<X“>J-Zo"lvi”,éoz"Zvi“)d‘ (SeResi0) = 3,10~ -2 ~3)ep 0
— 10 ox, !
2 T | <§/24cljtldt)+8
(R0 = 3101~ Doz ? o

+ (19)
k _ . |
<1Z(X—t)2201,jtl 6(x—1t) ZCZ,jtJ> dt and thus use the fact(—é‘;legl‘(o)) — 0 and
j=0 j=0
(—(f:‘t R@(O)) =0 leads also to

|
o~—1©4p

— 2 — Bx+4x2
C14=0,
and thus use the facts(dijzReﬁf(O)) = 0 and ko, L (20)
C24— 3 77101 = —3;
(WR% ) =0leads to =R
K As well as by differentiating both sides of E4.9, setting
C1’2+ -ZO(H%C]"]_J'%-CZ’]) = %,
= 17y M=5and usmg(d 4= Res;(0) ) (dsteg ) =0, we
k
6 3 N3 get that
C22— jzo(mcl,J—H—zcz,J) = 75-
5
FoRes}(0)) =
Fourthly and similarly, differentiate both sides of Eq. ko ) ) ) is
(14) again and set = 3 to obtain that JZSJ (=D -2(G-3)([ -4 X =0,
k . . & ResS(0) ) =
(£Rest) = 5 i(i~1)(i ~ e 02 (dsRes(0)
=

ZIG-1G -2 -3 —4)c, X1 =0,

which implies thatc;s = 0 andc,5 = 0. Hence, the
coefﬁmentsclJ and cpj of expansion 13) vanish for

k ! )
- (jzoz(GchtJ)dt) +2,
k
25

(dxaR@ ) (=1~ 2ez 3 5<j<k
Therefore, thekth series solution of systeni?) will
! K be given by
—/ <24(X—t) > Cljtj-f— > GCZJtJ> dt
i=0 ' j=0 3 4
0 . .
) =S e, i) = § e X,
-2 48 JZO . J;) g
(@© 2016 NSP
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whereas the coefficients j for 0 < j <3 andc j for 0 < Example 2. Consider the system of Fredholm integral
j <4 can be found by solving the following collections  equations in the form

1
3 4
Cro+ _zoj%lcm— _ZOH%CZJ =4, Y1(X)+/7T3 (@ya(t) + mtyz(t)) dt = f1 (x),
1= 1= 0
C20— § rsCLit % 7HaC2i = ~ 3 |
ST 2 Va0~ [ T+ ya(t) - mya(0)dt = £, (0.
3 0
C11— JZOJ-_%CLJ—I— jZoj'%zCZJ = —é—é, (22)
. . wherefs(X) =
Co1+ 5 THCLj— Y —eCyj = — ot . 1
21T 2 THATLIT 2 1432 60° 12X + XSin(T1x) — 2(48+ 24+ 617 + 11°)e~ 2+ 96 and
5 . f2(x) =
3 5
G2t 2 TR 2 T2 = 3, (21)  x2e 3™ 2x(50— 12 — (48+ (247T+ TR(6-+ M)e 27), x €
[0,1].
The exact solution of the system of integral is
C22— JZO J+301 it Z J+ZCZJ = 2é Y gral E2p)
5 y1(x) = xsin(mX), yo(x) =x2e 2™, (23)
PO
C13— jZOmCLJ =-3
3 4 Now, according to the proposed adaption of RPSM, the
Co3+ .20#4201-,1 ZO J+1CZJ 53, mth-residual function®es™(x) for i = 1,2 aboutxg =0 is
i= i
3 « i
caa= 3 hrer =5 R0 = 3
1
2 j j+1
Consequently, by using Mathematica software +/ (X Z Co ittt 2 C2.jt )dt
package, the coefficients ; for 0 < j < 3 andcyj for 0
0< j <4 are given by T2X2 4 XSin(11x)
2(48+ 241+ 612 + T18)e~ 27+ 96
€C10=0,c11=0,=c12=1¢13=0,
C0=0Cc1=-1=cp=10C3=1C4=0. Resj'(x) = _ZOCZ,J'XJ
J:
Thus, the approximate solution is ! k _ k .
—/7‘!3 Xt+1) Yy et —mx 3 ottt dt
j=o0 j=o0
w _ 0
X) =5 ¢ X =x2,
V() Jz L x2e 3™ 1 2x(50— 1P
_ L .
yz( ) 2 Co, Jxl —X—+ X2+X3, —(48+ (247T+ 712(6—|— 7T))e’2")
j=0 (24)
Following the residual functions2§) and the fact
which is the closed-form solution. The same solution was d" o —0form=0.12 ..k the
obtained using Taylor-series expansion metho®jn | ggnefﬁefif;ntsc. J’dﬁm_% i =0,1,....k can be obtained.

The RPSM provides analytical approximate solutionsHence, the series solution of EQZj is derived, which
in terms of an infinite power series. In addition, there areconverge to the closed-form solution given in E2@)(
practical needs to evaluate these solutions and to obtain Consequently, to illustrate the efficiency of the present
numerical values from the infinite power series. The method, some numerical comparisons between exact and
consequent series truncation and the correspondingeries solutions for Eq2@) at some selected grid points
practical procedure are realized to accomplish this taskin [0,1] with step size of (6 using the 20th-order
The truncation transforms the otherwise analytical result approximation are listed in Tables 1 and 2. Here, we can
into exact solutions, which is evaluated to a finite degreeobserve that the present method provides us with an
of accuracy. accurate approximate solutions that found to be in good

(@© 2016 NSP
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Table 1: Numerical comparison for Example 2 using the 20th-order@pmation ofy; (x).

X Exact solution Approximate solution Abs?0(x) Rel29(x)
0.16 007708058785627446 .@7708058773318506 .23089x 1010 1.59689x 109
0.32 027018493616064480 .B7018493607056815 .@0767x 10711 3.33389x 10710
0.48 047905282964557033 47905282961051476 30556x 10711 7.31768x 10711
0.64 057908931357825240 .§7908931362019770 19452% 10711 7.24331x 10711
0.80 047022820183397860 47022820197106080 .37082x 10°10 2.91523x 10710
0.96 012031990422173235 .12031990426801054 .8p782x 10711 3.84626x 10710

Table 2: Numerical comparison for Example 2 using the 20th-order@pmation ofy,(x).

X Exact solution Approximate solution Abs?(x) Rel29(x)
0.16 001991085258679780 .01991085258745783 .80031x 10 13 3.31493x 10 11
0.32 006194407042706135 .06194407042838140 .32005x 1012 2.13103x 10711
0.48 010840071576264605 .10840071576462612 .48007x 1012 1.82662x 10~11
0.64 0.14988546332315372 .1D4988546332579380 .@4008x 1012 1.76140x 10~11
0.80 018215010773505877 .18215010773835938 .30061x 10712 1.81203x 10711
0.96 020400547183774270 .20400547184172010 .B7740x 10712 1.94965x 1011

Table 3: Absolute error of 10th, 15th, 20th and 25th-order approfions ofy; (x) for Example 2.

Node AbsIO(x) AbsT®(x) Abs3O(x) AbsZ>(x)
0.0 2.87980x 103 6.97763x 10°°© 1.34094x 1010 3.12639x 10713
0.2 250594x 103 6.07759x 106 1.16899x 10 10 2.76140x 10713
0.4 1.38449x 103 3.37749x 1076 6.53171x 1011 1.66700x 1013
0.6 4.69235x 1074 1.11659x 1076 2.06464x 10-11 1.56541x 10714
0.8 2.61533x 1073 6.82014x 1076 1.37082x 1010 2.70339x 10713
1.0 4.58633x 1074 5.61931x 1076 2.33159x 1010 4.29150x 10713

Table 4: Absolute error of 10th, 15th, 20th and 25th-order approfions ofy(x) for Example 2.

Node Abs}O(x) Abs}®(x) Abs3®(x) Abs3®(x)
0.0 0.00000 000000 000000 000000
0.2 2.41914x 10°° 4.27857x 1078 8.25034x 1013 2.03657x 1015
0.4 4.83764x 10°° 8.55715x 108 1.65007x 10712 4.06619x 10715
0.6 7.20425x 107° 1.28359x 10~/ 2.47519x 10712 6.16174x 10715
0.8 8.45366x 10° 1.71309x 107 3.30061x 1012 8.21565x 1015
1.0 174612x 10°° 2.19707x 10~/ 4.16575x 1012 1.02973x 1014

Table 5: Numerical comparison of 10-truncated series approximatie(x) for Example 3

X y1(x) y1°(%) Absy’(x) Rel1%(x)
0.16 13335108709918102 .3335108709918100 .22045x 1016 1.66511x 1016
0.32 16971277643359572 .8971277643358644 .28146x 10 14 5.46893x 10 14
0.48 20960744021928934 .3960744021847620 B3127x 10712 3.87929x 1012
0.64 25364808793049516 .5364808791097320 .95219x 10710 7.69647x 10-11
0.80 30255409284924680 .3255409261876824 .20479x 10°° 7.61776x 10°10
0.96 35716964734231180 .8716964560533597 .13698x 108 4.86317x 1079
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Table 6: Numerical comparison of 10-truncated series approximq@B(x) for Example 3

X Y2(X) 30 (x) Abs30(x) Rel2%(x)
0.16 1173510870991810 .1735108709918098 .44089x 10 16 3.78428x 10 16
0.32 1377127764335957 .3771277643358644 .28146x 10~ 14 6.73973x 10714
0.48 1616074402192893 .6160744021847617 B3172x 10712 5.03177x 10712
0.64 1896480879304952 .8964808791097323 .95219x 1010 1.02938x 1010
0.80 2225540928492468 .2255409261876826 .20479x 1079 1.03561x 10°°
0.96 2611696473423118 .8116964560533598 .13698x 1078 6.65076x 10~°

Table 7: Numerical comparison of 10-truncated series approximq@B(x) for Example 3
X y3(X) y32(%) AbsO(x) Rel3%(x)
0.16 19872272833756268 .9872272833756270 .22045% 10 16 1.11736x 10 16
0.32 19492354180824410 .9492354180824387 .22045x 10715 1.13914x 10715
0.48 18869949227792842 .8869949227789724 B1751x 10713 1.65210x 10713
0.64 18020957578842927 .8020957578744559 .83680x 10 12 5.45853x 10 12
0.80 16967067093471653 .8967067092042047 .42961x 10710 8.42577x 10711
0.96 15735199860724567 .4735199847997698 .27269x 10°° 8.08815x 1010

Table 8: Consecutive error functior@oni®(x), i = 1,2, 3, for Example 3.

Node Cont%(x) Conz°(x) Conz%(x)
0.16 222045x 1016 4.44089x 10~1° 0.00000
0.32 901501x 10~ 4 9.25926x 1014 2.22045x 10715
0.48 7.80753x 1012 8.11973x 10~ %2 3.12195x 10713
0.64 184852x 1010 1.94710x 1010 9.85878x 1012
0.80 215196x 10°° 2.29542x 107° 1.43464x 10710
0.96 159892x 108 1.72684x 108 1.27914x 10°°
agreement with exact solutions for all valuesai [0, 1], where f1(X) = X + 4,
as well as the results reported in the tables confirm thef,(x) = € — 3x(€?+1) + x?(sin(1)+1), and
effectiveness of RPSM. f3(x) = cogx) — (e+4sinl)) +2,x € [0,1].
Regarding the error analysis of the RPSM for Eq.  The exact solution of Eq26) is
(22), the absolute errordbst(x), i = 1,2, x € [0,1] for
k =10, 15, 20 andk = 25 with step size of @ are shown ya(x) =x+ €, ya(X) = €, ys(x) = 1+ cogx).  (26)

in Tables 3 and 4, respectively. As a result, it is clear from
these tables that we can control the error by evaluatinqef

more components of the solution.

Example 3. Consider the system of Fredholm integral {gchnique, we

equations in the form

1
Y1(X)+/3tex)’2(
0

[

V20~ [ (8x€ya(t) ~>ya(t) ) ot = 153,

y3(X)—

o~——r o

t)dt = f, (%),

(4(ys(t) = 1) +y2(t)) dt= f5(x),

(25)

Without loss of generality, to show the accuracy that
ers to how closely a computed and measured value
agrees with exact value of Example 3 using RPS
obtain the 10-truncated series
approximation of the RPS9(x), i = 1,2, 3, at some grid
nodes in[0,1] with step size of (6. Anyhow, Tables

5— 7 show, respectively, its absolute and relative errors
for variousx. It is clear from the tables that the errors can
be measure the extent of agreement between the
10-truncated series approximation of the RPS solutions
and unknowns closed form solutions. Anyhow, in Table 8,
the values of the consecutive error functioBenX(x),

i = 1,2,3, have been calculated for various valuesah

[0,1] and step size of.@6. The goal here was to measure
the difference between the consecutive solutions obtained
by the 10th-order RPS solutions. In contrast, the residual
error functionsR&edik(x), i=1,223 fork=5,10,15 have
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Table 9: Residual error function@eadik(x),i =1,2,3, k=5,10,15, for Example 3.
ResdX x=0.25 x=0.50 x=0.75 x=1.00
k=5 107811x 10 11 5.66417x 10 ° 2.23560% 10/ 3.05862x 10/
i=1 k=10 601470x 10715 1.27625x 10~11 1.12824x 109 2.73127x 10°8
k=15 873782x 1017 3.91002x 1017 6.16045x 1016 5.06664x 1014
k=5 153607x 1011 8.07871x 10 ° 3.19215x 10~/ 4.37238x 10°°
i=2 k=10 940043x 10715 1.96813x 1011 1.74147x 109 4.21977x 1078
k=15 110199x 1018 3.56191x 1017 8.29278x 1016 9.5463x 1014
k=5 2.62679x 10 13 2.68605x 10 10 1.54526x 108 2.73497x 10/
i=3 k=10 111022x 1016 5.09037x 10-13 6.59260x 10~11 2.07625x 10~°
k=15 000000 111022x 1016 4.44089x 1016 4.77396x 10714

been listed in Table 9 fog =i/4,i =1,2,3,4,in order to
demonstrate the rapid convergence of the present method
by increasing the order of RPS approximation. However,
the computational results provide a numerical estimate for

[3] K. Maleknejad, N. Aghazadeh and M. Rabbani, Numerical
solution of second kind Fredholm integral equations system
by using a Taylor-series expansion method, Appl. Math. and
Comput., 175, 1229-1234 (2006).

convergence of the RPSM, as well as it is clear that the [4] M. Javidi, Modified homotopy perturbation method for

accuracy that is obtained using the method is advanced by
using an approximation with only a few additional terms.

solving system of linear Fredholm integral equations, Math
Comput. Modelling, 50, 159-165 (2009).

Further,we can conclude that higher accuracy can bel5]A. Shidfar and A. Molabahrami, Solving a system of intgr

achieved by evaluating more components of the solution.

4 Conclusions and discussion

In this paper, the RPSM is implemented successfully to
find out the analytical solution of system of Fredholm

integral equations in terms of a rapidly convergent series
with easily computable components using symbolic

computation software. The steps of the RPS method are
summarized, and the relevant applications are developed.
The proposed solutions by RPSM are obtained without
any transformation, perturbation, discretization or any
other restrictive conditions, as well as are found in the

54, 828-835 (2011).
[6] M. Al-Smadi and Z. Altawallbeh, Solution of system of
Fredholm integro-differential equations by RKHS method,

Int. J. Contemp. Math. Sci., 8(11), 531-540 (2013).

[7] E. Babolian and M. Mordad, A numerical method for
solving systems of linear and nonlinear integral equations
of the second kind by hat basis functions, Comput. Math.
Appl. 62,187-198 (2011).

[8] M. Roodaki and H. Almasieh, Delta basis functions and

their applications to systems of integral equations, Cdmpu

Math. Appl., 63, 100-109 (2012).

[9] M. Mohamed, M. Torky, Legendre Wavelet for Solving
Linear System of Fredholm and Volterra Integral Equations,
Inter. J. Research Eng. Sci., 1, 14-22 (2013).

equations by an analytic method, Math. Comp. Modelling,

closed form of a convergent series, which is coincides[lo] S. Yousefi and M. Razzaghi, Legendre wavelets method

with exact solution. The results reveal that the RPSM is a

powerful tool, straightforward, and

very effective,

for the nonlinear \olterra-Fredholm integral equations,
Mathematics and Computers in Simulation, 70, 1-8 (2005).

convenient for solving different forms of system of [11]k. Maleknejad and F. Mirzaee, Numerical solution of

integral equations.
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