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Abstract: In this paper, we present a new analytical technique for obtaining the analytical approximate solutions for system of
Fredholm integral equations based on the use of the residualpower series method (RPSM). The proposed method provides the solution
in terms of convergent series with easily computable components, as well as it possesses main advantage as compared to other existed
methods; it can be applied without any limitation or linearization on the nature of the problem, type of classification, and the number of
mesh points. In this sense, some examples are given to demonstrate the simplicity and efficiency of the proposed method. The results
obtained by employing the RPSM are compared with exact solutions to reveal that the method is easy to implement, straightforward
and convenient to handle a wide range of such system of integral equations.
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1 Introduction

Systems of Fredholm integral equations occur frequently
in applied mathematics, theoretical physics, engineering,
biology, mathematical modeling of real world phenomena
in which uncertainty or vagueness pervades and so on.
Unfortunately, investigation about system of integral
equations is scarce especially discussion on finding
solution. Indeed, it is usually difficult to obtain the
closed-form solutions to systems of Fredholm integral
equations met in practice, so these problems have been
attacked using numeric-analytic methods with great
interest by several authors. Therefore, a class of system of
integral equation takes a central seat in the mathematical
modeling literature.

The numerical solvability of such system has been
pursued by various approximate numerical methods. To
mention a few, the Adomian decomposition method
(AMD) [ 1], Wavelet Galerkin method [2], Taylor-series
expansion method [3], Modified homotopy perturbation
method [4], homotopy analysis method (HAM) [5],
reproducing kernel Hilbert space method (RKHS) [6], hat

basis and delta functions [7,8], Chebyshev and Legendre
wavelet method [9,10], and others [11,12,13,14,15,16].

In this paper, we apply the residual power-series
method for system of Fredholm integral equations in the
form:

y1(x)−

b
∫

x0

K (x, t)g1 (x, t,
−→yi (t))dt = f 1 (x) ,

y2(x)−

b
∫

x0

K (x, t)g2 (x, t,
−→yi (t))dt = f 2 (x) ,

...

yn(x)−

b
∫

x0

K (x, t)gn (x, t,
−→yi (t))dt = f n (x) ,

(1)

wherex ∈ [x0,b], K(x, t) is continuous known kernel such
that K(x, t) = [ki j(x, t)], i, j = 1,2, . . . ,n, fi(x),
i = 1,2, . . . ,n, are analytical functions which satisfy all
necessary requirements of the existence of a unique
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solution,gi are linear or nonlinear function ofyi depend
on the problem discussed,−→yi (t) = (y1(t), y2(t), ..., yn(t)),
andyi(x), i = 1,2, . . . ,n are unknown analytical functions
on the given interval to be determined.

The RPS method is an effective and easy to construct
power series solutions for strongly linear and nonlinear
differential equations without linearization, perturbation
or discretization [17,18,19,20,21]. This method provides
the solution in terms of convergent power series with
easily computable components, were computed by chain
of linear equations of one or more variables. It is different
from the classical Taylor series method that
computationally expensive for large orders and suited for
the linear problems, which is an alternative procedure for
obtaining analytical Taylor series solution for system of
Fredholm integral equations. Consequently, the solutions
and all of its derivatives are applicable for each arbitrary
point in the given interval. On the other aspect as well, the
RPSM does not require any conversion while switching
from the low-order to the higher-order, so it can be
applied directly to given problem by choosing an
appropriate initial guess approximation. However,
different applications with other versions of linear and
nonlinear problems can be found in [22,23,24,25,26,27]
and references therein.

In this paper, the extension of the RPS scheme and
differential of it are used to approximate the solution
functions for system of Fredholm integral equation based
on Taylor series expansion. The organization of the
remainder of this paper is as follows. In Section 2, we
present the formulation of the residual power-series
method for system (1). The error analysis technique based
on the residual function is also developed for the present
method. In Section 3, the RPSM is applied and extended
to provide symbolic approximate series solutions for
system (1) and to illustrate the capability of the proposed
method. Results reveal that only few terms are required to
deduce the approximate solutions which are found to be
accurate and efficient. Finally, a brief discussion and
conclusion are presented in Section 4.

2 The residual power-series method

In this section, we review some elementary knowledge
and some properties about residual power-series functions
which are useful of the remainder of this analysis. Then,
we employ the RPSM to find out a series solution for
system of Fredholm integral equation (1) by formulate
and analyze the proposed method.

For initial pointx = x0, we suppose that the expression
form solution of system (1) as a power series expansion is
given by

yi(x) =
∞

∑
j=0

yi, j(x), i = 1,2, ...,n, (2)

where yi, j(x), i = 1,2, ...,n, j = 0,1,2, ..., are terms of
approximations such thatyi, j(x) = ci, j (x− x0)

j.

By truncating the series in Eq. (2), we obtain thekth-
truncated series solutions as

yk
i (x) =

k

∑
j=0

ci, j (x− x0)
j , i = 1,2, ...,n. (3)

To apply the RPS technique, system (1), for a
simplification, will be rewritten in the form

yi(x)−

b
∫

x0

K (x, t)gi (x, t,
−→y (t))dt − fi (x) = 0,

i = 1,2, ...,n,

(4)

where−→y =(y1,y2, ...,yn) .
Now, by substituting thekth-truncated seriesyk

i (x) into
Eq. (4), we obtain themth-residual functions system as

Resm
i (x)=yk

i (x)−

b
∫

x0

K (x, t)gi (x, t,
−→yk (t))dt − fi (x) ,

i = 1,2, ...,n,
(5)

where−→yk=
(

yk
1,y

k
2, ...,y

k
n

)

, and the∞th residual function is

given byResm
i (x)= lim

m→∞
Resm

i (x), i = 1,2, ...,n.

Here, it is worth mentioning that
Resm

i (x) = 0, i = 1,2, ..., for eachx ∈ [x0,x0+ b]. This
show thatResm

i (x) are infinitely differentiable functions
at x = x0 such that dm

dxm Res∞
i (x0) = dm

dxm Resm
i (x0) = 0,

m = 0,1,2, ...,k. This relation is a fundamental rule in the
RPSM and its applications.

As a consequence, we have the following

Resm
i (x)= ∑k

j=0ci, j (x− x0)
j −

b
∫

x0

K (x, t)

gi(x, t,∑k
j=0c1, j (t − t0)

j ,

∑k
j=0c2, j (t − t0)

j , ...,

∑k
j=0cn, j (t − t0)

j)dt − fi (x) ,
i = 1,2, ...,n,

(6)

which containedn equations inj variables.
The unknown coefficients ci, j, i = 1,2, . . . ,n,

j = 0,1, . . . ,k, in Eq. (6) can be obtained by
straightforward steps using the following procedure,
which leads to algebraic systems ofn× (k+1) equations
that solved directly using Mathematica software package.

Firstly, puttingm = 0 in Eq. (6) and using the fact that

Res0
i (x0) =0 for i=1,2, . . . ,n, leads to system of algebraic

equations in the form

ci,0−Gi(x0,
−→y i, j) = fi(x0), i = 1,2, ...,n, (7)
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where

Gi(x0,
−→y i, j) =

b
∫

x0

K (x0, t)gi
(

x0, t,y1, j,y2, j, ...,yn, j

)

dt,

yi, j =∑k
j=0 ci, j (t − t0)

j , i = 1,2, . . . ,n, j = 0,1, . . . ,k.
Now, differentiate both sides of Eq. (6) with respect to

x, and then setm = 1, we get that

d
dx Res1

i (x)= ∑k
j=1 jci, j (x− x0)

j−1

− d
dx [

b
∫

x0

K (x, t)gi(x, t,∑k
j=0 c1, j (t − t0)

j ,

∑k
j=0c2, j (t − t0)

j , ...,

∑k
j=0cn, j (t − t0)

j)dt]− f ′i (x) ,
i = 1,2, ...,n.

(8)

Following relation (8) and using the fact that
(

d
dx Res1

i (x0)
)

= 0 for i = 1,2, . . . ,n, we obtain other
system of algebraic equations in the form

ci,1−G′
i(x0,

−→y i, j) = f ′i (x0), i = 1,2, ...,n, (9)

where

G′
i(x0,

−→y i, j) =
d
dx [

b
∫

x0

K (x0, t)gi
(

x0, t,y1, j,y2, j, ...,yn, j
)

dt],

i = 1,2, . . . ,n, j = 0,1, . . . ,k.
Similarly, differentiate both sides of Eq. (6) twice with

respect tox, and setm = 2, we obtain that

d2

dx2 Res2
i (x)= ∑k

j=2 j( j− i)ci, j (x− x0)
j−2

− d2

dx2 [

b
∫

x0

K (x, t)gi(x, t,∑k
j=0 c1, j (t − t0)

j ,

∑k
j=0 c2, j (t − t0)

j , ...,∑k
j=0 cn, j (t − t0)

j)dt]

− f ′′i (x) , i = 1,2, ...,n.

Consequently, by using the fact that
(

d2

dx2 Res2
i (x0)

)

= 0 for i = 1,2, . . . ,n, we also obtain

other system of algebraic equations in the form

2ci,2−G′′
i (x0,

−→y i, j) = f ′′i (x0), i = 1,2, ...,n, (10)

whereG′′
i (x0,

−→y i, j) =

d2

dx2 [
b
∫

x0

K (x0, t)gi
(

x0, t,y1, j,y2, j, ...,yn, j
)

dt], i = 1,2, . . . ,n,

j = 0,1, . . . ,k.
Correspondingly, by continuing with this technique till

to m = 1, we get that

dk

dxk Resk
i (x)= ∑k

j=k j!ci, j (x− x0)
j−k

− dk

dxk [

b
∫

x0

K (x, t)gi(x, t,∑k
j=0 c1, j (t − t0)

j ,

∑k
j=0 c2, j (t − t0)

j , ...,∑k
j=0cn, j (t − t0)

j)dt]

− f (k)i (x) , i = 1,2, ...,n,

and by using the fact that
(

dk

dxk Resk
i (x0)

)

= 0 for

i = 1,2, . . . ,n, the kth algebraic system can be generated
as follows

k!ci,k −G(k)
i (x0,

−→y i, j) = f (k)i (x0), i = 1,2, ...,n, (11)

whereG(k)
i (x0,

−→y i, j) =

dk

dxk [
b
∫

x0

K (x0, t)gi
(

x0, t,y1, j,y2, j, ...,yn, j
)

dt], i = 1,2, . . . ,n,

j = 0,1, . . . ,k.
Hence, by solving these package of algebraic systems

(7), (9), (10) up to (11), the kth approximate solutions,
yk

i (x), i = 1,2, ...,n, of Eq. (7) can be obtained.
However, higher accuracy can be achieved by

evaluating more components of the solution. It will be
convenient to have a notation for the error in the
approximationyi(x) ≈ yk

i (x). Accordingly, let Remk
i (x),

i = 1,2, ...,n, be the kth remainder for the RPS
approximation, which is the difference betweenyi(x) and
its kth Taylor polynomial obtained by RPSM; that is,

Remk
i (x) = yi(x)− yk

i (x)

=
∞

∑
j=k+1

1
j!

y( j)
i (x0) (x− x0)

j .

In fact, it often happens that the remaindersRemk
i (x)

become smaller and smaller, approaching zero, ask gets
large. The concept of accuracy refers to how closely a
computed or measured value agrees with the truth value.
Taylor’s theorem allows us to represent fairly general
functions exactly in terms of polynomials with a known,
specified, and bounded error. To show the accuracy of the
RPSM for some tested problems, we report four types of
error; The residual errorResdk

i (x), the absolute error
Absk

i (x), the relative errorRelk
i (x), and the consecutive

errorConk
i (x), which are defined respectively by

Resdk
i (x) =
∣

∣

∣

∣

∣

∣

yk
i (x)−

b
∫

x0

K (x, t)gi
(

x, t,−→yi,k(t)
)

dt − f i (x)

∣

∣

∣

∣

∣

∣

,

Absk
i (x) =

∣

∣

∣yi(x)− yk
i (x)

∣

∣

∣=
∣

∣

∣Remk
i (x)

∣

∣

∣ ,

Relk
i (x) =

∣

∣

∣yi(x)− yk
i (x)

∣

∣

∣

|yi(x)|
,

Conk
i (x) =

∣

∣

∣yk+1
i (x)− yk

i (x)
∣

∣

∣ , i = 1,2, ...,n,

where yi(x), i = 1,2, ...,n, are the exact solutions, and
yk

i (x), are thekth-order approximation obtained by the
RPSM.

Next, we present a convergence theorem of the RPS
technique to capture the behavior of solutions.
Theorem 1. [28] Suppose that yi(x), i = 1,2, ...,n, are the
exact solutions for Eq. (1). Then, the approximate
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solutions obtained by the RPS technique are in fact the
Taylor expansion of yi(x) for i = 1,2, ...,n.
Theorem 2. [28] Let yi(x), i = 1,2, . . . ,n, be a polynomial
for some i, then the RPS technique will obtain the exact
solution.

The reader is referred to [28,29,30,31] and the
references therein in order to know more details and
principles about the RPS technique, including their
applications in various kinds of differential equations.

3 Illustrative problems

In order to assess the accuracy and the performance of the
new adaption of the RPSM, we apply this approach to
some examples. Results obtained by the method are
compared with the analytical solution of each example
and are found to be in good agreement with each other.
We highlight the significant features of the developed
adaption in reducing the size of required computational
work. Through this paper, all of the symbolic and
numerical computations are performed by using
Mathematica software package.

Example 1. [3] Consider the system of Fredholm integral
equations in the form

y1(x)−

1
∫

0

(

(x− t)3y1(t)+ (x− t)2y2(t)
)

dt

= f 1 (x) ,

y2(x)−

1
∫

0

(

(x− t)4y1(t)+ (x− t)3y2(t)
)

dt

= f 2 (x) ,

(12)

where f1(x) = 1
20 − 11

30x + 5
3x2 − 1

3x3 and

f2(x) =
−1
30 − 41

60x+ 3
20x2+ 23

12x3− 1
3x4, x ∈ [0,1].

According to the proposed method, thekth-truncated
series solutionyk

i (x), i = 1,2, aboutx0 = 0 for system (12)
is given by

yk
1(x) =

k
∑
j=0

c1, jx j = c1,1x+ c1,2x2+ ...+ c1,kxk,

yk
2(x) =

k
∑
j=0

c2, jx j = c2,1x+ c2,2x2+ ...+ c2,kxk.

(13)

Using the RPS procedure, we first construc the
following mth-residual functionsResm

i (x), i = 1,2, in
order to find out the values of the coefficientsc1, j,c2, j,

j = 1,2,3, . . . ,k, in Eq. (13):

Resm
1 (x) =

k
∑
j=0

c1, jx j

−

1
∫

0

(

(x− t)3
k
∑
j=0

c1, jt j+(x− t)2
k
∑
j=0

c2, jt j

)

dt

− 1
20+

11
30x− 5

3x2+ 1
3x3,

Resm
2 (x) =

k
∑
j=0

c2, jx j

−

1
∫

0

(

(x− t)4
k
∑
j=0

c1, jt j+(x− t)3
k
∑
j=0

c2, jt j

)

dt

+ 1
30+

41
60x− 3

20x2− 23
12x3+ 1

3x4.
(14)

Consequently, the expression forms of algebraic
systems with respect toc1, j,c2, j, j = 1,2,3, . . . ,k, can be
found through the following steps: Firstly, by setting
m = 0 in Eq. (14) and using the factsRes0

1(0) = 0 and
Res0

2(0) = 0, we get that

c1,0+
k
∑
j=0

1
∫

0

(

c1, jt j+3− c2, jt j+2
)

dt = 1
20,

c2,0−
k
∑
j=0

1
∫

0

(

c1, jt j+4−c2, jt j+3
)

dt = −1
30 ,

which implies

c1,0+
k
∑
j=0

(

1
j+4c1, j−

1
j+3c2, j

)

= 1
20,

c2,0−
k
∑
j=0

(

1
j+5c1, j+

1
j+4c2, j

)

=− 1
30.

(15)

Secondly, differentiate both sides of Eq. (14) with
respect tox and setm = 1 in order to obtain

(

d
dx Res1

1(x)
)

=
k
∑
j=1

jc1, jx j−1

−

1
∫

0

(

3(x− t)2
k
∑
j=0

c1, jt j+2(x− t)
k
∑
j=0

c2, jt j

)

dt

+ 11
30−

10
3 x+ x2,

(

d
dx Res1

2(x)
)

=
k
∑
j=1

jc2, jx j−1

−

1
∫

0

(

4(x− t)3
k
∑
j=0

c1, jt j+3(x− t)2
k
∑
j=0

c2, jt j

)

dt

+ 41
60−

3
10x− 23

4 x2+ 4
3x3,
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as well as use the facts
(

d
dx Res1

1(0)
)

= 0 and
(

d
dx Res1

2(0)
)

= 0 leads to

c1,1−
k
∑
j=0

(

3
j+3c1, j−

2
j+2c2, j

)

=− 11
30,

c2,1+
k
∑
j=0

(

4
j+4c1, j−

3
j+3c2, j

)

=− 41
60.

(16)

Thirdly, differentiate both sides of Eq. (14) twice with
respect tox and setm = 2 in order to obtain

(

d2

dx2 Res2
1(x)

)

=
k
∑
j=2

j( j−1)c1, jx j−2

−

1
∫

0

(

6(x− t)
k
∑
j=0

c1, jt j+
k
∑
j=0

2c2, jt j

)

dt

− 10
3 +2x,

(

d2

dx2 Res2
2(x)

)

=
k
∑
j=2

j( j−1)c2, jx j−2

−

1
∫

0

(

12(x− t)2
k
∑
j=0

c1, jt j+6(x− t)
k
∑
j=0

c2, jt j

)

dt

− 3
10−

23
2 x+4x2,

and thus use the facts
(

d2

dx2 Res2
1(0)

)

= 0 and
(

d2

dx2 Res2
2(0)

)

= 0 leads to

c1,2+
k
∑
j=0

(

3
j+2c1, j−

1
j+1c2, j

)

= 5
3,

c2,2−
k
∑
j=0

(

6
j+3c1, j−

3
j+2c2, j

)

= 3
20.

(17)

Fourthly and similarly, differentiate both sides of Eq.
(14) again and setm = 3 to obtain that

(

d3

dx3 Res3
1(x)

)

=
k
∑
j=3

j( j−1)( j−2)c1, jx j−3

−





k
∑
j=0

1
∫

0

(

6c1, jt j
)

dt



+2,

(

d3

dx3 Res3
2(x)

)

=
k
∑
j=3

j( j−1)( j−2)c2, jx j−3

−

1
∫

0

(

24(x− t)
k
∑
j=0

c1, jt j+
k
∑
j=0

6c2, jt j

)

dt

− 23
2 +8x,

and thus use the fact
(

d3

dx3 Res3
1(0)

)

= 0 and
(

d3

dx3 Res3
2(0)

)

= 0 leads also to

c1,3−
k
∑
j=0

1
j+1c1, j =− 1

3,

c2,3+
k
∑
j=0

(

4
j+2c1, j−

1
j+1c2, j

)

= 23
12.

(18)

Finally, differentiate both sides of Eq. (14) again and
setm = 4 to obtain that

(

d4

dx4 Res4
1(x)

)

=
k
∑
j=4

j( j−1)( j−2)( j−3)c1, jx
j−4,

(

d4

dx4 Res4
2(x)

)

=
k
∑
j=4

j( j−1)( j−2)( j−3)c2, jx
j−4

−





k
∑
j=0

1
∫

0

24c1, jt jdt



+8,

(19)

and thus use the fact
(

d4

dx4 Res4
1(0)

)

= 0 and
(

d4

dx4 Res4
2(0)

)

= 0 leads also to

c1,4 = 0,

c2,4−
k
∑
j=0

1
j+1c1, j =− 1

3;
(20)

As well as by differentiating both sides of Eq. (19), setting

m = 5 and using
(

d5

dx5 Res5
1(0)

)

=
(

d5

dx5 Res5
2(0)

)

= 0, we

get that

(

d5

dx5 Res5
1(0)

)

=

k
∑
j=5

j( j−1)( j−2)( j−3)( j−4)c1, jx
j−5 = 0,

(

d5

dx5 Res5
2(0)

)

=

k
∑
j=5

j( j−1)( j−2)( j−3)( j−4)c2, jx
j−5 = 0,

which implies thatc1,5 = 0 and c2,5 = 0. Hence, the
coefficientsc1, j and c2, j of expansion (13) vanish for
5≤ j ≤ k.

Therefore, thekth series solution of system (12) will
be given by

yk
1(x) =

3

∑
j=0

c1, jx
j, yk

2(x) =
4

∑
j=0

c2, jx
j,
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whereas the coefficientsc1, j for 0≤ j ≤ 3 andc2, j for 0≤
j ≤ 4 can be found by solving the following collections

c1,0+
3
∑
j=0

1
j+4c1, j−

4
∑
j=0

1
j+3c2, j =

1
20,

c2,0−
3
∑
j=0

1
j+5c1, j+

4
∑
j=0

1
j+4c2, j =− 1

30,

c1,1−
3
∑
j=0

3
j+3c1, j+

4
∑
j=0

2
j+2c2, j =− 11

30,

c2,1+
3
∑
j=0

4
j+4c1, j−

4
∑
j=0

3
j+3c2, j =− 41

60,

c1,2+
3
∑
j=0

3
j+2c1, j−

4
∑
j=0

1
j+1c2, j =

5
3,

c2,2−
3
∑
j=0

6
j+3c1, j+

4
∑
j=0

3
j+2c2, j =

3
20,

c1,3−
3
∑
j=0

1
j+1c1, j =− 1

3,

c2,3+
3
∑
j=0

4
j+2c1, j−

4
∑
j=0

1
j+1c2, j =

23
12,

c2,4−
3
∑
j=0

1
j+1c1, j =− 1

3.

(21)

Consequently, by using Mathematica software
package, the coefficientsc1, j for 0 ≤ j ≤ 3 andc2, j for
0≤ j ≤ 4 are given by

c1,0 = 0,c1,1 = 0,= c1,2 = 1,c1,3 = 0,
c2,0 = 0,c2,1 =−1,= c2,2 = 1,c2,3 = 1,c2,4 = 0.

Thus, the approximate solution is

y1(x) =
∞
∑
j=0

c1, jx j = x2,

y2(x) =
∞
∑
j=0

c2, jx j =−x+ x2+ x3,

which is the closed-form solution. The same solution was
obtained using Taylor-series expansion method in [3].

The RPSM provides analytical approximate solutions
in terms of an infinite power series. In addition, there are
practical needs to evaluate these solutions and to obtain
numerical values from the infinite power series. The
consequent series truncation and the corresponding
practical procedure are realized to accomplish this task.
The truncation transforms the otherwise analytical results
into exact solutions, which is evaluated to a finite degree
of accuracy.

Example 2. Consider the system of Fredholm integral
equations in the form

y1(x)+

1
∫

0

π3
(

x2y1(t)+πty2(t)
)

dt = f 1 (x) ,

y2(x)−

1
∫

0

π3(x(t +1)y1(t)−πxty2(t))dt = f 2 (x) ,

(22)
where f1(x) =

π2x2+ xsin(πx)−2(48+24π +6π2+π3)e−
1
2π +96 and

f2(x) =

x2e−
1
2πx+2x(50−π2−(48+(24π+π2(6+π)e− 1

2π), x ∈
[0,1].

The exact solution of the system of integral Eq. (22) is

y1(x) = xsin(πx), y2(x) = x2e−
1
2πx. (23)

Now, according to the proposed adaption of RPSM, the
mth-residual functionsResm

i (x) for i = 1,2 aboutx0 = 0 is

Resm
1 (x) =

k
∑
j=0

c1, jx j

+

1
∫

0

π3

(

x2
k
∑
j=0

c1, jt j+π
k
∑
j=0

c2, jt j+1

)

dt

−

(

π2x2+ xsin(πx)

−2(48+24π+6π2+π3)e−
1
2π +96

)

,

Resm
2 (x) =

k
∑
j=0

c2, jx j

−

1
∫

0

π3

(

x(t +1)
k
∑
j=0

c1, jt j −πx
k
∑
j=0

c2, jt j+1

)

dt

−

(

x2e−
1
2πx +2x(50−π2

−(48+(24π+π2(6+π))e−
1
2π)

)

.

(24)
Following the residual functions (24) and the fact

dm

dxm Resm
1 (0) =

dm

dxm Resm
2 (0) = 0 for m = 0,1,2, ...,k, the

coefficientsci, j, i = 1,2, j = 0,1, ...,k, can be obtained.
Hence, the series solution of Eq. (22) is derived, which
converge to the closed-form solution given in Eq. (23).

Consequently, to illustrate the efficiency of the present
method, some numerical comparisons between exact and
series solutions for Eq. (22) at some selected grid points
in [0,1] with step size of 0.16 using the 20th-order
approximation are listed in Tables 1 and 2. Here, we can
observe that the present method provides us with an
accurate approximate solutions that found to be in good
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Table 1: Numerical comparison for Example 2 using the 20th-order approximation ofy1(x).

x Exact solution Approximate solution Abs20
1 (x) Rel20

1 (x)

0.16 0.07708058785627446 0.07708058773318506 1.23089×10−10 1.59689×10−9

0.32 0.27018493616064480 0.27018493607056815 9.00767×10−11 3.33389×10−10

0.48 0.47905282964557033 0.47905282961051476 3.50556×10−11 7.31768×10−11

0.64 0.57908931357825240 0.57908931362019770 4.19452×10−11 7.24331×10−11

0.80 0.47022820183397860 0.47022820197106080 1.37082×10−10 2.91523×10−10

0.96 0.12031990422173235 0.12031990426801054 4.62782×10−11 3.84626×10−10

Table 2: Numerical comparison for Example 2 using the 20th-order approximation ofy2(x).

x Exact solution Approximate solution Abs20
2 (x) Rel20

2 (x)

0.16 0.01991085258679780 0.01991085258745783 6.60031×10−13 3.31493×10−11

0.32 0.06194407042706135 0.06194407042838140 1.32005×10−12 2.13103×10−11

0.48 0.10840071576264605 0.10840071576462612 1.98007×10−12 1.82662×10−11

0.64 0.14988546332315372 0.14988546332579380 2.64008×10−12 1.76140×10−11

0.80 0.18215010773505877 0.18215010773835938 3.30061×10−12 1.81203×10−11

0.96 0.20400547183774270 0.20400547184172010 3.97740×10−12 1.94965×10−11

Table 3: Absolute error of 10th, 15th, 20th and 25th-order approximations ofy1(x) for Example 2.

Node Abs10
1 (x) Abs15

1 (x) Abs20
1 (x) Abs25

1 (x)

0.0 2.87980×10−3 6.97763×10−6 1.34094×10−10 3.12639×10−13

0.2 2.50594×10−3 6.07759×10−6 1.16899×10−10 2.76140×10−13

0.4 1.38449×10−3 3.37749×10−6 6.53171×10−11 1.66700×10−13

0.6 4.69235×10−4 1.11659×10−6 2.06464×10−11 1.56541×10−14

0.8 2.61533×10−3 6.82014×10−6 1.37082×10−10 2.70339×10−13

1.0 4.58633×10−4 5.61931×10−6 2.33159×10−10 4.29150×10−13

Table 4: Absolute error of 10th, 15th, 20th and 25th-order approximations ofy2(x) for Example 2.

Node Abs10
2 (x) Abs15

2 (x) Abs20
2 (x) Abs25

2 (x)

0.0 0.00000 0.00000 0.00000 0.00000
0.2 2.41914×10−5 4.27857×10−8 8.25034×10−13 2.03657×10−15

0.4 4.83764×10−5 8.55715×10−8 1.65007×10−12 4.06619×10−15

0.6 7.20425×10−5 1.28359×10−7 2.47519×10−12 6.16174×10−15

0.8 8.45366×10−5 1.71309×10−7 3.30061×10−12 8.21565×10−15

1.0 1.74612×10−5 2.19707×10−7 4.16575×10−12 1.02973×10−14

Table 5: Numerical comparison of 10-truncated series approximation y10
1 (x) for Example 3.

x y1(x) y10
1 (x) Abs10

1 (x) Rel10
1 (x)

0.16 1.3335108709918102 1.3335108709918100 2.22045×10−16 1.66511×10−16

0.32 1.6971277643359572 1.6971277643358644 9.28146×10−14 5.46893×10−14

0.48 2.0960744021928934 2.0960744021847620 8.13127×10−12 3.87929×10−12

0.64 2.5364808793049516 2.5364808791097320 1.95219×10−10 7.69647×10−11

0.80 3.0255409284924680 3.0255409261876824 2.30479×10−9 7.61776×10−10

0.96 3.5716964734231180 3.5716964560533597 1.73698×10−8 4.86317×10−9
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Table 6: Numerical comparison of 10-truncated series approximation y10
2 (x) for Example 3.

x y2(x) y10
2 (x) Abs10

2 (x) Rel10
2 (x)

0.16 1.173510870991810 1.1735108709918098 4.44089×10−16 3.78428×10−16

0.32 1.377127764335957 1.3771277643358644 9.28146×10−14 6.73973×10−14

0.48 1.616074402192893 1.6160744021847617 8.13172×10−12 5.03177×10−12

0.64 1.896480879304952 1.8964808791097323 1.95219×10−10 1.02938×10−10

0.80 2.225540928492468 2.2255409261876826 2.30479×10−9 1.03561×10−9

0.96 2.611696473423118 2.6116964560533598 1.73698×10−8 6.65076×10−9

Table 7: Numerical comparison of 10-truncated series approximation y10
3 (x) for Example 3.

x y3(x) y10
3 (x) Abs10

3 (x) Rel10
3 (x)

0.16 1.9872272833756268 1.9872272833756270 2.22045×10−16 1.11736×10−16

0.32 1.9492354180824410 1.9492354180824387 2.22045×10−15 1.13914×10−15

0.48 1.8869949227792842 1.8869949227789724 3.11751×10−13 1.65210×10−13

0.64 1.8020957578842927 1.8020957578744559 9.83680×10−12 5.45853×10−12

0.80 1.6967067093471653 1.6967067092042047 1.42961×10−10 8.42577×10−11

0.96 1.5735199860724567 1.5735199847997698 1.27269×10−9 8.08815×10−10

Table 8: Consecutive error functionsCon10
i (x), i = 1,2,3, for Example 3.

Node Con10
1 (x) Con10

2 (x) Con10
3 (x)

0.16 2.22045×10−16 4.44089×10−16 0.00000
0.32 9.01501×10−14 9.25926×10−14 2.22045×10−15

0.48 7.80753×10−12 8.11973×10−12 3.12195×10−13

0.64 1.84852×10−10 1.94710×10−10 9.85878×10−12

0.80 2.15196×10−9 2.29542×10−9 1.43464×10−10

0.96 1.59892×10−8 1.72684×10−8 1.27914×10−9

agreement with exact solutions for all values ofx in [0,1],
as well as the results reported in the tables confirm the
effectiveness of RPSM.

Regarding the error analysis of the RPSM for Eq.
(22), the absolute errorsAbsk

i (x), i = 1,2, x ∈ [0,1] for
k = 10, 15, 20 andk = 25 with step size of 0.2 are shown
in Tables 3 and 4, respectively. As a result, it is clear from
these tables that we can control the error by evaluating
more components of the solution.
Example 3. Consider the system of Fredholm integral
equations in the form

y1(x)+

1
∫

0

3texy2(t)dt = f 1 (x) ,

y2(x)−

1
∫

0

(

6xety1(t)− x2y3(t)
)

dt = f 2 (x) ,

y3(x)−

1
∫

0

(4(y3(t)−1)+ y2(t))dt= f 3 (x) ,

(25)

where f1(x) = x + 4ex,
f2(x) = ex − 3x

(

e2+1
)

+ x2 (sin(1)+1), and
f3(x) = cos(x)− (e+4sin(1))+2, x ∈ [0,1].

The exact solution of Eq. (25) is

y1(x) = x+ ex, y2(x) = ex, y3(x) = 1+ cos(x). (26)

Without loss of generality, to show the accuracy that
refers to how closely a computed and measured value
agrees with exact value of Example 3 using RPS
technique, we obtain the 10-truncated series
approximation of the RPS,y10

i (x), i = 1,2,3, at some grid
nodes in[0,1] with step size of 0.16. Anyhow, Tables
5− 7 show, respectively, its absolute and relative errors
for variousx. It is clear from the tables that the errors can
be measure the extent of agreement between the
10-truncated series approximation of the RPS solutions
and unknowns closed form solutions. Anyhow, in Table 8,
the values of the consecutive error functionsConk

i (x),
i = 1,2,3, have been calculated for various values ofx in
[0,1] and step size of 0.16. The goal here was to measure
the difference between the consecutive solutions obtained
by the 10th-order RPS solutions. In contrast, the residual
error functionsResdk

i (x), i = 1,2,3, for k = 5,10,15, have
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Table 9: Residual error functionsResdk
i (x), i = 1,2,3, k = 5,10,15, for Example 3.

Resdk
i x = 0.25 x = 0.50 x = 0.75 x = 1.00

k = 5 1.07811×10−11 5.66417×10−9 2.23560×10−7 3.05862×10−7

i = 1 k = 10 6.01470×10−15 1.27625×10−11 1.12824×10−9 2.73127×10−8

k = 15 8.73782×10−17 3.91002×10−17 6.16045×10−16 5.06664×10−14

k = 5 1.53607×10−11 8.07871×10−9 3.19215×10−7 4.37238×10−6

i = 2 k = 10 9.40043×10−15 1.96813×10−11 1.74147×10−9 4.21977×10−8

k = 15 1.10199×10−18 3.56191×10−17 8.29278×10−16 9.5463×10−14

k = 5 2.62679×10−13 2.68605×10−10 1.54526×10−8 2.73497×10−7

i = 3 k = 10 1.11022×10−16 5.09037×10−13 6.59260×10−11 2.07625×10−9

k = 15 0.00000 1.11022×10−16 4.44089×10−16 4.77396×10−14

been listed in Table 9 forxi = i/4, i = 1,2,3,4, in order to
demonstrate the rapid convergence of the present method
by increasing the order of RPS approximation. However,
the computational results provide a numerical estimate for
convergence of the RPSM, as well as it is clear that the
accuracy that is obtained using the method is advanced by
using an approximation with only a few additional terms.
Further,we can conclude that higher accuracy can be
achieved by evaluating more components of the solution.

4 Conclusions and discussion

In this paper, the RPSM is implemented successfully to
find out the analytical solution of system of Fredholm
integral equations in terms of a rapidly convergent series
with easily computable components using symbolic
computation software. The steps of the RPS method are
summarized, and the relevant applications are developed.
The proposed solutions by RPSM are obtained without
any transformation, perturbation, discretization or any
other restrictive conditions, as well as are found in the
closed form of a convergent series, which is coincides
with exact solution. The results reveal that the RPSM is a
powerful tool, very effective, straightforward, and
convenient for solving different forms of system of
integral equations.
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and hyperchaotic systems, Journal of Computational
Analysis and Applications. 19 (4), 713-724, 2015.

[23] A. El-Ajou, O. Abu Arqub and M. Al-Smadi, A general
form of the generalized Taylor’s formula with some
applications, Applied Mathematical and Computation, 256,
851- 859 (2015).

[24] O. Abu Arqub, M. Al-Smadi and S. Momani, Application of
reproducing kernel method for solving nonlinear Fredholm-
Volterra integro-differential equations, Abstract and Applied
Analysis, vol. 2012, Article ID 839836, 16 pages (2012).

[25] S. Momani, A. Freihat and M. AL-Smadi, Analytical study
of fractional-order multiple chaotic FitzHugh-Nagumo
neurons model using multi-step generalized differential
transform method. Abstract and Applied Analysis, vol.
2014, Article ID 276279, 10 pages (2014).

[26] O. Abu Arqub, M. AL-Smadi, S. Momani, T. Hayat,
Numerical solutions of fuzzy differential equations using
reproducing kernel Hilbert space method, Soft Comput.
(2015) doi:10.1007/s00500-015-1707-4.

[27] M. Al-Smadi, O. Abu Arqub, and A. El-Ajou, A numerical
method for solving systems of first-order periodic boundary
value problems, Journal of Applied Mathematics, vol. 2014,
Article ID 135465, 10 pages (2014).

[28] A. El-Ajou, O. Abu Arqub, Z. Al Zhour, and S. Momani,
New results on fractional power series: theories and
applications, Entropy, 15 (12), 5305–5323, 2013.

[29] O. Abu Arqub, Z. Abo-Hammour, R. Al-Badarneh, and S.
Momani, A reliable analyticalmethod for solving higher-
order initial value problems, Discrete Dynamics in Nature
and Society, vol. 2013, Article ID 673829, 12 pages, 2013.

[30] M. Al-Smadi, A. Freihat, M. Abu Hammad, S. Momani
and O. Abu Arqub, Analytical approximations of partial
differential equations of fractional order with multistep
approach, Journal of Computational and Theoretical
Nanoscience, 2016. In press.

[31] O. Abu Arqub, A. El-Ajou, A. S. Bataineh, and I. Hashim,
A representation of the exact solution of generalized Lane-
Emden equations using a new analytical method, Abstract
and Applied Analysis, vol. 2013, Article ID 378593, 10
pages, 2013.

Iryna Komashynska
received the PhD degree
in mathematics from Ukraine
institute of mathematics
(Ukraine) in 1997. He then
began work at the department
of mathematics, Al-Hussein
Bin Talal University
in 2003 as assistant professor
of applied mathematics
and promoted to associate

professor in 2008. Currently, Dr. Komashynska is is a full
professor of applied mathematics at the department of
mathematics, the university of Jordan. His research
interests are focused on the area of applied mathematics,
stochastic differential equations, and numerical analysis.

Mohammed Al-Smadi
received his Ph.D. from the
University of Jordan, Amman
in 2011. He then began
work as assistant professor
of applied mathematics
in Qassim University.
Currently Dr. Al-Smadi is
working as assistant professor
of applied mathematics in
Al-balqa applied university.

His research interests include analytical numerical
methods, numerical analysis, dynamical systems, integral
equations, partial differential equations, fuzzy calculus
and fractional calculus.

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 3, 975-985 (2016) /www.naturalspublishing.com/Journals.asp 985

Ali Ateiwi received the
PhD degree in mathematics
from Ukraine institute
of mathematics (Ukraine)
in 1997. He then began
work at the department of
mathematics, Al-Hussein Bin
Talal University in 1998 as
assistant professor of applied
mathematics and promoted to
associate professor in 2003.

Currently, he is a full Professor of applied mathematics at
the same department since 2009. His research interests
are focused on the area of applied mathematics, stochastic
differential equations, and numerical analysis.

Sadoon Al-Obaidy
received the PhD degree
in Statistics from Baghdad
University, Iraq, in 1991.
He then began work at
Al-Qadisiya University, Iraq,
in 1991 as assistant professor
of statistics and promoted
to associate professor
in 1994. He left Al-Qadisiya
University to Al-Hussein Bin

Talal University in 2001 until now. His research interests
focus on statistics, probabilities, mathematical statistics,
experimental design, and biostatistics.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	The residual power-series method
	Illustrative problems
	Conclusions and discussion

